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ABSTRACT

Transformer-based stereo image super-resolution reconstruction (Stereo SR) methods have significantly improved
image quality. However, existing methods have deficiencies in paying attention to detailed features and do not
consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information.
To address these challenges, this paper introduces a novel epipolar line window attention stereo image super-
resolution network (EWASSR). For detail feature restoration, we design a feature extractor based on Transformer
and convolutional neural network (CNN), which consists of (shifted) window-based self-attention ((S)W-MSA)
and feature distillation and enhancement blocks (FDEB). This combination effectively solves the problem of global
image perception and local feature attention and captures more discriminative high-frequency features of the image.
Furthermore, to address the problem of offset of complementary pixels in stereo images, we propose an epipolar
line window attention (EWA) mechanism, which divides windows along the epipolar direction to promote efficient
matching of shifted pixels, even in pixel smooth areas. More accurate pixel matching can be achieved using adjacent
pixels in the window as a reference. Extensive experiments demonstrate that our EWASSR can reconstruct more
realistic detailed features. Comparative quantitative results show that in the experimental results of our EWASSR
on the Middlebury and Flickr1024 data sets for 2 × SR, compared with the recent network, the Peak signal-to-noise
ratio (PSNR) increased by 0.37 dB and 0.34 dB, respectively.
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1 Introduction

Deep learning-based super-resolution reconstruction (SR) of stereo images is an important
research direction in the field of computer vision, and its core idea is to utilize the information
in multi-view images to infer high-resolution image information [1–3] acquire two low-resolution
images using devices such as binocular cameras, then match and fuse these images to obtain high-
resolution images from different viewpoints. Stereo SR has garnered increased attention in various
disciplines, showcasing excellent results in competitions like the new trends in image restoration
and enhancement (NTIRE) [4], demonstrating the potential of stereo correspondence information
to improve SR performance. However, Stereo SR faces several challenges. Firstly, it must recover
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high-frequency details, including object edges and fine features, from low-resolution left and right-
view images. Effectively recovering and enhancing these high-frequency features remains a major
challenge. Secondly, there is the task of fusing left and right view information. Stereo SR requires the
integration of information from both viewpoints to improve depth estimation accuracy, demanding
an effective information fusion strategy to combine the data from both views and obtain better depth
maps. Lastly, the models employed tend to have a large number of parameters. Stereo SR tasks
typically necessitate deep neural network models for learning the mapping from low-resolution to high-
resolution. Designing a Stereo SR model that is both efficient and lightweight is extremely challenging
due to the complex structure of high-resolution depth images.

The issues above represent some of the key challenges in Stereo SR research. To restore more
discriminative high-frequency features, Hui et al. [5] introduced perceptual techniques to enhance
and improve the performance of super-resolution algorithms, making the reconstructed stereo images
more suitable for human vision or computer vision systems, thus enhancing perceptual quality [6–8]
employ non-autoregressive fusion network (NAFnet) denoising modules to handle noise interference
in images, promoting the recovery of high-frequency features. To utilize complementary information
between images, DASSR adopted a disparity-based domain adaptation approach to merge views,
taking into consideration depth information for adapting to varying disparities. Dai et al. [9]
introduced a feedback mechanism by transferring information extracted from super-resolution tasks
into disparity estimation tasks, establishing a mutual feedback loop that enhances performance in
both tasks. Software Architecture Evaluation Model (SAEM) [10] makes efficient use of information
from both cross-view and intra-view perspectives to acquire cross-view information, thereby improving
image SR performance [11–13] explored distillation, fusion, and feature enhancement to achieve model
lightweight and efficiency, proposing an efficient separable distillation module for high-resolution
feature restoration. References [14–16] transformed 3D or 4D cost volumes into disparity learn-
ing approaches, reducing significant computational costs. Despite substantial progress in previous
research, a balance between long-range feature dependencies (perception) and local information
attention remains essential for high-frequency feature recovery. Furthermore, when employing a
disparity attention mechanism for complementary information fusion, particular attention should be
paid to the upper and lower offsets of complementary information within the epipolar line range.

