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ABSTRACT

A Recommender System (RS) is a crucial part of several firms, particularly those involved in e-commerce. In
conventional RS, a user may only offer a single rating for an item-that is insufficient to perceive consumer
preferences. Nowadays, businesses in industries like e-learning and tourism enable customers to rate a product
using a variety of factors to comprehend customers’ preferences. On the other hand, the collaborative filtering (CF)
algorithm utilizing AutoEncoder (AE) is seen to be effective in identifying user-interested items. However, the
cost of these computations increases nonlinearly as the number of items and users increases. To triumph over the
issues, a novel expanded stacked autoencoder (ESAE) with Kernel Fuzzy C-Means Clustering (KFCM) technique
is proposed with two phases. In the first phase of offline, the sparse multicriteria rating matrix is smoothened
to a complete matrix by predicting the users’ intact rating by the ESAE approach and users are clustered using
the KFCM approach. In the next phase of online, the top-N recommendation prediction is made by the ESAE
approach involving only the most similar user from multiple clusters. Hence the ESAE_KFCM model upgrades the
prediction accuracy of 98.2% in Top-N recommendation with a minimized recommendation generation time. An
experimental check on the Yahoo! Movies (YM) movie dataset and TripAdvisor (TA) travel dataset confirmed that
the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.
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1 Introduction

Over recent decades, Recommender Systems (RS) have grown to be a pivotal solution in tackling
the issues of the overwhelming amount of information, particularly within the dynamic landscape
of e-commerce. These systems serve the essential function of providing personalized suggestions,
encompassing a wide array of items and services, to individual users. This is achieved through
the intricate analysis of users’ diverse information sources, including their explicit ratings, detailed
reviews, historical purchasing patterns, and even implicit behavioral cues. Recommendation systems
often employ content-driven and cooperation-driven filtering approaches. In the realm of content-
driven filtering, the technique revolves around delving into the preferences and attributes of the
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present item, along with the historical choices of the active user [1]. This method essentially tailors’
recommendations based on the intrinsic qualities of items and the user’s demonstrated inclinations,
creating a personalized tapestry of suggestions. On the other hand, the landscape of collaborative
filtering (CF) has emerged as a potent force within the e-commerce industry, amassing notable achieve-
ments [2]. This method hinges on the power of collective wisdom, orchestrating recommendations by
extrapolating from the user’s historical rating interactions. By identifying patterns in user behavior,
CF techniques adeptly uncover latent connections among users with analogous preferences. This
enables them to proficiently recommend items that remain unexplored within a user’s history but are
anticipated to resonate with their tastes. Within the realm of collaborative filtering (CF) algorithms,
we find a crucial categorization: Memory-focused CF and Model-centric CF. Memory-driven CF,
in particular, operates by recognizing akin users or comparable items concerning the current user
(or a designated target item). These proximate entities’ inclinations then serve as valuable inputs in
shaping the recommendations provided [3]. In contrast, Model-based CF methodologies, celebrated
for their enhanced precision, delve deeper by comprehensively comprehending users’ and items’
inherent attributes. This adeptness is cultivated during the model development phase, facilitated by
the deployment of sophisticated machine-learning techniques. This encompasses the strategic use of
methodologies like matrix factorization [4], factorization machines [5], and deep neural networks [6–9],
all synergistically working to grasp and internalize users’ nuanced preferences.

The previously mentioned methodologies have conventionally been applied to solitary grading
schemes. But depending only on these prove inadequate in capturing the diverse spectrum of user
feedback, particularly in multifaceted service sectors like restaurants, hotels, and movies. In such
contexts, users’ experiences are multidimensional and cannot be fully encapsulated through a single
rating. In multi-criteria recommender systems, a more comprehensive approach is adopted. These
systems enable users to provide feedback across various criteria, offering a nuanced evaluation of
an item. For instance, within the realm of restaurants, a user might furnish ratings for distinct
attributes such as taste, hygiene, ambiance, hospitality, and price, supplementing an overall rating.
This augmentation of feedback affords multi-criteria recommender systems [10] a richer pool of
information to draw upon. Consequently, these systems excel in suggesting items that align more
accurately with users’ multifaceted preferences in comparison to their single-rating counterparts.

