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ABSTRACT

Unsupervised methods based on density representation have shown their abilities in anomaly detection, but
detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately
evaluate sample distributions, mapping normal features to the normal distribution and anomalous features
outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network
(NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct
discriminative source and target domain feature spaces. Additionally, to better learn feature information in both
domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample features to
these two spaces for anomaly detection. The two detection spaces effectively complement each other’s deficiencies
and provide a comprehensive feature evaluation from two perspectives, which leads to the improvement of detection
performance. Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional
Pre-trained Feature Mapping Network (B-PFM) and other state-of-the-art methods demonstrate that the proposed
approach achieves superior performance. On the MVTec AD dataset, NF-BMR achieves an average AUROC of
98.7% for all 15 categories. Especially, it achieves 100% optimal detection performance in five categories. On the
DAGM dataset, the average AUROC across ten categories is 98.7%, which is very close to supervised methods.
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Anomaly detection; normalizing flow; source domain feature space; target domain feature space; bidirectional
mapping residual network

1 Introduction

In recent years, machine vision and deep learning technology have been widely used in defect
detection [1]. Nevertheless, owing to the ongoing enhancements and optimization of novel materials,
equipment, and production processes [2,3], there has been a remarkable increase in the yield of
industrial products. This progress, while commendable, introduces a notable challenge in the practical

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046924
https://www.techscience.com/doi/10.32604/cmc.2024.046924
mailto:zln770808@163.com


1632 CMC, 2024, vol.78, no.2

realm—namely, the scarcity of available defect samples for collection and labeling. Consequently,
the task of anomaly detection becomes increasingly intricate. Traditional supervised methods [4–6],
designed for scenarios with ample labeled data, prove inadequate for industrial defect detection under
these evolving conditions. Consequently, we propose an innovative unsupervised deep-learning defect
detection method that exclusively relies on normal samples, circumventing the need for actual defective
samples.

Recent research mainly focuses on density evaluation-based detection methods, which use CNN
pre-trained on the ImageNet dataset to extract comprehensive visual features of the detection system
and detect anomalies in the feature space. Some methods [7,8] simulate the thinking way of human
beings to identify unknown defects and use the features of normal samples to build a memory bank,
which is compared with the test features in the inference stage to detect and locate abnormalities.
However, building memory banks usually consumes a lot of computation time and online memory
storage, making their application in industrial scenarios challenging. Normalizing flow methods [9–11]
directly learn the distribution of normal samples in the feature space. They can gradually transform the
features with complex distribution into space with normal distribution through several flow steps to
detect anomalies. This class of methods can update the network by minimizing the log-likelihood loss.
In the testing phase, normal features are mapped into the normal distribution, and abnormal features
are mapped out to detect anomalies. Other methods [12,13] usually train a CNN to reconstruct the
input features as an alternative to image reconstruction methods [14–16], which significantly reduces
the computation time. Among them, the Bidirectional Pre-trained Feature Mapping Network (B-
PFM) [13] considers the difference of features extracted by different pre-trained CNN. In order to
obtain a more comprehensive feature representation, B-PFM uses two different pre-trained CNN to
extract features, which are defined as Source domain Neural Network (SNN) and Target domain
Neural Network (TNN). The core idea of B-PFM is shown in Fig. 1a, where the input image x
obeys a certain complex distribution pX(x), and the features are embedded by pre-training SNNs and
TNNs, whose source and target domain features obey a certain complex distribution pY(y) and pU(u),
respectively. Thus, the B-PFM detects the anomalies in the spaces of the two pre-trained features with
complex distributions. However, the distribution of the ImageNet [17] data set is not the same as that
of the training image dataset, and the use of such a biased pre-trained CNN cannot extract features
well, which limits the detection performance of such methods. Using two pre-trained CNN in the B-
PFM network undoubtedly exacerbates this problem. Meanwhile, although there are some differences,
the features extracted using different configurations of networks under the same architecture (e.g.,
ResNet18, ResNet34, etc.) still have a certain amount of redundancy of feature information, which
further limit the performance of B-PFM.