In response to the challenges posed by Stereo SR outlined above, this paper introduces a cross-view
fusion attention network partitioned along the epipolar lines. First, to address issues regarding image
perception and local feature attention, a Swin Transformer feature distillation and enhancement block
(FDEB) Layer is introduced for global feature extraction and fine-grained local feature extraction,
which utilizes a (shifted) window-based self-attention ((S)W-MSA) and a FDEB. Furthermore,
adaptive overlapping window attention enhances long-range dependencies between (S)W-MSA feature
pixels. Second, to effectively incorporate stereo correspondence information, we propose an epipolar
line window attention (EWA) mechanism. This mechanism enables the network to learn the similarity
between a pixel and the pixels within the window along its epipolar line. Moreover, partitioned
window information contributes to improved pixel-matching accuracy in regions characterized by
pixel smoothness. Comparative experiments on a stereo dataset show that our network has superior
SR performance with fewer parameters. Our contributions can be summarized as follows:

(1) We propose the EWASSR network, which combines (S)W-MSA and FDEB to enhance
the recovery of fine-grained details in Stereo SR. Experimental results demonstrate a significant
improvement in SR performance with the introduction of FDEB.
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(2) We introduce an EWA attention mechanism that partitions windows along the epipolar line
to address pixel misalignment issues between stereo views, enabling more accurate pixel matching.
Experimental results show that this model pays more attention to the discriminative features in the
image after fusing stereo views through EWA.

(3)The proposed EWASSR achieves superior performance with fewer parameters than recent
stereo SR methods.

2 Related Work
2.1 Single Image SR

With the development of deep neural networks, the single-image super-resolution (SISR) task
based on deep learning has made significant progress [17], as shown in Fig. 1. Early SISR models
[18–20] using deep learning employed multiple convolutional layers to learn image features, laying
the foundation for subsequent research. Some networks [21–24] achieved better noise and artifact
suppression through recursive learning. The introduction of residual networks addressed the problems
of gradient vanishing and exploding during deep network training. Some networks [25–29] also utilized
residual methods to deepen the depth of feature extraction, obtaining richer image semantic features.
To facilitate the model’s focus on more important regions in the image, references [30,31] proposed
integrating attention mechanisms into the SR model. Recently, Khan et al. [32] introduced a holistic
attention network to address the issues of channel attention ignoring the relevance of feature layers
and modeling layer dependencies. Jiang et al. [33] tackled the challenge of comparing SISR algorithms
fairly by introducing a real-world dataset and proposing a new objective metric using the Karhunen-
Loéve Transform. SR3 [34] employed denoising diffusion models for image-to-image translation,
demonstrating excellent super-resolution performance across diverse tasks, including faces and natural
images. Addressing the interaction issues between Transformer windows, Chen et al. [35] introduced
a new hybrid attention Transformer (HAT), which aggregates information between overlapping
cross windows. To address the lack of multi-scale information in shift windows, SwinFIR [36] used
fast Fourier convolution to make the network focus on spatial and frequency domain information,
further enhancing its ability to capture global information. SRFormer [37] addressed the issue of
increased computational complexity with large windows in SwinIR that improves SR performance.
Park et al. [38] designed the dilated window transformer for global feature extraction. To maintain
model efficiency while focusing on details, Residual Feature Distillation Network (RFDN) [39]
aggregated features of different scales and edges with high-frequency information through channel
distillation and enhancement, also serving as the baseline for efficient SR channels in NTIRE, solving
the issue of large parameterization in SR models. While SISR excels in multi-scale feature extraction
and lightweight models, it is not directly applicable to recovering high-frequency features and fusing
complementary information in stereo tasks.

2.2 Stereo SR

Stereo SR enhances image quality in visual tasks, contributing to advancements in computer
vision, as illustrated in Fig. 1. Jeon et al. [2] aligned left and right pixels by imposing maximum
disparity priors. Some networks [5,9,40,41] achieved pixel alignment by iteratively estimating dis-
parities between images. To address the issue of uncontrollable disparity ranges, Wang et al. [42,43]
proposed a Disparity Attention Mechanism (PAM), enabling the learning of similar information
along the epipolar line. PAM employs a low-cost fusion of stereo views but lacks attention to image-
specific information. Therefore, Song et al. [44] combined self-attention to focus on both image-
specific and cross-view information along the epipolar line. Similarly, IMSSRnet [45] notably improved
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stereoscopic image super-resolution by leveraging complementary information, outperforming state-
of-the-art methods with gradient and disparity losses. Based on this, CPASSRnet [46] achieved single-
model super-resolution with multiple scale factors in both views, addressing challenges in stereo images
such as large disparities and different epipolar lines. While PAM effectively integrates complementary
information in stereo images, its asymmetry prevents the network from simultaneously obtaining SR
images for the left and right views. To address this, Ying et al. [47] developed a universal stereo-view
attention mechanism, demonstrating excellent SR performance when applied to the SISR task. To
tackle occlusion issues between stereo images, inspired by PASSRnet [42], iPASSR [48] updated the
valid mask design in PAM, effectively handling occluded view information. Accurate assessment of
disparity information contributes to feature complementarity in stereo image pairs. LF-DGNet [49]
introduced a disparity-guided feature modulation module, a multi-view feature recalibration module,
and a disparity-guided network for light field spatial super-resolution. Building on this, some networks
effectively fuse complementary information in stereo images and promote Stereo SR reconstruction
tasks by designing cross-view attention. NAFSSR [6] achieved outstanding SR performance by
combining the stereo cross attention module (SCAM) with the denoising non-autoregressive fusion
block (NAFBlock). To cut down on computational expenses, Chen et al. [50] introduced the residual
cross attention module (RCAM) for fusing view information. Ying et al. [10] utilized a cross-view
fusion transformer for integrating cross-view information and an intra-view refinement transformer
to refine intra-view features, maximizing the use of complementary information. Although these view
attention mechanisms effectively address the epipolar pixel alignment issue, the alignment of pixels
shifting along the epipolar line in stereo views also requires attention. Therefore, in this work, we
designed an epipolar window attention to address pixel displacement in the fusion of complementary
information in stereo views.