Several researchers have ventured into incorporating multi-criteria rating information within their
recommendation frameworks [11,12]. However, the potential of applying diverse machine learning
techniques to multi-criteria recommender systems remains largely untapped. This study introduces
an innovative utilization of a deep learning method known as Stacked Autoencoder (SAE) [13]. In
response to the intricacies of multi-criteria rating systems, we present an extended version of SAE
that is tailored to address their unique demands. To adapt this technique effectively, modifications are
implemented to both the interface component of the traditional network and the objective function.
These adjustments are strategically introduced to simplify the comprehension of complex associations
between multi-criteria evaluations and their respective aggregate ratings.

As RS is made to aid users in navigating through an enormous number of items, one of its
main objectives is to scale up to actual datasets [14]. Conventional collaborative filtering techniques
may encounter significant scalability challenges as the volume of items and users grows, leading
to computational demands that surpass practical or acceptable thresholds [15]. User clustering via
affinities in their user profiles is a popular technique for making recommender systems more scalable
and reducing their time complexity. The intricacy of suggestions is only dependent on the size of
the cluster when made by cluster representatives for the remaining cluster members [16,17]. Several
model-based strategies [18] have been presented before addressing scalability and sparsity challenges
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in recommender systems. To realize the full potential of recommender system research, it is necessary to
comprehend the most common methodologies applied to directly construct recommender algorithms
or to pre-process recommendation datasets, as well as their advantages and disadvantages. As a result,
our proposed methodology surpasses the performance benchmarks set by both contrasting single-
score recommendation platforms with cutting-edge scalable recommendation systems utilizing diverse
criteria.

In brief, this research offers the following major contributions:

_ The novel ESAE_KFCM has 2 offline stage, the sparse user-item multicriteria rating matrix
undergoes a smoothing process to make the matrix complete without sparsity by estimating
an intact rating of the item using an expanded stacked autoencoder that is not possible in a
conventional autoencoder.

_ To attempt the problem of scalability and to generate the most excellent recommendations,
a Kernel Fuzzy C-Means Clustering (KFCM) is utilized to cluster highly correlated users.
Thereby, highly relevant users from multiple clusters alone are utilized in the online phase
prediction of intact rating using the ESAE_KFCM approach that minimizes the time taken
for recommendation generation and increases the prediction accuracy.

_ Extensive experiments on real-world multicriteria data sets from the Yahoo! Movies (YM)
movie dataset and TripAdvisor (TA) travel dataset confirm that ESAE_KFCM outperforms
the traditional recommender systems.

The structure of the work is as follows: The related work of the multicriteria-based recommender
system is reviewed in Section 2. In Section 3, the proposed ESAE_KFCM approach is presented. The
specifics of the experimental evaluation and results in terms of prediction accuracy and computation
time are discussed in Section 4. Finally, the conclusion and future work of the paper is discussed in
Section 5.

2 Related Work

Among the pioneering endeavors in the domain of recommendation systems employing multiple
aspects is the work by Adomavicius et al. [10]. In their approach, they harnessed statistical method-
ologies to formulate an aggregation function that bridges the gap between diverse evaluative factors
and the comprehensive overall assessment. This entails predicting multi-criteria ratings through con-
ventional techniques [19,20] and subsequently utilizing the aggregation function to derive the overall
rating, a process integral to the recommendation process. However, it is worth noting that this approach
adheres to an established predilection for parameters consistently among all individuals. Lu et al. [21]
presented a hybrid approach that amalgamates content-driven filtering and item-centric collaborative
recommendation methods. This hybrid approach was devised to address the challenges posed by
the cold-start problem and sparsity within the context of recommender systems employing multiple
criteria. Nilashi has made significant contributions to the realm of multi-dimensional recommendation
systems through a series of works, as evidenced in [22] and [23]. In [22], Nilashi et al. introduced
algorithms rooted in fuzzy logic to enhance the precision of multi-dimensional recommendation
systems. Continuing their exploration in [23], Nilashi et al. introduced a blended approach that
utilizes the Ant K-means clustering technique. In this structure, essential elements are derived from
each group of users through Principal Component Analysis. This information is then employed to
facilitate the learning of the sequence linking global assessments and the harvested elements using
Support Vector Regression (SVR). Zheng [12] introduced a set of three distinct approaches known as
the ‘criteria chain.’ In the first approach, the prediction process commences with the initial criteria
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rating, which then serves as contextual information while forecasting the subsequent criteria rating,
and so forth. Ultimately, SVR is employed to anticipate the complete assessment based on the
sequence of criteria evaluations in addition to Preference learning methodology [24]. The alternative
method involves employing Context-Aware Matrix Factorization (CAMF) [25] for predicting the
eventual rating by incorporating the ratings of criteria as contextual hints. In the sequential approach,
each evaluation factor is autonomously projected, and these anticipated assessments subsequently
contribute as background information when predicting the overall assessment. However, relying on
sequentially predicted criteria ratings could potentially lead to a cumulative loss in predictive accuracy
when estimating the final overall rating [26–31]. Table 1 provides related works, offering insights into
various algorithms and methodologies.

