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ABSTRACT

Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they
encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the
emotional states of speakers holds significant importance in a range of real-time applications, including but not
limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately
identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous
studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients
(MFCCs) due to their ability to capture the periodic nature of audio signals effectively. Although these traits may
improve their ability to perceive and interpret emotional depictions appropriately, MFCCS has some limitations.
So this study aims to tackle the aforementioned issue by systematically picking multiple audio cues, enhancing
the classifier model’s efficacy in accurately discerning human emotions. The utilized dataset is taken from the
EMO-DB database, preprocessing input speech is done using a 2D Convolution Neural Network (CNN) involves
applying convolutional operations to spectrograms as they afford a visual representation of the way the audio signal
frequency content changes over time. The next step is the spectrogram data normalization which is crucial for
Neural Network (NN) training as it aids in faster convergence. Then the five auditory features MFCCs, Chroma,
Mel-Spectrogram, Contrast, and Tonnetz are extracted from the spectrogram sequentially. The attitude of feature
selection is to retain only dominant features by excluding the irrelevant ones. In this paper, the Sequential Forward
Selection (SFS) and Sequential Backward Selection (SBS) techniques were employed for multiple audio cues features
selection. Finally, the feature sets composed from the hybrid feature extraction methods are fed into the deep
Bidirectional Long Short Term Memory (Bi-LSTM) network to discern emotions. Since the deep Bi-LSTM can
hierarchically learn complex features and increases model capacity by achieving more robust temporal modeling,
it is more effective than a shallow Bi-LSTM in capturing the intricate tones of emotional content existent in speech
signals. The effectiveness and resilience of the proposed SER model were evaluated by experiments, comparing it
to state-of-the-art SER techniques. The results indicated that the model achieved accuracy rates of 90.92%, 93%,
and 92% over the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Berlin Database
of Emotional Speech (EMO-DB), and The Interactive Emotional Dyadic Motion Capture (IEMOCAP) datasets,
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respectively. These findings signify a prominent enhancement in the ability to emotional depictions identification
in speech, showcasing the potential of the proposed model in advancing the SER field.
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1 Introduction

The significance of expressing emotions in human communication is of significant importance
in effectively conveying information to the recipient. The precise recognition of emotions in real-
time scenarios possesses a multitude of practical implications across diverse fields, augmenting the
functionalities of systems and strengthening interactions between humans and machines. For instance,
in virtual therapy, user emotions reorganization can help tailor interventions and replies to better
address the emotional needs of individuals. Moreover, emotionally intelligent robots have the potential
to offer support to persons with specific requirements by comprehending and appropriately reacting
to their emotional signals. Correspondingly, in emergencies, recognition of emotions can be used
in call centers to analyze the emotions of customers which assists customer service representatives
to empathetically respond and address issues more effectually. In workplace environments, emotion
recognition may play a significant role in evaluating the overall well-being of employees through the
monitoring of stress levels and job satisfaction. This, in turn, can facilitate the development of more
effective organizational initiatives aimed at assisting employees.

The various manifestations of human emotions are dynamic and lively. Nonverbal communication
comprises a variety of modalities for conveying information, including but not limited to body
language, facial expressions, eye contact, humor, and tone of voice. The linguistic diversity among the
world’s populations is evident. Nevertheless, it is noteworthy that individuals are capable of grasping
certain aspects of the intended message being sent by their communication partner, even in the absence
of a shared language. This phenomenon is often attributed to the utilization of emotional expressions,
as previously indicated. Of the several modes of human emotional expression, vocal expression has
received the most extensive scholarly attention.

The ML algorithms play a vital role in Speech Emotion Recognition (SER) by identifying and
categorizing emotions expressed in speech. For real-time applications, models of Machine Learning
(ML) can be optimized to let systems respond quickly to emotional state changes during conversations
or interactions. However, ML faces numerous challenges in accurately discriminating emotional states
from spoken language. Some of the crucial challenges include, emotions frequently being personal and
context-dependent, as the utterance of identical words within varying circumstances or accompanied
by distinct intonations can express diverse emotional states. Furthermore, the annotation of emotions
does not have a universally accepted and established set of labels. The utilization of diverse datasets
may include the adoption of varying emotion categories or labels, hence posing challenges in the
process of data comparison and integration. The presence of this contradiction may impede the
advancement of emotion recognition models that are both robust and capable of generalization.