SR
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Figure 1: Classification of image super-resolution reconstruction techniques

3 Materials and Methods
3.1 Network Architecture

Given a pair of low-resolution images, LL and LR, our EWASSR simultaneously reconstructs
the high-resolution left image SL and right image SR, as shown in Fig. 2. Feature extraction module
is divided into shallow feature extraction and deep feature extraction. We initiate the process by
employing a 3 × 3 convolutional layer for mapping the RGB space to a high-dimensional feature
space. Next, we utilize the residual Swin Transformer FDEM block (RSTFB) to extract deep image
features. RSTFB is inspired by the residual hybrid attention groups (RHAG) and residual Swin
Transformer block (RSTB). It combines Transformer and CNN-based feature extraction techniques
to progressively recover lost high-frequency features in the image. RSTFB is detailed in Section 3.2 and
includes key components such as (S)W-MSA, FDEB, and overlapping cross-attention block (OCAB).
Using RSTFB for feature extraction offers two significant advantages. First, Swin Transformer
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layer (STL) is based on the attention mechanism to realize efficient global information acquisition
capability. Second, the CNN-based FDEB excels at extracting high-quality local features. Therefore,
RSTFB helps address issues related to establishing long-range dependencies and capturing local detail
features in the image, resulting in a diverse set of features that comprehensively describe the image
content.

Figure 2: An overview of our EWASSR. “Conv” represents a 3 × 3 convolutional layer. “OCAB” in
(b) is overlapping cross-attention block. Distilled in (d) consists of a 1 × 1 convolutional layer and
GELU, and Enhanced consists of a 3 × 3 convolutional layer and GELU

Feature fusion consists of two stages. In the first stage, we employ an iterative feature fusion
approach. Initially, the outputs of RSTFB are used as inputs for the epipolar line window attention
(EWA), which is detailed in Section 3.4. EWA employs a novel attention network that partitions along
the epipolar line windows, effectively fusing complementary information from the left and right views.
Subsequently, the outputs of EWA are used as inputs for the next layer of RSTFB, which extracts
semantic information from the preliminarily aligned disparity map. This process is iterated multiple
times, progressively enhancing the network’s ability to learn features. In the second stage, we perform
multi-level feature fusion. All the outputs of a series of EWAs from the first stage are used as inputs
for the residual epipolar line window attention (REWA). This stage involves re-fusing the multi-level
features, enhancing the representation capability of the disparity map features.

3.2 Residual Swin Transformer FDEB Block (RSTFB)

Given stereo low-resolution image inputs LL ∈ R
H×W×C0 and LR ∈ R

H×W×C0 (H, W and C0 are
the images’ height, width and input channel number, respectively, where C0 = 3), we use a 3 × 3
convolutional layer to map the stereo images from the low-dimensional space to the high-dimensional
space. Convolution is used to achieve channel conversion while extracting shallow features, which is
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efficient and concise [34]. For deep features, As shown in Fig. 2b, RSTFB is a residual block with Swin
Transformer FDEB layers (STFLs), an OCAB and a convolutional layer. Take the first layer RSFTB
for example, given a stereo input image pair FL ∈ R

H×W×C1 and FR ∈ R
H×W×C1 (where C1 = 96), the

image multi-scale features are first extracted after i (where i = 6 is following [33,34]) STFLs, an OCAB
and a 1 × 1 convolutional layer to obtain the feature tensor Fj

L ∈ R
H×W×C1 and Fj

R ∈ R
H×W×C1 as:{

Fj
L = Conv_1 (OCAB (iSTFLs (FL)))

Fj
R = Conv_1 (OCAB (iSTFLs (FL)))