To solve the above problems, this paper uses the normalizing flow as the Target domain Nor-
malizing Flow network (TNF) instead of TNN to construct the target domain feature space to
alleviate the problems caused by biased pre-training CNN. At the same time, TNF completely differs
from the traditional CNN framework. It can construct a more discriminative target domain space so
that the two detection spaces can effectively complement their shortcomings and detect features from
two perspectives, to improve the detection performance. This paper takes B-PFM as our baseline,
based on this work, we propose a bi-directional mapping residual network based on normalizing flow
(NF-BMR), as shown in Fig. 1b, we use the normalizing flow network (NF) to construct the target
domain, due to the characteristic of the NF, it can transform the source domain Y with complex
distribution pY(y) to the target domain Z that obeys the normal distribution N(0, I). Therefore, the
proposed NF-BMR network can detect anomalies in the source domain with complex distribution
and the target domain with simple distribution. In addition, the output of NF can also be used as
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the anomaly score, which can map the anomalies outside of the distribution of the normal samples
to further improve the defect detection performance. Meanwhile, to better learn the source and target
domain features, we also propose a bi-directional mapping residual network (BMR), and the detailed
network structure is shown in Section 3.3. Fig. 2a shows the distribution of normal and abnormal
areas of the TNF network output results. The distribution of abnormal samples shows that TNF can
map abnormal samples outside the distribution of normal samples. In Fig. 2b, the first column shows
the input defect image, the second column shows the real defect label, the third column shows the
output visualization result of the pre-trained EfficientNet-b3, and the fourth column shows the output
visualization result of TNF. It clearly shows that the TNF network can capture the defect features that
the pre-trained CNN cannot extract.

Figure 1: Spatial mapping anomaly detection diagram of Baseline method and the method proposed
in this paper

Figure 2: Demonstration of experimental results for Class8 class of the DAGM dataset ((a) Log-
likelihood histogram of the TNF output results, (b) Visualization of the outputs of EfficientNet-b3
and TNF)
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The main contributions of this paper are:

(1) A normalizing flow network different from the CNN framework is introduced as TNF to
construct a more discriminative target domain space to solve the problems existing in the B-PFM
framework.

(2) A bidirectional mapping residual network (BMR) is proposed to learn the feature representa-
tion of the source and target domains to improve the detection performance further.

(3) Multiple comparative experiments are conducted on the MVTec AD and DAGM datasets to
verify the effectiveness and efficiency of the proposed method. Compared with the state-of-the-art
methods, the proposed method achieves the best performance.

2 Related Works

In the following, we will review previous work on anomaly detection and pre-training feature
mapping related to the method proposed in this paper.

2.1 Anomaly Detection

2.1.1 Reconstruction-Based Methods

Reconstruction-based methods generally use autoencoders (AE) [18] and Generative Adversarial
Networks (GAN) [19,20]. The core idea is to train the model on normal image samples to reconstruct
normal images well. During testing, the model generates significant reconstruction errors in the
defective regions of the image and achieves defect detection and localization. However, in practical
applications, neural networks have strong learning abilities [21,22], and they can still reconstruct
abnormal image areas well even if no abnormal images are used in the training stage, which leads
to ineffective abnormality discrimination. Therefore, some works begin to use masks to cover the
abnormal regions of the image to alleviate the influence of abnormal areas on the reconstruction
model. Yan et al. [23] proposed a Semantic Context-based Abnormal Detection Network (SCADN),
which designs a multi-scale stripe mask to remove a part of the area from normal sample images
and reconstruct the missing area to match the input image. RIAD [24] solves the problem that the
autoencoder can reconstruct the abnormal area of the image by randomly deleting part of the image
area and reconstructing the image from part of the image. Although masks alleviate the effect of
abnormal regions to some extent, this effect still exists as the mask does not entirely obscure the
anomalous regions due to their random size, localization, and shape.