Table 1: Summary of additional related works and algorithms

Work Algorithms used Inference

Zhang et al. [19] Pair of Probabilistic Latent
Semantic Analysis (PLSA)
models

PLSA models tend to converge towards local
minima, limiting optimization efficiency.

Liu et al. [20] T-test on users’ ratings data to
identify significant criteria

Assumes a Gaussian distribution, impractical
for sparse rating datasets.

Jannach et al. [11] Support Vector Regression
(SVR)

Comprehends the complex interaction
between global assessments and individual
evaluation scores, aligning with the
framework introduced by Adomavicius and
Kwon.

Shu et al. [32] Specific Class Center Guided
Deep Hashing (SCCGDH)

Proposes SCCGDH to learn specific class
centers from neural networks and guide
hashing learning for multimedia data. Uses
networks to reduce intraclass variation and
achieve inter-modal invariance,
outperforming other hashing approaches.

Shu
et al. [33–35]

RSMFH (Matrix
Factorization), ROHLSE
(Online Hashing with Label
Semantic Enhancement)

Introduces RSMFH for multimodal data,
maintaining shared and specific properties
via matrix factorization, enhancing
discriminative ability. Proposes ROHLSE
address label noise in online hashing, utilizing
low-rank and sparse constraints, achieving
superior results in cross-modal retrieval tasks.

Ramesh
et al. [34]

Skill Level Navigation
Patterns-Mining, CF,
Content-Based Filtering

Addresses information overload in
programming online judges (POJs) and
proposes RS based on learners’ ability level
navigation patterns. Outperforms other
approaches in practice problem recommender
systems.

(Continued)
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Table 1 (continued)

Work Algorithms used Inference

Sreepada
et al. [24]

Preference learning
methodology

Addressed individual preferences and
common criteria associated with each
element. Incorporates user-centered and
product-focused collaborative filtration (CF).

Sinha et al. [26] Social spider optimization,
matrix factorization, neural
networks

Integrates various techniques for
recommendation systems but faces challenges
in prediction accuracy and scalability.

Shu et al. [36] Discrete Asymmetric Zero-Shot
Hashing (DAZSH)

Integrates pairwise similarity, class attributes,
and semantic labels for zero-shot hashing
learning. Efficient discrete optimization
strategy. Achieves promising results in
cross-modal retrieval tasks.

Kannimuthu
et al. [37,38]

Stacked CNN, BiLSTM,
Conditional GAN

Both studies leverage advanced techniques –
one for social media author profiling and the
other for ASD prediction using
neuroimaging, showcasing the authors’
expertise in diverse applications of deep
learning.

Wu et al. [39]
&
Gao et al. [40]

Graph Neural Networks
(GNN)

A comprehensive survey on GNNs in
recommender systems, categorizing models,
addressing challenges, and providing insights
for future development.

Gao et al. [41] Large Language Models
(LLMs)

Proposes Chat-Rec, an innovative approach
to conversational recommender systems,
leveraging LLMs for improved interactivity,
explainability, and cross-domain
recommendations.

Yang et al. [42] Sequence-to-sequence
paradigm, Prompt-based
learning strategies

Proposes UniMIND, a unified framework for
MG-CRS that addresses Goal Planning,
Topic Prediction, Item Recommendation,
and Response Generation.

3 Proposed Method

The architectural view of the proposed ESAE_KFCM approach is depicted in Fig. 1. As specified
in Fig. 1, the smoothening approach in the phase-I offline task utilizes a novel expanded stacked
autoencoder that combines users’ multicriteria-based ratings given for the specific item to predict
overall or intact rating value. Thus, the sparse matrix of multicriteria ratings is made into a filled
matrix of intact ratings that yields an efficient way to predict the most relevant time and identify the
highly correlated user. To perform user modeling, the Kernel Fuzzy C-Means Clustering (KFCM)
approach is utilized to cluster the correlated users. In the online phase, the active user is recommended
with the top-N most relevant item by the based rating prediction approach. The overall process of the
proposed ESAE_KFCM approach is given in Algorithm 1.
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Figure 1: Proposed approach using ESAE_KFCM

Algorithm 1: Proposed system using ESAE_KFCM

Input: Sparse matrix Rι of size [I × K] with multicriteria ratings
〈
r1

nm, r2
nm, ..., rq

nm

〉
that contains a

collection of I users {Un| n = 1, 2, ..., I} and collection of K diverse items {Im| m = 1, 2, ..., K}, Active
user RV au

Output: Top–N Items recommendation for RV au.
Method:
1. The offline phase of ESAE_KFCM has the following steps,

1.1. Smoothen sparse Rι multicriteria matrix into completely intact R̂ι rating matrix by ESAE
approach as given in Section 3.1.1.