Besides, emotions may not always exhibit distinct boundaries and sometimes exhibit overlapping
characteristics. An individual may manifest a confluence of positive affect and astonishment.
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Historically, the main challenge encountered during the feature extraction procedure revolved
around the determination of a dependable methodology for obtaining noteworthy and differentiating
features from voice signals. The aforementioned characteristics were designed to capture the affective
state of a speaker by analyzing the acoustic properties of their speech. In the earlier years, a
considerable number of academics have undertaken research endeavors about low-level handmade
characteristics in the context of SER. The aforementioned properties comprise various factors,
including energy, zero-crossing, pitch, linear predictor coefficient, MFCC, and nonlinear features
such as the tiger energy operator. Presently, a considerable proportion of scholars employ deep
learning methodologies in the context of SER. In this particular scenario, a frequently utilized input
characteristic is a Mel-scale filter bank audio spectrogram. The successful development of Fully
Convolutional Networks (FCNs) has been achieved through the use of Convolution Neural Network
(CNNs) to effectively tackle the issue of accommodating input data with diverse dimensions. However,
despite the remarkable performance of FCNs in tasks of time series classification with stable input
variable sizes, they are limited in their ability to adequately capture and acquire temporal information
related to this specific difficulty. Hence, the use of Long Short-Term Memory (LSTM) with Recurrent
Neural Networks (RNNs) is employed to acquire comprehension of distinctive and temporally-
dependent patterns within sequences [1].

Principally, Bidirectional Long Short Term Memory (Bi-LSTM) networks are a type of RNN
architecture that are effective for sequential data processing and analysis. In the following, we will
mention some of the crucial characteristics and capabilities of Bi-LSTM networks. Mainly, Bi-LSTM
networks are designed for sequential data as the order of elements is vital as time series or natural
language text. Also, the Bi-LSTM network’s basic structure blocks are LSTM cells which can learn
long-term dependencies in the data by keeping a memory state, as a result, it helps in catching
relationships and patterns within sequences.

Additionally, one of the distinguishing features of Bi-LSTM networks is their ability to process
bidirectional simultaneously which allows the model to catch information from past and future,
which is predominantly valuable for tasks where context substances. Almost, CNNs have been widely
employed in combination with LSTM and LSTM-RNNs in the domain of SER to capture latent
temporal patterns [2].

Academic researchers are currently engaged in efforts to enhance the precision of SER through
the utilization of the CNN-LSTM model. This approach aims to identify significant segments within
speech signals and effectively capture temporal information [3]. In their study, they introduced a novel
approach to identifying and categorizing emotional states in speech within the context of healthcare
environments. The researchers adopt a methodology that leverages CNN features to enhance the
ability of intelligent and efficient equipment to accurately perceive an individual’s emotional state.

The field of SER has been a subject of active research in recent times. Researchers have increasingly
employed deep learning techniques to devise diverse approaches for the identification and classifica-
tion of emotional states shown by speakers. Researchers commonly employ the CNNs model to acquire
significant and distinguishing features, which are subsequently inputted into the LSTM network. This
enables the LSTM network to learn concealed temporal cues to identify emotions inside sequences.
The utilization of CNNs and artificial intelligence has been shown to enhance recognition accuracy.
However, it is crucial to emphasize that the employment of large network weights also leads to a rise in
computational expenses. The current CNNs and LSTM architectures did not demonstrate significant
improvements in enhancing the accuracy and decreasing the computational complexity of the current
SER systems.
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In the context of this study, Bi-LSTM networks contribute by effectively capturing dependencies
and patterns in sequential data, which enables predicting future values in a time series. As a result, the
ability to make informed forecasts or classifications based on sequential input data is improved. In
this paper, Bi-LSTM networks are used because of their flexibility in handling sequences of variable
lengths they can adapt to input sequences of diverse lengths by regulating their internal memory cells
consequently. Furthermore, the hidden layers of a Bi-LSTM network serve as feature extractors as
relevant features can be learned automatically from the input sequences. Particularly, this is helpful
when dealing with complex patterns in sequential data.

Even though, LSTM networks are proficient in learning long-term dependencies in sequential
data, which makes them well appropriate for speech recognition. Nevertheless, training enormous
amounts of data with large and complex sequences is not correctly recognized by a simple LSTM
network. Hence, in this paper, we propose to utilize a deep Bi-LSTM network to learn and recognize
long-term sequences in acoustic data for recognizing emotions. In the deep Bi-LSTM network, the
forward and backward pass entails cells, that make the network deeper to calculate the output from
the preceding and subsequent sequence regard to time as the network performed in both directions.