2.1.2 Method Based on Density Estimation

The density-based methods primarily rely on useful feature vectors of pre-trained CNN on the
ImageNet dataset [17]. In the training process, normal sample data distribution is acquired by inputting
normal images. During inference, anomaly detection and localization are performed by computing
the distance between the abnormal and normal sample data distribution. Cohen et al. [8] proposed
a new abnormal segmentation method, SPADE, which uses K Near Neighbor (KNN) to obtain K
normal images that are most similar to an abnormal image at the image level and then uses the
retrieved K normal images to get feature pyramid information under different layers of the neural
network for alignment. This method has achieved good results in defect detection and localization.
Defard et al. [7] further improved this method. They proposed a new network called PaDiM, which
uses the features between different semantic layers of a pre-trained CNN for patch embedding
while using a multivariate Gaussian distribution to obtain the probability density representation of
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normal samples. However, the assumption of a Gaussian distribution is a significant simplification,
which makes the network inflexible in training distributions. In contrast, because Normalizing flow
networks can perform precise density evaluation, recent works [9–11] have begun to use Normalizing
flow models for anomaly detection and achieved good results. Rudolph et al. [11] proposed the
DifferNet network, which uses a CNN to extract descriptive feature information and uses Normalizing
flow for probability density evaluation. However, this network lacks important contextual semantic
information and positional information, and can only be used for image-level detection rather than
pixel-level localization. CS-Flow, a Normalizing flow method proposed in [10], uses multi-scale
features and introduces fully convolutional networks to achieve good results in both detection and
localization.

2.2 Pre-Training Feature Mapping

PFM [13] only inputs normal images into the pre-trained SNN and TNN in the training phase
to obtain the normal embedded features of the source and target domains. Then, PFM is used to
map the embedded features of the source domain to the target domain. L2 loss shrinks the distance
between the mapped and target domain embedded features. During testing, defect image features will
not be mapped to the target domain by the PFM network. They will result in a significant error,
which is used for defect detection and localization. Due to the significantly lower parameter number
in the PFM network than in the SNN and TNN, adding a reverse mapping neural network to the PFM
during inference will not result in excessive computation and time consumption. Therefore, the author
further proposed a bi-directional pre-trained feature mapping network B-PFM, in which the overall
network parameters are optimized by the bi-directional mapping L2 loss during the training stage.
During testing, image features can be mapped to both the source and target domains by the B-PFM
for comparison. Compared to the PFM network, both directions are fully utilized in the B-PFM, and
the defect detection performance can be improved. Finally, to fully use the feature information from
different layers of the pre-trained CNN to improve defect detection and localization, the multilayer
bi-directional pre-trained feature mapping network MB-PFM was also proposed in [13].

This paper proposes a bi-directional mapping residual network based on normalizing flow (NF-
BMR), as shown in Fig. 3. Our network does not use TNN to embed target domain features but trains
a separate TNF to transform features with a complex distribution into target domain features with
a simple distribution. Then, the proposed bidirectional mapping residual network BMR is used to
detect defects in two spatial domains with different distributions. Experimental results show that our
NF-BMR can perform better defect detection results.

3 NF-BMR Framework

This section will describe the proposed NF-BMR network framework in detail. Our core idea is to
use the pre-trained CNN and TNF networks to construct the source and target domains, respectively.
Fig. 1b shows that the normal image features can freely pass through the bidirectional mapping
network. In contrast, the abnormal image features cannot be mapped normally through the network
to the source and target domains. The overall framework is shown in Fig. 3, which consists of three
parts: the pre-trained SNN, the TNF, and the BMR. In the training phase, the pre-trained SNN is used
to construct the source domain, followed by training the TNF to build the target domain that obeys
normal distribution. Finally, the BMR is trained to shrink the gap of normal image features between
the source domain and the target domain through the loss of mean-square error. When the defective
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image features are input in the inference phase, the BMR will not map the defective features between
the source and target domains to achieve defect detection and localization results.