1.2. Perform user modeling using the KFCM clustering approach as mentioned in
Algorithm (2).

2. The online phase of the ESAE_KFCM for each RV au has the following steps,
2.1. Perform the Recommendation process as mentioned in Algorithm (3).

The following data has been provided in a transaction database:

1. A collection of I users {Un| n = 1, 2, ..., I}.
2. A collection of K diverse items {Im| m = 1, 2, ..., K}.
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3. A table of rating Rι of size [I × K] that contains data on the users’ history of multicriteria
ratings of items o = {

n, m, r1
nm, r2

nm, r3
nm, ..., rq

nm

}
where r1

nm implies the rating value for item m by user n
under criteria 1 and q represents the total number of criteria. A zero is used to indicate the rating value
of unavailable items.

3.1 Off-Line Task of the ESAE_KFCM

Two phases of the task are carried out offline, specifically, Phase I performs Smoothening, and
User modeling is done in Phase II.

3.1.1 Smoothening-Expanded Stacked Denoising Autoencoder (ESAE) (Phase-I)

Here, the stacked denoising autoencoder is expanded to include a multicriteria of ratings given
by the user for an item in the network. Consequently, the improved loss function is incorporated
accordingly [27]. The user–item explicit preferences in the matrix of sparse multicriteria ratings are
computed to a dense matrix of overall ratings using ESAE.

The count of neurons that comprise the first layer of a typical autoencoder is similar to the count of
parameters in the input. The fact from each attribute is supplied to the appropriate neurons within the
layer of input. But in the case of a multi-criteria context, any product will have multiple quality ratings
that must be fed inside the network. As a consequence, the autoencoder was expanded by having an
add-on layer that encompasses multi-criteria ratings. Particularly, denoising AE aims to prevent the
latent layer from just learning the identification function and to compel it to find more robust features.
Therefore, the expanded add-on layer serves as a first input layer that is corrupted with the addition
of Gaussian noise and is subsequently connected to the intermediary layer containing item nodes. It
is indeed connected to the successive T encoding layers to uncover the items’ hidden representation.

The final layer of encoding is allied to the T layers of decoding, which are employed to interpret
the latent features learned from corresponding encoders. The items’ exact specific ratings are predicted
as an output in the final decoding layer.

Let ro
mn be the optimum rating for an item m given by user n which is attained from r1

nm, r2
nm, r3

nm, ..., rq
nm

respectively as mentioned in Eq. (1).

ro
nm = r1

nm × w1
m + r2

nm × w2
m + r3

nm × w3
m + ...... + rq

nm × wq
m (1)

where w1
m, w2

m, w3
m, ..., wq

m are the multicriteria weights of the mth item. These unified optimum values of
rating are given to the subsequent layers of the ESAE model. Finally, a justifiable and intact preference
value R̂ιn is predicted as in Eq. (2) by a completely connected network as depicted in Fig. 2.

R̂ιn = ρ
(
G′ (ρ (

G
{
ro

m

} + s
)) + s′) (2)

where R̂ιn ∈ R
K is the final predicted layer of intact rating value, G ∈ R

H × K and G′ ∈ R
I × H are the

weight matrices, ro
m ∈ R

K is the intact rating value of item m in the sparse R̆ιn, s ∈ R
H and s′ ∈ R

K is the
bias vectors and function ρ is the hyperbolic tangent.
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Figure 2: Structure of expanded stacked autoencoder (ESAE)

The ESAE model is trained using the updated loss function below in Eq. (3) to gain a concise
representation, since predicting the loss rate for the zero values in the rating vector Rιn results
in obsolete. To prevent overfitting of the proposed ESAE model, the objective function combines
regularization terms and is given away as in Eq. (3).