This study introduces an innovative methodology for sentiment analysis utilizing a deep Bi-LSTM
network. Predominantly, the initial step of the proposed model involves the preprocessing database
of the speech samples through the utilization of a 2-D convolutional layer. After the initial stage, a
sequence of discriminative multi-features at a high level is retrieved successively. These features include
Mel-Spectrogram, MFCC, Contrast, Chroma and Tonnetz. Additionally, both mean and standard
deviation technique is utilized on behalf of the purpose of normalizing the features. These normalized
features are subsequently fed into a deep Bi-LSTM network to extract temporal information and
accurately determine the final state. The Softmax classifier is utilized to generate a probability
distribution for speech emotions. The evaluation of the suggested trained model was conducted by
the confusion matrix as a means to assess the efficacy of the model.

2 Literature Review

The complex convolutional block attention module (CCBAM) was proposed by Zhao et al. [4]
to enhance the capability of representing complex-valued convolutional layers by generating more
informative features. The CCBAM was a compact and adaptable component capable of integration
within diverse convolutional layers using complex-valued inputs. The researchers enhance their speech
augmentation capabilities by integrating CCBAM using the deep complex U-Net and convolutional
recurrent network (CRN). Additionally, a mixed loss function was proposed to optimize complicated
models in both the temporal-frequency (TF) and time domains. A novel end-to-end (E2E) speech
augmentation framework was developed through the integration of CCBAM with the mixed loss
technique. The proposed techniques have exhibited higher performance in ablation testing and
objective evaluations. The deep complex U-Net DCUnet-MC exhibits an average performance of 97.10
for Short-Time Objective Intelligibility (STOI) metrics. However, this research lacks an examination
of the computational complexity, limitations, and applicability of the proposed CCBAM in real-time
applications, monaural voice augmentation technologies, and noise and speech sources. The suggested
complex speech improvement framework’s applicability to varied noise and speech sources is not fully
examined.

For a multichannel speech improvement challenge, Lee et al. [5] developed convolutional time-
domain audio separation network (Conv-TasNet). They compared it to the state-of-the art (SOTA)
models tested on the same CHiME-3 dataset and found that the suggested model performed more
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favorably than the comparative models. In addition, a model with minimal input and output tensor
sizes was presented to save memory. The size of the initial temporal convolutional network (TCN) stack
was significant for the voice enhancement task; consequently, the downsized model that progressively
decreased the output tensor size with increasing stack index performed similarly to the full-sized Conv-
TasNet. The CHiME-3 dataset is frequently used in the field; however, it may not reflect all real-world
events, restricting generalizability.

Kumar et al. [6] created an intelligent assistant that can recognize emotions in voice communica-
tions. They utilized RAVDESS, Texas Instruments Massachusetts Institute of Technology (TIMIT),
and Emo-DB. Compared to Gaussian Mixture Model (GMM) and Support Vector Machine (SVM)
models, the suggested model is 81.02%, 84.23%, and 85.12% accurate for RAVDEES, TIMIT, and
Emo-DB datasets. The study should investigate several NN designs and parameters for voice emotion
recognition to increase system accuracy and efficiency.

In a comprehensive analysis conducted by Michelsanti et al. [7], a thorough evaluation of the
existing literature was undertaken, with a specific focus on identifying the fundamental attributes that
differentiate various systems in this field. These attributes encompass fusion approaches, deep learning
techniques, visual and auditory features, training objectives, and objective functions. The researchers
also examined deep-learning-based methodologies for voice reconstruction from silent films and non-
speech audio-visual sound source separation, as both techniques have the potential to enhance and
disentangle audio-visual speech. In light of their crucial contribution to the development of data-
driven procedures and evaluation methodologies, the researchers conducted a comprehensive analysis
of frequently employed audio-visual speech datasets. These datasets were commonly utilized to assess
and ascertain the effectiveness of various systems. There is no extensive examination of deep learning-
based audio-visual speech augmentation and separation systems in the paper. It does not compare
audio-visual speech datasets and assessment techniques from the literature.

Ye et al. [8] proposed a novel approach for modeling temporal emotions in SER known as the
Temporal-aware Bi-direction Multi-scale Network (TIM-Net). The objective of this strategy was
to obtain contextual emotional representations from different time scales by employing a multi-
scale learning process. The methodology included temporal-aware blocks to construct temporal
affective representations. Subsequently, the complementing past and future information was integrated
to enhance the contextual representations. Finally, the integration of characteristics from multiple
time scales was performed to enhance the model’s ability to respond to emotional variations. The
researchers conducted experiments on six benchmark sentiment analysis datasets and observed that
their proposed method resulted in an average increase of 2.34% in Unweighted Average Recall (UAR)
and 2.61% in Weighted Average Recall (WAR) compared to the second-best performing method on
each dataset. However, this paper explores how adding contextual information like facial expressions
or physiological signals to TIM-Net may improve speech emotion identification and testing the TIM-
Net technique for real-time speech emotion identification.