Figure 3: NF-BMR network structure

3.1 Source Domain

We use the output of a particular layer of the pre-trained SNN to build the source domain feature
space. An image x ∈ X is inputted into SNN to embed it into the source domain feature space Y , and
the embedded feature representation is:

SNN (x; θS) = yc (1)

where θS represents the pre-trained parameters of the SNN, yc denotes the embedded feature with a
channel number of c, and yc ∈ Y w×h×c.

3.2 Target Domain

We train a normalizing flow model based on Real-NVP [25]. But the difference in our training
process is that instead of using the output of the flow model directly as the anomaly score, a more
discriminative target domain feature space is constructed for the BMR network. In addition, the
trained TNF maps the source domain feature space Y to the target domain feature space Z that follows
a normal distribution N(0, I). The mapping of the feature representation is as follows:

TNF
(
yc; θnf

) = zc (2)

where θnf represents the parameters trained by the TNF network, zc represents the embedded features.
The mapping operation does not change the number of channels or the size of the feature maps, i.e.,
the number of channels is c and zc ∈ Zw×h×c.

The normalizing flow model consists of multiple affine coupling blocks. The input source domain
feature yc is randomly selected along its channel dimension and divided into two parts with a fixed
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arrangement. These two parts are then equally split into y1,c/2 and y2,c/2. The scale and shift parameters
provided by the subnetworks si and bi, i = {1,2}, are used to perform affine transformations on the
two parts separately to obtain the corresponding outputs z1,c/2 and z2,c/2. Finally, the two tensor parts
are concatenated along the channel dimension to obtain the output zc, with the channel dimension
restored to c. The above process is described as follows:

y1,c/2, y2,c/2 = split (yc) (3)

z2,c/2 = es1(y1,c/2) � y2,c/2 + b1

(
y1,c/2

)
(4)

z1,c/2 = es2(y2,c/2) � y1,c/2 + b2

(
y2,c/2

)
(5)

zc = concat
(
z1,c/2, z2,c/2

)
(6)

where the split(·) and concat(·) functions perform splitting and concatenating operations along the
channel dimension, � stands for pixel-by-pixel multiplication, and si(·) and bi(·), i = {1,2}, can be set
to arbitrarily complex functions to learn the two parameters of an affine transformation.

The mapping Y → Z uses a bijective function to project the image feature y ∈ pY(y) onto the
latent variable z ∈ pZ(z). For this bijective function, a variable formula is used to define the model’s
distribution on y:

pY (y) = pZ (z)

∣∣
∣∣det

∂z
∂x

∣∣
∣∣ (7)

In our proposed method, the prior distribution of the mapped target domain space Z is defined as
a normal distribution z ∼ N (0, I). The training objective is minimizing − log pY(y). The correspond-
ing loss function is as follows:

Lnf = − log pY (y) = ‖z‖2
2

2
− log

∣∣
∣∣det

∂z
∂y

∣∣
∣∣ (8)

3.3 Bidirectional Mapping Residual Network

B-PFM [13] is composed by five layers of 1 × 1 convolutional kernels, which reduces the network
complexity but is not enough to learn the normal feature distribution in both the source and target
domains. In order to obtain a better performance in defect detection, we propose a bidirectional
residual mapping network BMR and validate it in the ablation study in Section 4.4. As shown in Fig. 4,
the BMR network consists of the Source domain Mapping Neural Network (SMNN) and the Target
domain Mapping Neural Network (TMNN). The mapping network is internally composed of multiple
stacked residual blocks. They share a residual block parameter in the middle of the network to reduce
the number of parameters. The number of residual blocks (denoted as res block in Fig. 4) on the left
and right sides of the shared res block is symmetrically set to n. A convolutional layer is added to the
first and last layers of the network to increase and decrease the channel number, respectively. A single
residual block consists of a 1 × 1, 3 × 3, and 1 × 1 convolutional sequence, and a ReLU activation
function follows each convolutional layer.
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Figure 4: BMR network structure