L
(

R̂ι, R̆ι
)

=
∑

j∈Rι′

(
ESAE

(
R̂ι

)
j
− R̆ιj

)2

+ β
(‖G‖2

F + ‖G′‖2
F + ‖w‖2

F + ‖s‖2
F + ‖s′‖2

F

)
(3)

where R̂ι indicates an absolute array of intact ratings where R̂ι = Rι′′ ∪ Rι′′′, Rι′′ comprises of known
intact rating instances, Rι′′′ comprises of the unknown instances, ‖G‖, ‖G′‖ are the vectors of weight
of the ESAE model, ‖w‖ indicates the vectors of the weight of multicriteria rating of respective item,
vectors of the weight of bias are ‖s‖ , ‖s′‖ and β is the regularization hyperparameter that controls
how much learning has an impact on how generalizable the model is, so it is important to determine
the right value, and β is defined by the outcomes of the experiment. The parameters are updated
using the ADAM optimizer, a version of stochastic gradient descent. In an attempt to overwhelm the
identity network, regularized dropouts via a probability p are additionally introduced at all layers. The
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forecasted instance j’s intact rating is ESAE (Rι′)j and R̆ιj, the real overall rating of instance j. From
Eq. (3), it could be seen that the loss is computed using only the available rating instance set (Rι′).

Now the rating table R̂ι is a completely smoothened matrix of users’ intact rating values for
all the items that have been predicted from multicriteria ratings given for the item by the user. By
this ESAE approach the accuracy of the intact rating prediction is improved which enhances Top-N
recommendation.

3.1.2 User Modeling-Kernel Fuzzy C-Means Clustering (KFCM) (Phase-II)

Towards dealing with the scalability issue, the smoothened matrix R̂ι using the ESAE approach
as explained in Section 3.1.1 is clustered before the task of recommendation. This task is altered
for ESAE_KFCM. The total amount of ratings given by the active user during the phase of
recommendation is incredibly low. Prevalent clustering techniques like expectation maximization,
similarity-based clustering, and k-means project the data over a scale of rating space that may be
significantly larger. These clustering methods have the limitation that their prototypes are located in a
highly-dimensional rating space, consequently, the descriptions are inadequate and informative (sparse
user-item matrix). As a result, Zhang et al. [28] introduced a kernel fuzzy approach for clustering that
is utilized in user modeling in ESAE_KFCM. The investigation demonstrates that fuzzy clustering is
more resistant to outliers and noise than other approaches and can accept unequally sized clusters.
In the phase of online, the most relevant users’ multicriteria rating vector alone is retrieved from
the multiple clusters and the accurate unknown ratings are predicted using the ESAE approach with
minimal recommendation time. The procedure of clustering is elucidated in Algorithm 2.

Algorithm 2: Clustering by KFCM approach

Input: R̂ι is the smoothened user × item matrix, R̂ιn ∈ R
K indicates the intact rating vector of user

n, and f is the number of clusters.
Output: Center of the cluster Cb, membership degree mdnb for cluster b and user n (Every user
holds a membership value ranging from 0 to 1, indicating the user’s n desire in every cluster b).
Method:
1. Set the membership degree mdn,b = randperm (b)/

∑
(randperm (b)) and initialize i = 1. material

2. Compute the center of the cluster Cb (1 ≤ b ≤ f ) as mentioned in Eq. (4).

Cb =
I∑

n=1

mdi
n,b · �Rιn/

I∑
n=1

·mdi
n,b (4)

3. Compute membership mdn,b (1 ≤ n ≤ I , 1 ≤ b ≤ f ) as mentioned in Eq. (5).

mdn,b = 1/

f∑
a=1

(
R̂ιn − Cb

R̂ιn − Ca

) 2
a−1

(5)

4. Compute Error = max
(
oldmdn,b, newmdn,b

)
.

5. If Error > 0.5, then f = f + 1; go to Step 3.
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3.2 Recommendation Process by ESAE_KFCM in Online Phase

During the stage of the online recommendation process, the active user is recommended depending
on the most correlated users obtained from multiple clusters generated by Section 3.1.2. This process
of online recommendation is explained in Algorithm 3.