Chen et al. [9] presented SpeechFormer++, a generic framework based on structure for par-
alinguistic voice processing. A unit encoder was developed to effectively represent both intra- and
inter-unit information. The researchers employed merging blocks as a technique for constructing
features at different levels of detail, which aligns with the structural pattern observed in the voice
stream. Additionally, this study introduces a word encoder that effectively integrates both fine-grained
and coarse-grained information into each unit encoder, thereby achieving a harmonious equilibrium
between these two types of information. SpeechFormer++ was assessed on tasks such as IEMOCAP
and Multimodal EmotionLines (MELD), depression categorization (DAIC-WOZ), and Alzheimer’s



2694 CMC, 2024, vol.78, no.2

disease detection. The results reveal that SpeechFormer++ is the regular Transformer though consum-
ing significantly less processing power. Moreover, it demonstrates superior performance compared to
SOTA techniques in terms of outcomes. The lexical information was not employed in the creation
of a unified textual-audio framework. They also did not take into account semantic information in
SpeechFormer++ when handling speech recognition tasks. However, SpeechFormer++’s computa-
tional efficiency had not been compared with other models for paralinguistic speech processing tasks
other than emotion identification, depression categorization, and Alzheimer’s disease detection.

Wang et al. [10] proposed a multi-feature fusion and multi-lingual fusion SER algorithm based
on RNN with an improved local attention mechanism, they used traditional hand-crafted features
extracted from GeMAPS and deep automatic features based on the VGGish model. The classification
accuracy is improved while the dataset is slight.

In [11], a simple architecture of residual blocks in combination with one-dimensional Dilated
CNN (DCNN) finds a correlation between emotional cues and the sequence of learning. They were
achieved with IEMOCAP and EMO-DB datasets and a recognition rate of 73% and 90%, respectively.

In [12], an approach based on LSTM network models as a classifier using the MFCC features was
introduced. This approach achieved 89% accuracy based on the RAVDEES dataset and only 4 emotion
categories were employed (happy, neutral, sad, and angry), some researchers combined various feature
types and used them as input for classification models.

Peng et al. [13] combined CNN using sliding RNNs with attention-based auditory heads to limit
the auditory system of the human which can easily identify the speaker’s intentions by inspection of
any utterance intensity and frequency. The researchers noted through several experiments that their
model can effectively use temporal modulation cues to identify the state, an accuracy rate of 62.6% for
IEMOCAP and 55.7% for the MSP-IMPROV datasets is recorded.

Venkata Subbarao et al. [14] proposed an SER system based EMO-DB database, in the first phase
39 MFCCs were extracted than in the second phase, different types of K-nearest neighbor (KNN)
classifiers (Fine, Medium, Cosine, Cubic, and Weighted) were used to classify different emotion
categories. The training data were divided into two categories: 90% for training and 10% for testing.
The simulation results achieved an overall accuracy of 90.1% which showed the effectiveness of the
KNN classifier of type Fine with the Euclidean distance function.

Sowmya et al. [15] implemented a SER system that can recognize four different types of feelings
from the RAVDESS dataset. To characterize the feelings, MFCC, chroma, tonnetz, mel, and contrast
were extracted then SVM, Multilayer Perception (MLP), Random Forest (RF), and Decision Tree
(DT) calculations were utilized for classification. Additionally, when compared to other methods by
splitting the dataset into 75% for training and 25% for testing, MLP produced the best results with an
accuracy of 85%.

Sajjad et al. [16] proposed a new method for choosing a more effective communication sequence
using Radial Basis Function (RBF) based K-mean clustering algorithm and converting it to spectro-
grams using the Short Time Fourier Transform (STFT) algorithm. They retrieved discriminative and
salient characteristics from speech signal spectrograms using the FC-1000 CNN model Resnet layers,
then normalized it using mean and standard deviation to reduce variation. Afterward, they input these
discriminative traits into a deep Bi-LSTM to learn the concealed information, identify the conclusion
of the sequence, and categorize the speakers’ emotional states. They tested the proposed system’s
robustness using three standard datasets: RAVDESS, EMO-DB, and IEMOCAP. They increased
the recognition accuracy for the IEMOCAP dataset to 72.25%. Their work emphasizes handcrafted
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characteristics and standard CNN models, which may restrict innovative speech emotion identification
methods. The suggested method processes critical portions instead of the complete speech, which may
lose contextual information. Neutral and happy emotions have low recognition accuracy in speaker-
independent evaluation on the IEMOCAP dataset.