, (1)

where j represents the j-th RSTFB, we have defined j = 1, 2,..., 8. OCAB refers to the overlapping cross-
attention block. Inspired by HAT, we use an overlap ratio r = 2/M to adapt to different overlapping
areas of the windows. The size of the overlapping window M0 is obtained by increasing the length
and width of the original window M by 1. This design ensures that overlapping pixels are constrained
within an adaptive range, preventing them from growing indefinitely as the window size increases and
thus avoiding redundant computation of interaction information in large windows. STFL consists
of (S) W-MSA and FDEB operations. A detailed description of FDEB can be found in Section 3.3.
Our EWASSR improves upon previous work by employing a more concise and efficient method
of cascading feature extraction and fusion alternately, significantly reducing the number of model
parameters compared to the previous approach of concatenating deep feature extraction modules in
series.

3.3 Feature Distillation and Enhancement Block (FDEM)

FDEB is based on feature distillation network [12,39]. As shown in Fig. 2d. We first increase
the dimension of the input feature channels to twice the original number of channels. The channel
enhancement operation increases the focus on image edges or textures, enhancing the model’s ability to
capture object motion trajectories and edge information. Channel distillation reduces the dimension
of feature channels to half the number of enhanced channels, enabling the network to learn more
discriminative features. Its purpose is to aid the network in better understanding the image content
by transmitting clear image features. Given intermediate feature maps, the operations of FDEB are as
follows:{

Fout
L = RCAB

(
ESA

(
Conv_3

(
Cat

(
FD1

L , FD2
L , FD3

L , FE4
L

))))
Fout

R = RCAB
(
ESA

(
Conv_3

(
Cat

(
FD1

R , FD2
R , FD3

R , FE4
R

)))) , (2)

where FD1,2,3,4
L and FD1,2,3,4

R represent distilled features, FE1,2,3,4
L and FE1,2,3,4

R represent enhanced features.
“Cat” denotes the concatenation operation, which integrates diverse features from the distilled and
enhanced images. ESA designed to boost spatial features within the image. RCAB, as shown in
Fig. 2e, is based on the channel attention (CA) [31] mechanism. It includes two channel adjustment
convolutional operations before CA, where the first convolution is used for channel compression
and the second convolution, after the GELU activation function, is used for channel expansion. A
residual connection is introduced in the channel attention convolution block before CA to alleviate
the impact of insufficient channel representation before entering CA. Introducing both spatial and
channel attention mechanisms can enhance the representation capability of the feature distillation
and enhancement module while maintaining the model’s efficiency [35].

3.4 Residual Epipolar Line Window Attention (REWA)

To utilize complementary information in the images, we designed the REWA operation, which
aggregates fusion features at different levels by connecting several EWA modules in a residual manner.
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As shown in Fig. 2f, REWA connects multiple EWA modules using a residual approach to aggregate
fusion features. While the PAM efficiently promotes the alignment of left and right views using epipolar
geometry constraints in stereo vision, it is observed that corresponding pixels may appear at different
positions along the epipolar line, as depicted in Fig. 3. Moreover, in regions with smooth pixels
like the sky, where there are no clear reference points, the accuracy of the alignment operation can
be affected. Fig. 4 illustrates a comparison between our EWA, self-attention [51], and PAM. Self-
attention is a method for calculating the correlation between pixels in an image, which is used to learn
the dependencies between pixels and address long-range dependencies and translational invariance
issues in image tasks. PAM is based on self-attention and is used to learn the similarity relationships
between stereo images, resulting in a disparity map that promotes better alignment between the left and
right images. Inspired by self-attention and PAM, our EWA can concentrate on pixels within windows
along the epipolar line, improving the accuracy of left and right view alignment. For areas with small
pixel value fluctuations, EWA can effectively use neighboring pixels within the window as references,
enhancing the efficiency of left and right view alignment. EWA, as shown in Fig. 5, first divides the
input feature map into M1 × W windows, where M1 represents the window’s height, and following
the principles of Swin Transformer window division, we set M1 = 6. W represents the original width
of the feature map. The left and right view windows corresponding to the corresponding areas are
then fed into the cross-view attention model (CAM), which is illustrated in Fig. 5a. CAM is based on
self-attention and PAM, and it computes the similarity between the left and right stereo views using
query and key sources that are not the same, fusing complementary information. Given input window
features FW indow

L
and FW indow

R
for the left and right views, the CAM operation is as follows:

FCAM
L , FCAM

R = CAM
(

FW indow

L
, FW indow

R

)
, (3)

Following [6,52], we propose CAM, which enables the network to learn the correspondence
between stereo images. Since we have known from [6] that there is a mapping relationship between
pixels, and via feature fusion in [52], we propose to fuse the features of the left and right images as:

FCAM

L or R
= FW indow

L or R
+ λFW indow

R or L , (4)

Taking the left view fused feature as an example, where λrefers to the spatial importance weight
for the feature maps of FW indow

L
and FW indow

R
, which is adaptively learned by the network. Inspired by

[52], we force λ ∈ [0, 1], which is defined by using self-attention with Q ∈ R
H×W×C1 and K ∈ R

H×W×C1 as
control parameters, respectively. We use layer normalized and a channel attention convolution layer
to get the weight maps Q and K from FW indow

L
and FW indow

R
, respectively, and they can thus be learned

through back-propagation of the network.