Algorithm 3: Recommendation by ESAE_KFCM
Input: Rating Vector of multicriteria ratings of active user RV au, Total item number to be recom-
mended N, Center of the cluster Cb.
Output: Item recommendation.
Functional Specification:
1. In case the active user is someone new where RV au remains NULL (cold start new user), provide

the top N-rated items in all clusters to the recommending agent.
2. In case the active user has a sparse rating vector and is new to the system, perform steps 2.1 to

2.3. to provide the top N predicted items to the recommending agent.
2.1. Compute membership degree mdau,b for active user au with the existing clusters using

Eq. (5).
2.2. Aggregate by finding the average of multi-criteria rating and retrieve the most similar

users’ multicriteria rating vector from multiple clusters.
2.3. Estimate the active user au’s, unknown ratings using the ESAE approach as mentioned in

Section 3.1.1., only using the most similar user obtained from the multiple clusters.
3. In case the active user already exists in the training data and no modification in RV au, provide

the top N estimated rating of items in the training phase to the recommending agent.
4. In case the active user already exists in training data and with added ratings, carry out the steps

mentioned in Step 2.

4 Experimental Evaluation
4.1 Dataset Description and Evaluation Metrics

The proposed ESAE_KFCM technique is tested using two real-time multicriteria data sets from
the Yahoo! Movies (YM) movie sector dataset [11] and TripAdvisor (TA) [29] travel dataset sectors.
The Yahoo Movies dataset has 6,078 users who rated a total of 976 movies has 62,156 ratings between
1 and 13. Each user assessed a movie based on 4 different criteria: Visuals, Direction, Acting, and
Story. For experimenting, this 13-level scoring is converted to the standard 5-point format. Through
web scraping on the Trip Advisor website with Beautiful Soup, a total of 60,216 records were gathered
from 2500 hotels located in 93 different cities. Each hotel may be assessed based on multiple criteria
such as service, value, cleanliness, rooms, staff, and quality of sleep. We sustain instances of users whose
rating is at least five hotels and hotels that had at least five user ratings to extract the workable subset
of data from TA. The extracted subset TA 5-5 has sparse data of 99.83% for 3550 hotels with 3160
users and 9374 instances of ratings. Similarly, YM 20-20, YM 5-5, and YM 10-10 subsets of data are
extracted.

To assess the efficacy of the ESAE_KFCM approach, we employed prominent performance
measures like, F1 score, Mean Absolute Error (MAE) [30], Good Predicted Items MAE (GPIMAE),
Good Items MAE (GIMAE) [31], and computation time. Metrics for prediction accuracy, such as
Mean Absolute Error (MAE), specified in Eq. (6), compare the actual ratings with the expected ratings.
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MAE =
∑I

n=1

∑K

m=1

∣∣An,m − En,m

∣∣
I ∗ K

(6)

where I , K, An,m, En,m denotes the total user, total items, and actual, and expected ratings of user n for
item m. High recall and precision levels are ideal for a model. Recall typically decreases as precision
increases, and vice versa, due to the inverse correlation. To take into account recall ( ) and precision
(P–), the metric F1 is defined in Eq. (7):

F1 = 2P– /P– + (7)

GPIMAE and GIMAE calculate the MAE in the system’s prediction of acceptable items and in
those items, it forecasts to be good. As a result, they concentrate just on pertinent things rather than
considering every item in the assessment subset. Therefore, the primary benefit of these measures is
that they assess the algorithm solely for predictions that are pertinent to the user, i.e., for items that
either ought to or will get placed on the list of recommendations.

4.2 Training Settings

The datasets TA 5-5, YM 20-20, YM 5-5, and YM 10-10 are divided into training data (60%),
cross-validation (20%), and test data (20%) for the experiment. The proposed ESAE_KFCM paradigm
is trained using Keras API in Python from the TensorFlow package. Utilizing the sci-kit-learn’s
GridSearchCV feature, we investigate the potential effects of several distinct parameter values on the
accuracy of the ESAE_KFCM model. Specifically, noise variance is altered with [0.1,0.2,0.3,0.4,0.5],
number of hidden units [500,450,350,300,600], optimization technique as [‘Nadam’, ‘Adamax’,
‘Adam’, ‘Adadelta’, ‘Adagrad’, ‘RMSprop’, ‘SGD’], epoch with [100,200,240,280,300] and learning
rate are assessed. Whenever the value of epoch value is 280, the ESAE model gets converged with
corruption ratio = 0.4 and hidden units 450. Learning rates with altering values (0.002, 0.001, 0.01,
0.02, and 0.03) were tested and exposed that the learning rate η = 0.02 is given better accuracy. Similar
to this, a minibatch of size 50 is used to optimize the network using a Stochastic Gradient Descent
Optimizer. Also, weight decay l2(0.001) is introduced for regularization, we chose hyperbolic tangents
as a transfer function.