When a training image x ∈ X is input into the pre-trained SNN, the source domain feature yc ∈
Y w×h×c can be obtained. Then, by using the trained TNF network, yc is transformed into the target
domain feature zc ∈ Zw×h×c. Subsequently, yc is mapped to the target domain space according to the
TMNN network. The mapped feature is represented as zMT

c . Similarly, zc is mapped to the source
domain space by the SMNN, and the mapped feature is represented as yMS

c . The above mapping process
is represented as follows:

zMT
c = TMNN

(
yc; θMT

)
(9)

yMS
c = SMNN

(
zc; θMS

)
(10)

where θMT
and θMS

represent the learnable parameters of the TMNN and SMNN, respectively, and
they can be synchronously optimized during the training phase by the gradient descent method. The
loss of the bidirectional network (lossNF−BMR) is composed of two parts: the source domain loss (losss)
and the target domain loss (lossT):

losss = 1
w × h × c

∥∥yc − yMs
c

∥∥2

2
(11)

lossT = 1
w × h × c

∥∥zc − zMT
c

∥∥2

2
(12)

lossNF−BMR = losss + lossT (13)

For test images, the Anomaly Score Map (ASM) of an image can be calculated as follows:

ASM (i, j) =
∥∥yc (i, j) − yMs

c (i, j)
∥∥2

2
+ ∥∥zc (i, j) − zMT

c (i, j)
∥∥2

2

2
(14)

where (i, j) denotes the pixel position.
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4 Experiments
4.1 Datasets

The performance of our proposed method is evaluated on the MVTec AD [26] dataset and the
DAGM [27] dataset.

(1) MVTec AD is an industrial anomaly detection benchmark dataset encompassing various
objects and anomalies, constituting 15 categories, including 10 object classes and 5 texture classes. This
dataset provides 3629 normal images for training, 467 normal images, and 1258 abnormal images for
testing. The test set encompasses defects of different sizes, shapes, and types, such as cracks, scratches,
and deformations. Each defect type can have up to 8 variations, resulting in 70 defect types.

(2) DAGM is a well-known benchmark surface defect detection dataset comprising synthetically
generated images depicting various defective surfaces. The dataset consists of 16,100 images, equally
divided between training and testing sets, categorized into ten image classes. Within each class, the ratio
of defective images to normal images is 1:7. This paper exclusively conducts training on the normal
images within the training set.

4.2 Implementation Details

The images were uniformly pre-processed by resizing them to 768 × 768. The hardware config-
uration used for testing is Intel(R) Core (TM) i9-10900X CPU@3.70 GHz and NVIDIA GeForce
RTX3080Ti.

(1) Source domain: The outputs of the 36th layer of EfficientNet-b5 [28] are used to construct the
source domain features as the feature embedding layer of the SNN. The EfficientNet-b5 is pre-trained
on ImageNet [17]. The input image is fed into the SNN, and the source domain feature maps with 304
channels of 24 × 24 are obtained.

(2) Target domain: The TNF network is used to construct the target domain, 4 coupling blocks are
adopted. Each coupling block has been designed as shallow neural networks with a hidden layer. The
number of hidden layer channels is set to 1024, and its output is split into two parts along the channel
dimension to provide the translation and scaling components for affine transformation. Adam’s [29]
algorithm is used for optimization with a learning rate of 2 × 10−4, weight decay of 10−5, and batch
size of 8. The number of training epochs is set as 300.

(3) BMR: The SNN and TNF parameters were kept fixed during the BMR training process. The
detailed structures of SMNN and TMNN were shown in Fig. 4, with the number of internal left and
right residual blocks symmetrically set to n = 2, the number of input feature map channels c = 304,
hidden layer channels clatent = 1024. The BMR network training process was optimized by the Adam
algorithm with a learning rate of 3 × 10−4, a weight decay of 10−5, batch size set to 8, and 300 training
epochs are performed on the MVTec AD dataset.