Figure 3: Relationship of pixels in epipolar line. (a) represents the case where pixels appear outside the
epipolar line. (b) represents the case where features on the epipolar line are in the background region
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Figure 4: Schematic of the epipolar line window. These arrows represent the similarity relationships
between the blue pixels and other color pixels. Orange box represents epipolar line window

Figure 5: Epipolar line window attention. The blue rectangular box represents the partitioned window
along the epipolar line, and the overlaid blue rectangular box represents the features fused by CAM
along the width dimension of the image

In detail, as shown in Fig. 5a, in CAM we first calculate the dot product of all keys of the query
and apply a softmax function to derive the weights of the values:

Attention (Q, K, V) = SoftMax
(

QKT/
√

d
)

V , (5)

where Q is query matrix from the source view feature (e.g., FW indow

L
), and K and V ∈ R

H×W×C1 are key
and value matrices, respectively, both projected from the source view feature (e.g., FW indow

R
). Taking the

left view as an example, FW indow

L
is fed to layer normalized and a channel attention convolution (CAC)

to produce Q, Meanwhile, FW indow

R
is fed to another layer normalized and a CAC to produce K, which is

then reshaped to K−1 ∈ R
H×d×W . The softmax layer is then applied after applying matrix multiplication

between Q and K, resulting in a Similarity weight value λ. Next, FW indow

R
is passed to a CAC to generate

V , which is matrix multiplied with λ to obtain the complementary information of FW indow

R
to FW indow

L
.

Finally a residual structure is introduced to obtain the fused image. As shown in Fig. 5b, by applying
CAC before the cross-view point convolution, the weights between the depth feature channels can be
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adaptively adjusted, which helps to effectively utilize complementary information in the image. To
integrate the disparity maps from each epipolar line window, within EWA, we concatenate the results
obtained from CAM to obtain a complete set of left and right complementary views.

3.5 Loss

For better constraining the reconstruction relationship between high-resolution and low-
resolution images, we optimize the parameters of EWASSR by mean square error (MSE) loss:

Loss = ‖IS − IH‖ , (6)

where IS is the output from EWASSR, and IH represents the corresponding groundtruth of stereo
images.

4 Experiments
4.1 Implementation Details

We followed [42,52] and used 800 stereo images from the training set of Flickr1024 and 60 stereo
images from Middlebury as the training data. For test, we used 5 images from the Middlebury dataset,
20 images from the KITTI 2012 dataset and 20 images from the KITTI 2015 dataset as benchmark
datasets. The test set images were obtained by bicubic downsampling. For validation, we used an
additional 20 images from the KITTI 2012 dataset. Middlebury is used to evaluate disparities. KITTI
includes vehicle and pedestrian images with various degrees of occlusion and truncation. Flickr1024
contains high-quality stereo images of multiple scene categories for super-resolution reconstruction.
These real datasets provide a range of disparities and occlusions, better reflecting the challenges and
issues encountered in practical super-resolution reconstruction scenarios for stereo images.

We cropped the LR and HR images to 30 × 90 patches with a step size of 20 [42,52]. These patches
are randomly flipped to achieve data enhancement. Our EWASSR was implemented in Pytorch on a
PC with an Nvidia RTX 4090 GPU. All models were optimized using the Adam method with β1 =
0.9, β2 = 0.999 and a batch size of 8. The initial learning rate was set to 2 × 10−4 and reduced to half
after every 30 epochs. The training was stopped after 80 epochs since more epochs do not provide
further consistent improvement. In our network model, the RSTFB number, EWA number, STFL
number, window size, channel number and attention head number are generally set to 8, 8, 6, 6, 96 and
4, respectively. We use peak signal-to-noise ratio (PSNR) and structural similarity index measurement
(SSIM) as the SR result evaluation metrics [7], because they can directly reflect the quality of the
image by comparing the degree of difference between the original image and the processed image. We
use the number of parameters and FLOPs as performance metrics for judging the model. The number
of parameters reflects the complexity of the model, while FLOPs reflect the computational efficiency
and speed of the model. The combination of the two can evaluate the performance of the model more
comprehensively.