In this ESAE_KFCM technique, the optimum number of clusters (f ) is found using the Silhouette
Coefficient Method [43]. The max value of the silhouette coefficient (β), which indicates that the
number of clusters formed is ideal, is 1. The first step in the experiment to find the optimum value
for f is choosing the number of clusters to be assessed, which can range from 5 to 25. Based on the
smallest possible clusters, the minimum f = 5. In the interim, the maximum f = 25. The value of
β gives the second-highest optimum value at f = 22 and then starts to decline at f = 25. Since the
higher f requires greater computing time, the subsequent f values do not proceed. The findings of
the clustering assessment via the Silhouette Coefficient approach are displayed in Fig. 3. The ideal f
value is indicated in Fig. 3, where the f = 16 yields the greatest value of the Silhouette Coefficient. As
a result, the process of clustering will start with some clusters f equal to 16.
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Figure 3: Results of silhouette coefficient (β)

4.3 Results and Discussion

The performance of ESAE_KFCM is assessed and compared with single and multicriteria rating-
based models as baseline methods of recommendation as listed below:

1. CDAE [8]: Collaborative DAE that uses a single rating system that incorporates latent factors
for recommendation.

2. Hybrid_AE [9]: CF-based neural network that uses a single rating system that combines user
and item side information.

3. Agg_CCA [12]: Aggregation approach that utilizes a multicriteria rating system to construct
hybrid item and user-specific model.

4. Context_CCC [12]: Estimates overall preference values based on contextual situations cast by
multiple criteria rating system.

5. Ind_CIC [12]: The BiasedMF algorithm was utilized to estimate the individual rating criteria
as contexts by avoiding dependencies between multiple criteria ratings.

6. ESAE_CF: This approach integrates the proposed ESAE approach with CF technique-based
prediction for top-N item recommendation.

4.3.1 Performance Analysis of ESAE-Based Smoothening Process (Offline Phase)

Fig. 4 shows the MAE and smoothening time comparison of the ESAE with conventional models
on all the working datasets. The efficiency of the ESAE model’s smoothening process in the offline
phase is measured in terms of MAE and computational time.

• CDAE and Hybrid_AE work on a single rating system where the smoothening process is
done by autoencoder has average performance in MAE but the smoothening time is compara-
tively high.

• Hybrid_AE outperforms the based smoothening technique since it incorporates the gain from
side information to avoid the sparsity problem.

• Agg_CCA and Context_CCC approaches utilize the CAMF_C method, which adopts criteria
chains to anticipate the various criteria ratings one at a time and has better prediction accuracy
than single rating systems such as CDAE and Hybrid_AE.
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• Ind_CIC outperforms Agg_CCA and Context_CCC in terms of prediction accuracy and the
smoothening time was comparatively high.

• As multicriteria ratings are considered for the smoothening process by utilizing an expanded
stacked autoencoder in the ESAE_KFCM approach, the modeling time is comparatively
elevated whereas outperforms MAE prediction accuracy compared to all the other models.

• The smoothening approach is similar for both ESAE_CF and ESAE_KFCM. Subsequently,
both have the same performance.

Figure 4: MAE comparison and smoothening time of the ESAE

4.3.2 Performance Analysis of ESAE_KFCM Process (Online Phase)

Subsequently completing the smoothening process, the dataset is clustered by the proposed Kernel
Fuzzy C-Means Clustering (KFCM) approach. In the online phase the multicriteria rating vector of
highly correlated users’ is alone considered for rating prediction using the ESAE approach. Thereby
the proposed ESAE_KFCM approach gives the most relevant Top-N items as recommendations in
minimal time and greater prediction accuracy. The time taken to recommend top-N items for the
active user with the conventional model is depicted in Fig. 5. Tables 2–5 depict the results of accuracy
measures in terms of MAE, F1 score, GPIMAE, and GIMAE, and the observations are listed as
follows:
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• As depicted in Fig. 5, ESAE_KFCM constantly outperforms all the conventional models
concerning recommendation time. Here the prediction of an intact rating takes only a minimal
time for Top-N item recommendation since it inputs only the highly correlated multicriteria
rating vector into the ESAE model fetched from multiple clusters in the online phase. Ind_CIC,
Agg_CCA, and Context_CCC outperform CDAE and Hybrid_AE in terms of recommenda-
tion time since it works with the principle of dimensionality reduction technique. In ESAE_CF,
the recommendation generation time is high compared to all the other models.