(4) Evaluation criteria: Image-level Receiver Operator Curve (ROC) and Area Under the Receiver
Operator Curve (AUROC) were used to compare the superiority of the proposed method with other
methods. Meanwhile, the precision, recall, and F1-Score of NF-BMR are further reported.

4.3 Comparison with Existing Methods

We evaluate the performance of NF-BMR on two popular public defect detection datasets to
verify the superiority of the proposed method over other methods.

(1) MVTec AD dataset detection results: Table 1 shows the average AUROC comparison results
on the object and texture classes with all categories on the dataset. In five categories, our method
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achieved 100% AUROC. The average AUROC values of the texture classes and object classes reached
99.4% and 98.3%, respectively. The average AUROC value of our NF-BMR in all categories achieved
the best performance, with an AUROC of 98.7%. Compared with the baseline network MB-PFM, the
average AUROC of all categories is increased by 1.2%. The overall performance improvement benefits
from the improvement on the object classes, with a considerable improvement of 1.8%. This verified
the superiority of the proposed method. Table 2 shows the detection results of the proposed method
in terms of precision, recall, and F1-Score evaluation metrics. The average precision is 97.5%, the
average recall is 97.0%, and the average F1-Score is 97.2% for all categories. In Fig. 5, we also plotted
the ROC curves of NF-BMR in fifteen categories, which shows that our model has good classification
performance in all categories.

Table 1: Image-level AUROC comparison results of all categories of each method on the MVTec AD
dataset

Category Geom.
[30]

GAN
[19]

ARNet
[31]

Multi.
[32]

SPADE
[8]

PaDiM
[7]

Differ
Net [11]

MB-PFM
[13]

NF-BMR
(ours)

Grid 61.9 70.8 88.3 94.2 99.0 – 84.0 98.0 98.5
Leather 84.1 84.2 86.2 91.1 99.5 – 97.1 100 100
Tile 41.7 79.4 73.5 99.8 89.8 – 99.4 99.6 100
Carpet 43.7 69.9 70.6 91.9 98.6 – 92.9 100 98.6
Wood 91.1 83.4 92.3 100 95.8 – 99.8 99.5 100

Avg. text 64.5 77.5 82.2 95.4 96.5 99.0 94.6 99.4 99.4

Bottle 74.4 89.2 94.1 100 98.1 – 99.0 100 100
Capsule 67.0 73.2 68.1 91.3 98.6 – 86.9 94.5 99.4
Pill 63.0 74.3 78.6 91.4 96.5 – 88.8 96.5 98.4
Transistor 86.9 79.2 84.3 94.3 81.0 – 91.1 97.8 97.4
Zipper 82.0 74.5 87.6 97.7 98.8 – 95.1 97.4 100
Cable 78.3 75.7 83.2 97.7 93.2 – 95.9 98.8 97.7
Hazelnut 35.9 78.5 85.5 100 98.9 – 99.3 100 98.2
Metal nut 81.3 70.0 66.7 95.7 96.9 – 96.1 100 96.9
Screw 50.0 74.6 100 92.1 99.5 – 96.3 91.8 97.2
Toothbrush 97.2 65.3 100 96.7 98.9 – 98.6 88.6 97.5

Avg. obj 71.6 75.4 84.8 95.7 96.0 97.2 94.7 96.5 98.3

Average 67.2 76.2 83.9 95.6 96.2 97.9 94.7 97.5 98.7

Table 2: Experimental results of NF-BMR on the MVTec AD dataset for the evaluation metrics of
precision, recall, and F1-Score

Category Precision Recall F1-Score

Grid 96.5 96.5 96.5
Leather 100 100 100
Tile 100 100 100
Carpet 97.7 96.6 97.2
Wood 100 100 100