4.2 Ablation Study

To demonstrate the choice of our network, we perform 4× scaling experiments on the KITTI2015
test set, where the experiments are illustrated in two parts: the feature extraction module and the feature
fusion module.

4.2.1 Swin Transformer FDEB Layer

To demonstrate the effectiveness of our EWASSR with (S)W-MSA and FDEB, we introduced
three variants. As shown in Table 1, Nr.1 represents the experimental results for our network, with the
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“Value” column showing the PSNR results compared to our EWASR as the baseline. First, to validate
the effectiveness of introducing FDEB in STL, we removed FDEB in the baseline network, using only
the Transformer-based structure for feature extraction. The results for Nr.2 confirm that removing
FDEB resulted in a decrease in PSNR by 0.59 dB. This is because the feature extractor based on the
Transformer does not pay enough attention to local details, resulting in incomplete high-frequency
feature restoration. Then, following the reference [35], we replaced FDEB in the network with the
channel attention block (CAB). However, the experimental results decreased to 26.54 dB. Finally, we
replaced FDEB with NAFblock, and the results showed a PSNR reduction of 0.48 dB. The results for
these three variants demonstrate the effectiveness of our chosen feature extraction module, achieving
performance improvement while adding only a negligible number of parameters.

Table 1: Results achieved on the KITTI2015 dataset by EWASSR with different settings in feature
extraction for 4× SR

Nr Model PSNR
(dB)

Value
(dB)

SSIM #Params. GFLOPs input size
(30 × 90)

1 EWASSR 26.87 refer 0.8215 1.35M 34.29
2 EWASSR without FDEB 26.28 −0.59 0.8004 0.81M 22.76
3 EWASSR with CBM [35] 26.54 −0.33 0.8037 1.22M 31.14
4 EWASSR with NAFblock [6] 26.39 −0.48 0.8025 1.28M 31.67

4.2.2 Residual Epipolar Line Window Attention

To effectively utilize complementary information in stereo images, we proposed a cross-view fusion
attention network along the epipolar line partition. We designed four variants for experimentation.
As shown in Table 2, first, we removed EWA from EWASSR, using a simple element-wise summation
operation, resulting in a significant decrease in the PSNR value (decreased by 0.9 dB). The re-fusion of
features from EWA outputs at different network depths allows for the integration of complementary
information. We attempted to remove REWA, and the experimental results for Nr.3 showed that
without secondary fusion, the network’s PSNR performance decreased to 26.73 dB. To demonstrate
the effectiveness of EWA in partitioned window operations, we compared two disparity attention
modules. First, we replaced our EWA with SCAM, and we found that the PSNR value of the network
decreased by 0.34 dB. Next, we replaced EWA with ibPAM, and from Nr.5, despite an increase in
network parameters, the PSNR did not improve and instead decreased by 0.54 dB. These series of
experimental results confirm that partitioned window operations with geometric constraints improve
the accuracy of complementary information in the fusion process.

Additionally, as shown in Fig. 6, we conducted a visual analysis of the intermediate features of
EWA and SCAM. The figure shows the results of the “Middlebury-Motorcycle” for 4×. Blue to red
represents the increasing attention of the network. We selected the more complex area of the engine
part for comparison, and the red area of EWA is more abundant than SCAM. This is because EWA
focuses on the features along the epipolar line window, making the feature area of interest more
comprehensive. Experiments have shown that EWA exhibits higher attention in complex texture areas,
which helps to recover high-frequency features of the image.
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Table 2: Results achieved on the KITTI2015 dataset by EWASSR with different settings in feature
fusion for 4× SR

Nr Models PSNR
(dB)

Value
(dB)

SSIM #Params. GFLOPs input size
(30 × 90)

1 EWASSR 26.87 refer 0.8215 1.35 M 34.29
2 EWASSR without EWA 25.97 −0.90 0.7914 1.31 M 33.58
3 EWASSR without REWA 26.73 −0.14 0.8208 1.35 M 34.29
4 EWASSR with SCAM [6] 26.53 −0.34 0.8121 1.35 M 34.29
5 EWASSR with ibPAM [48] 26.33 −0.54 0.8088 1.36 M 35.30

Figure 6: Feature images during feature fusion

4.3 Comparison to State-of-the-Arts

In this section, we compare EWASSR with various state-of-the-art methods, such as VDSR [53],
RDN [54], RCAN [30], StereoSR [2], PASSRnet [42], iPASSR [48], SSRDE-FNet [9], and NAFSSR
[6]. It is important to mention that all these methods are trained on identical datasets as ours.