• Ind_CIC, Agg_CCA, and Context_CCC comparatively have 17% higher errors than the
ESAE_KFCM approach in terms of MAE, F1 score, GPIMAE, and GIMAE. Hybrid_AE
outperforms CDAE in terms of prediction accuracy but has comparatively 21% high GPIMAE,
and GIMAE. ESAE_CF outperform all the multicriteria rating-based recommendation system
such as Ind_CIC, Agg_CCA, and Context_CCC in terms of F1 score, GPIMAE, and GIMAE
for the existing user with modified multicriteria rating vector and new user with no rating vector.

• The KFCM clustering process with some cluster (f ) = 16 as mentioned in Fig. 4 on all the
datasets has upgraded the prediction accuracy of 98.2% in Top-N recommendation with an
average online recommendation generation time per item with 0.00428346 s accordingly.

• ESAE_KFCM has an accurate prediction of intact ratings with less error in terms of GPIMAE,
GIMAE, MAE and a 22% efficient F1 score compared to ESAE_CF, Ind_CIC, Agg_CCA, and
Context_CCC in addition to minimized recommendation time and better decision support.

Figure 5: Recommendation time evaluation on the dataset

Table 2: The performance comparison on the YM 5-5 dataset in the Online phase

Model F1 score GPIMAE GIMAE MAE

CDAE 0.6491 0.7913 0.5672 0.6306
Hybrid_AE 0.6789 0.8406 0.6022 0.6531
Agg_CCA 0.4497 0.5901 0.5878 0.6737
Context_CCC 0.4826 0.6095 0.6124 0.6914
Indep_CIC 0.4636 0.6814 0.6536 0.7129
ESAE_CF 0.7458 0.5379 0.5210 0.5674
ESAE_KFCM 0.7816 0.5111 0.4993 0.5258



CMC, 2024, vol.78, no.2 2283

Table 3: The performance comparison on the TA 5-5 dataset in the Online phase

Model F1 score GPIMAE GIMAE MAE

CDAE 0.6545 0.8693 0.6976 0.7806
Hybrid_AE 0.6798 0.8244 0.6314 0.7691
Agg_CCA 0.5640 0.5972 0.5417 0.6891
Context_CCC 0.5380 0.7577 0.6242 0.6888
Indep_CIC 0.5370 0.7439 0.6420 0.7012
ESAE_CF 0.7109 0.5592 0.4636 0.6080
ESAE_KFCM 0.7916 0.5289 0.4407 0.5758

Table 4: The performance comparison on the TA 10-10 dataset in the Online phase

Model F1 score GPIMAE GIMAE MAE

CDAE 0.6196 0.8453 0.6792 0.8284
Hybrid_AE 0.7042 0.8269 0.6595 0.7811
Agg_CCA 0.5343 0.7990 0.6015 0.6618
Context_CCC 0.5361 0.7857 0.6240 0.6374
Indep_CIC 0.5327 0.7743 0.6542 0.6719
ESAE_CF 0.7313 0.5592 0.4870 0.5783
ESAE_KFCM 0.8165 0.5289 0.4512 0.5403

Table 5: The performance comparison on the TA 20-20 dataset in the Online phase

Model F1 score GPIMAE GIMAE MAE

CDAE 0.7200 0.8164 0.6237 0.7541
Hybrid_AE 0.7578 0.7830 0.6008 0.7205
Agg_CCA 0.5641 0.6971 0.6042 0.6691
Context_CCC 0.5585 0.7159 0.6095 0.6798
Indep_CIC 0.5677 0.7064 0.6218 0.7029
ESAE_CF 0.8070 0.6523 0.4870 0.5906
ESAE_KFCM 0.8632 0.6179 0.4324 0.5345

5 Conclusion and Future Enhancement

This work developed and estimated a scalable novel ESAE_KFCM model to enhance Top N
recommendation by Kernel Fuzzy C-Means Clustering. In the KFCM technique, the method of
clustering efficiently retrieves the highly correlated user from multiple clusters in the recommendation
phase. In the offline phase, ESAE ESAE-based smoothening is performed by considering the multicri-
teria rating vector thereby overcoming the sparsity and enhancing prediction accuracy. Compared with
the existing models, the proposed ESAE_KFCM model can make online recommendations using only
the most similar users’ multicriteria rating vector retrieved from multiple clusters enhancing the high
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quality of Top-N item recommendation with minimal computation time. This model can be enhanced
further by involving additional criteria like reviews, and user and item features to improve the accuracy
of the recommendation process. Besides, variational or sparse autoencoders can be utilized for further
investigation to enhance the Top-N recommendation.
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