(Continued)



CMC, 2024, vol.78, no.2 1641

Table 2 (continued)

Category Precision Recall F1-Score

Bottle 100 100 100
Capsule 96.5 100 98.2
Pill 95.2 98.6 96.9
Transistor 92.1 87.5 89.7
Zipper 100 100 100
Cable 94.6 95.7 95.1
Hazelnut 100 91.4 95.5
Metal nut 93.0 100 96.4
Screw 97.4 95.8 96.6
Toothbrush 100 93.3 96.6
Average 97.5 97.0 97.2

(2) The detection results on the DAGM dataset are shown in Table 3. The results of the baseline
MB-PFM were obtained through replication experiments, while the remain results were taken from
the original papers. Supervised methods achieved perfect AUROC scores on the DAGM dataset, while
unsupervised methods performed poorly. However, the AUROC score of our proposed NF-BMR
method reached 98.5% without any data augmentation or parameter tuning, which is 1.2% higher
than the MB-PFM method. Moreover, its performance is already very close to the supervised methods,
which also validates the excellent effectiveness and robustness of the proposed method. Table 4 further
shows the experimental results of NF-BMR on the DAGM dataset for precision, recall, and F1-Score
evaluation metrics. The results show an average precision of 91.5%, an average recall of 92.0%, and an
average F1-Score of 91.4% across all categories. Fig. 6 provides a bar chart of the detection results of
each method on the DAGM dataset.

Table 3: AUROC comparison results of each method on the DAGM dataset

Unsupervised Supervised
Category skipGAN

[33]
Puzzle AE
[34]

CutPaste
[35]

DifferNet
[11]

MB-PFM
[13]

NF-BMR
(ours)

Boi et al. [36]

Class1 58.3 50.7 56.1 59.7 95.4 95.7 100
Class2 56.1 50.5 87.8 82.9 100 100 100
Class3 55.1 58.7 57.1 69.8 96.9 96.1 100
Class4 53.7 70.0 71.3 97.3 100 100 100
Class5 57.4 63.6 47.4 61.2 97.6 100 99.9
Class6 66.8 92.3 68.8 97.0 99.7 99.6 100
Class7 52.4 54.0 96.5 68.5 100 95.9 100
Class8 53.7 49.1 53.4 52.1 84.1 100 100
Class9 52.3 54.6 51.9 78.2 98.9 100 100
Class10 52.2 49.6 74.7 79.1 100 99.9 100
Average 55.8 59.3 66.0 74.6 97.5 98.7 100
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Table 4: Experimental results of NF-BMR on the DAGM dataset for the evaluation metrics of
precision, recall, and F1-Score

Category Precision Recall F1-Score

Class1 70.0 78.9 74.2
Class2 100 100 100
Class3 82.9 75.0 78.7
Class4 100 100 100
Class5 100 100 100
Class6 93.8 91.0 92.4
Class7 65.9 81.3 72.8
Class8 100 100 100
Class9 100 100 100
Class10 97.9 94.0 95.9
Average 91.5 92.0 91.4

Figure 5: ROC curves of NF-BMR in 15 cate-
gories of MVTec AD dataset

Figure 6: Bar graphs of the comparison results
obtained for each method in the DAGM dataset

(3) Visualization: In Fig. 7, ‘S’ represents the source domain, ‘T’ represents the target domain,
and ‘NF’ represents the conversion of ‘S’ to ‘T’ through the NF network. The illustration presents
a top-to-bottom t-SNE dimensionality reduction visualization of embedding source domain features
with EfficientNet-b5, embedding target domain features with EfficientNet-b3, and converting source
domain features embedded with EfficientNet-b5 to target domain features using the NF network.
Only four categories from the DAGM dataset are displayed in the figure, namely Class2, Class4,
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Class6, and Class8. From the ‘S’ and ‘T’ rows, it is evident that the embedded features obtained by
different pre-trained CNN exhibit a complex distribution. Conversely, the NF network in the third
row can transform source domain features with a complex distribution into target domain features
with a simple distribution, mapping abnormal features outside the distribution.