4.3.1 Quantitative Results

As shown in Table 3, we compared our EWASSR with classical and advanced networks in Stereo
SR tasks. The table indicates that EWASSR outperforms advanced networks in stereo super-resolution
tasks. Analyzing the results from the four datasets, our network exhibits superior SR performance
in three of them, except for the KITTI2012 dataset, where the improvement is less pronounced.
Our network demonstrates significant performance improvements on the Middlebury and Flickr1024
test sets. Specifically, in the 2× experiments, compared to the representative network NAFFSSR-S,
our network achieved an increase of 0.37 and 0.34 dB in PSNR, as well as SSIM improvements of
0.0025 and 0.0054 on the Middlebury and Flickr1024 test sets, respectively. In the 4× experiments,
our network improved PSNR by 0.16 and 0.14 dB on these two datasets. It is worth noting that we
chose NAFFSSR-S as a comparison network because its parameter count is in the same range as our
network. In the results using only the left image as input, we observed that on the KITTI2012 test set,
our network slightly lags NAFFSSR-S. This is due to the input being the same for the left and right
images, meaning our EWA did not effectively utilize complementary information, resulting in similar
performance to the non-partitioned disparity attention results.
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Table 3: Quantitative results achieved by different methods in four stereo datasets. PSNR/SSIM values
achieved on both the left images (i.e., Left) and a pair of stereo images (i.e., (Left + Right)/2) are
reported. Our network is in bold font and the best result is red

Method Scale #Params. Left PSNR (dB)/SSIM (Left + Right)/2 PSNR (dB)/SSIM
Middlebury KITTI2012 KITTI2015 Middlebury KITTI2012 KITTI2015 Flickr1024

VDSR [53] ×2 0.66 M 32.66/0.9101 30.17/0.9062 28.99/0.9038 32.77/0.9102 30.30/0.9089 29.78/0.9150 25.60/0.8534
RDN [54] ×2 22.0 M 34.85/0.9488 30.81/0.9197 29.91/0.9224 34.94/0.9491 30.94/0.9227 30.70/0.9330 28.64/0.9084
RCAN [30] ×2 15.3 M 34.80/0.9482 30.88/0.9202 29.97/0.9231 34.90/0.9486 31.02/0.9232 30.77/0.9336 28.63/0.9082
StereoSR [2] ×2 1.08 M 33.15/0.9343 29.42/0.9040 28.53/0.9038 33.23/0.9348 29.51/0.9073 29.33/0.9168 25.96/0.8599
PASSRnet [42] ×2 1.37 M 34.13/0.9421 30.68/0.9159 29.81/0.9191 34.23/0.9422 30.81/0.9190 30.60/0.9300 28.38/0.9038
iPASSR [48] ×2 1.37 M 34.41/0.9454 30.97/0.9210 30.01/0.9234 34.51/0.9454 31.11/0.9240 30.81/0.9340 28.60/0.9097
SSRDE-FNet [9] ×2 2.10 M 35.02/0.9508 31.08/0.9224 30.10/0.9245 35.09/0.9511 31.23/0.9254 30.90/0.9352 28.85/0.9132
NAFSSR-S [6] ×2 1.54 M 35.23/0.9515 31.23/0.9236 30.28/0.9266 35.30/0.9514 31.38/0.9266 31.08/0.9367 29.19/0.9160
EWASSR (Ours) ×2 1.24 M 35.36/0.9528 31.20/0.9232 30.33/0.9268 35.67/0.9539 31.38/0.9271 31.17/0.9371 29.53/0.9214
VDSR [53] ×4 0.66 M 27.60/0.7933 25.54/0.7662 24.68/0.7456 27.69/0.7941 25.60/0.7722 25.32/0.7703 22.46/0.6718
RDN [54] ×4 22.0 M 29.18/0.8387 26.23/0.7952 25.37/0.7813 29.27/0.8404 26.32/0.8014 26.04/0.8043 23.47/0.7295
RCAN [30] ×4 15.4 M 29.20/0.8381 26.36/0.7968 25.53/0.7836 29.30/0.8397 26.44/0.8029 26.22/0.8068 23.48/0.7286
StereoSR [2] ×4 1.42 M 27.70/0.8036 24.49/0.7502 23.67/0.7273 27.64/0.8022 24.53/0.7555 24.21/0.7511 21.70/0.6460
PASSRnet [42] ×4 1.42 M 28.61/0.8232 26.26/0.7919 25.41/0.7772 28.72/0.8236 26.34/0.7981 26.08/0.8002 23.31/0.7195
SSRes+SAM [47] ×4 1.73 M 28.76/0.8287 26.35/0.7957 25.55/0.7825 28.83/0.8290 26.44/0.8018 26.22/0.8054 23.27/0.7233
iPASSR [48] ×4 1.42 M 29.07/0.8363 26.47/0.7993 25.61/0.7850 29.16/0.8367 26.56/0.8053 26.32/0.8084 23.44/0.7287
SSRDE-FNet [9] ×4 2.24 M 29.29/0.8407 26.61/0.8028 25.74/0.7884 29.38/0.8411 26.70/0.8082 26.43/0.8118 23.59/0.7352
NAFSSR-S [6] ×4 1.56 M 29.62/0.8482 26.84/0.8086 26.03/0.7978 29.72/0.8490 26.93/0.8145 26.76/0.8203 23.88/0.7468
EWASSR (Ours) ×4 1.35 M 29.68/0.8483 26.81/0.8077 26.09/0.7981 29.88/0.8516 26.94/0.8140 26.87/0.8215 24.02/0.7474