Figure 7: t-SNE visualization of normal and abnormal samples in four categories on the DAGM
dataset

In this paper, we only improve the defect detection performance of the bidirectional network and
do not report the defect localization performance in detail. Fig. 8 shows the qualitative visualization
results of NF-BMR on the MVTec AD dataset. The experimental results show that the proposed
method can accurately localize defective regions even when no anomalous images have been seen
during the training phase, which demonstrates the potential for defect localization. Fig. 9 further
reports the qualitative visualization results on the DAGM dataset, demonstrating that NF-BMR
still maintains relatively robust localization performance on some synthetic anomaly images that are
difficult to recognize by the human eye.
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Figure 8: Qualitative visualization results of NF-BMR method on MVTec AD data set

Figure 9: Qualitative visualization results of NF-BMR method on DAGM data set

4.4 Ablation Study

To validate the limitations of the proposed framework and its superiority compared to the baseline
network, we conducted ablation experiments on the MVTec AD dataset.

(1) Influence of the number of residual blocks: In rows 1, 2, and 3 of Table 5, the influence of the
change in the number of residual blocks on the classification performance of the NF-BMR network
was explored. The highest average AUROC value was reached when the number of residual blocks was
n = 2, and the number of residual blocks continued to increase. In contrast, the average AUROC value
decreased slightly by 0.2%. Therefore, the optimal number of residual blocks n = 2 was determined.

(2) Influence of BMR Network: In the comparison experiment of the first three rows and the
fourth row in Table 5, the AUROC of NF combined with B-PFM is 96.2%. The minimum and
maximum AUROC values of NF combined with BMR are 97.4% and 98.7%, which is 1.2% and 2.5%
higher than the method of NF combined with B-PFM, respectively. This verifies that the proposed
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BMR network is better than the B-PFM network. It can better learn the normal feature distribution
in the two spatial domains and improve defect detection performance.

Table 5: Ablation results on the MVTec AD dataset

NF B-PFM BMR Res blocks AUROC (%)

1 2 3

� � � 97.4
� � � 98.7
� � � 98.5
� � 96.2
� 94.2

In the last row of Table 5, we show the detection performance of the NF network alone; AUROC
only reaches 94.2%. When NF is combined with B-PFM, AUROC increases by 2%. When NF is
combined with BMR, AUROC increases up to 4.5%. These results verified the effectiveness and
superiority of the proposed method. Fig. 10 shows the AUROC results for all ablation experiments
for 15 categories on the MVTec AD dataset. The black line represents the configuration with NF
alone, which offers the worst performance in almost all 15 categories, especially in the target class.
From comparing the dark yellow line with the blue, red, and light blue lines, NF performs worst in
almost all categories when combined with B-PFM. Combining the BMR of different residual block
Settings improves the detection results for all classes, especially in the more difficult object classes to
detect. This further indicates that compared with B-PFM, BMR can learn the feature information of
both spatial domains more fully. The red line performs leading defect detection in almost all categories
and represents the best NF-BMR network configuration.

Figure 10: Results of ablation experiments on the MVTec AD dataset
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5 Conclusion

This paper proposes a new normalizing flow-based bi-directional mapping residual network for
unsupervised defect detection. Unlike the previous work that uses two different pre-trained CNN to
embed source and target domain features, we introduce NF instead of pre-trained TNN to construct
a more discriminative target domain feature space, which can alleviate the problems caused by biased
pre-trained CNN. Moreover, a bidirectional mapping residual network BMR was proposed to learn
thoroughly. Experiments on MVTec AD and DAGM datasets verified the superiority of our proposed
NF-BMR network. Since the proposed network only performs defect detection on single-scale features
and no particular optimization was done for defect localization, we will focus on improving defect
localization performance in future works.
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