As shown in Table 4, to analyze the model complexity, we selected the classical Stereo SR networks
for comparison. The results in the table show that our network has the smallest number of parameters,
but not the lowest computational effort, which is related to the depth of our network. Overall, we
analyze that we have improved the SR performance by increasing only a small amount of computation
while maintaining a better number of parameters.

Table 4: Comparison of model complexity of different methods in “Middlebury-sword2”

Method Scale #Params. GFLOPs PSNR (dB) SSIM

PASSRnet [42] ×4 1.42 M 55.34 31.99 0.9035
iPASSR [48] ×4 1.42 M 64.31 33.09 0.9165
SSRDE-FNet [9] ×4 2.24 M 580.03 33.19 0.9187
NAFSSR-S [6] ×4 1.56 M 55.44 33.92 0.9237
EWASSR (Ours) ×4 1.35 M 69.02 34.00 0.9240

4.3.2 Qualitative Results

We randomly selected a pair of stereo images from each of the four datasets as test data and
presented the comparison results for 4× SR of the left and right images. In the results of Fig. 7, our
EWASSR brings out the stereo contours of the folders and swords more effectively. In Fig. 8, none
of the networks exhibit exceptional visual performance, mainly due to the presence of considerable
noise in this test image. Upon close examination of the visual results, our network still outperforms
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the others. In Fig. 9, our EWASSR presents signs and zebra crossings that are closer to the ground
truth (GT) images. As for building recovery, as shown in Fig. 10, EWASSR achieves the best visual
performance.

Figure 7: “Middlebury-sword2” comparison of visualization results for 4× SR

Figure 8: “KITTI2012-013” comparison of visualization results for 4× SR

Figure 9: “KITTI2015-02” comparison of visualization results for 4× SR
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Figure 10: “Flickr1024-023” comparison of visualization results for 4× SR

5 Conclusion

In this paper, we propose an attention network, named EWASSR, which partitions windows
along the epipolar line to address the challenges of high-frequency feature reconstruction and
complementary information fusion in Stereo SR tasks. The conclusions are summarized as follows:

(1) Designed the RSTFB hybrid feature extraction module, significantly enhancing the net-
work’s ability to capture high-frequency features by establishing long-range dependencies between
images. The effectiveness of our network in image SR performance has been demonstrated, with a
0.59 dB increase in PSNR after introducing the FDEB module, further confirming its outstanding
performance.

(2) The EWA module has become a critical component of the network, enabling it to learn the
similarity between points in one view and pixels within epipolar line window in another view. The
key role of this module lies in effectively integrating complementary information from stereo images,
enhancing the model’s understanding of image structure.

(3) The REWA module has made a significant contribution to the effective fusion of complemen-
tary disparity attention maps. It achieves this by performing a secondary fusion of the disparity maps
obtained through EWA, integrating features from different levels and scales.

(4) In quantitative evaluations, when provided with left and right views as input, EWASSR
outperforms previous methods across four publicly available datasets, showcasing its exceptional
performance in SR and confirming its continuous improvement over existing methods.
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(5) Qualitative evaluations highlight the efficiency of EWASSR in generating visual results similar
to GT images. This capability underscores the practical value of the model in enhancing image quality.

The research demonstrates that our EWASSR achieves outstanding SR performance while
maintaining a relatively low parameter count. However, during the experiments, we identified areas
for improvement in our model. Specifically, insufficient attention to view-specific information led
to suboptimal performance under single inputs. Additionally, the method may face limitations in
scenarios with motion blur, such as in the KITTI dataset. Therefore, designing an efficient and high-
performance Stereo SR network is a major challenge in the current field. Future research will focus on
image super-resolution in complex environments, combining attention to image-specific information
and noise reduction to further optimize the method for broader applications.
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