Koduru et al. [17] improved feature extraction by using Discrete Wavelet Transform (DWT), pitch,
Energy, and Zero CrossingRate (ZCR) to extract the most information from the voice signal and
achieve higher accuracy and speech recognition rate. They proposed five distinct feature extraction
strategies, as well as a comparison of several classifiers. The simulation results show the accuracy and
efficiency of several classifiers, with SVM being 70% accurate, the DTs being 85% accurate, and LDA
being 65% accurate. The suggested system outperformed previous work in terms of accuracy, meaning
that it pulls the most information from the signal required to describe the properties of the signal and
to distinguish emotions from the signal efficiently. In addition, the suggested mechanism takes less
processing time than the present one. As a result, the suggested system applies to all types of signals,
provides a higher rate of speech recognition, and increases the system’s accuracy and efficiency.

Chen et al. [18] addressed single-feature limits using a system that uses various types, layers, and
scales of emotion features. A parallel training method feeds separate layer-level characteristics into
multiple network designs. A CNN with multi-scale feature representation captures spatio-temporal
aspects of multiple frame-level data using an attention mechanism. Using multi-head attention to
combine deep representations from different levels while keeping feature-type characteristics. Segment-
level speech emotion multiplex decision approach to improve classification robustness and reduce local
interference signals. The suggested STRL-SER method Gaining significant performance increases
over earlier research, with a weighted accuracy (WA) of 81.60% and an unweighted accuracy (UA)
of 79.32% on the IEMOCAP dataset and 88.88% and 87.85% on the RAVDESS dataset. The method
should be tested on bigger and more diverse datasets to confirm its efficacy and generalizability. Testing
the suggested method in intelligent healthcare, customer service, contact centers, automatic translation
systems, and human-computer interaction.

Zhou et al. [19] presented two new attention-based Bi-LSTM architectures for personality detec-
tion using emoji and textual input at distinct semantic levels. To create user document representations,
the authors extract emoji information from online user-generated material and mix it with word
and phrase embedding. Emoji information is valuable in personality recognition tasks, evidenced by
the suggested approaches’ state-of-the-art performance above baseline models on a real dataset. The
work reveals the rich semantics of emoji information and suggests a novel technique to include it in
personality detection tests. From the researches above, it can be seen that SER system results depend
heavily on the utilized dataset, process of the feature extraction, and the ML method. So, these systems
do not perform as well when applied to various datasets. Additionally, those intensive studies of the
SER problem presented a huge collection of latent features of speech emotion. However, large feature
sets confuse the SER task as the number of analyzed speech patterns becomes lower than the feature
order. Therefore, the results classification becomes untrustworthy and meaningless. To overcome this
problem, in this paper, we introduced sequential feature selection for reducing feature sets by keeping
only dominant features by excluding the insignificant ones.

3 Methodology

This section explains the intricate design of the suggested framework, which was built expressly
to identify emotions in speech. The proposed framework proposes to identify emotions based on
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EMO-DB by a sequential selection of multi-feature extraction and Bi-LSTM. The diagrammatic
representation of the proposed framework is depicted in Fig. 1.

Figure 1: Overall structure of the proposed framework

From the above figure, it can be seen that the pre-processing is performed on the input speech
signal. Then, the EMO-DB dataset will employ several audio extraction algorithms to retrieve its audio
features. Next, the extracted features undergo sequential feature selection to assess the influence of
data reduction on the resultant model.

Following the completion of the pre-processing stage, the Bi-LSTM model will utilize the training
set as the reference data for training purposes. Once the training results model has been acquired,
the subsequent phase involves conducting testing using test data. The suggested framework employs
leave-one-speaker-out (LOSO) cross-validation for training and validation.

The emotion prediction results will be collected through the testing procedure using the trained
Bi-LSTM model. These results will then be converted into a confusion matrix table, which will serve
as a reference for evaluating the performance of the proposed model. The aforementioned parameters
are employed to assess the precision of the suggested model. The succeeding sections provide a
comprehensive analysis of each block inside the framework, with a detailed description of each.
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3.1 Pre-Processing

The input and preparation stages include collecting audio data and removing any noise or other
undesired signals.

Initially, the audio signal undergoes a conversion to the frequency domain with the use of the
STFT. This transformation employs a window length of 256 samples, a 75% overlap, and a Hamming
window. To achieve a reduction in the size of the spectral vector, it is advisable to decrease it to
a dimension of 129 by removing the frequency samples associated with negative frequencies. The
rationale for this modification is supported by the observation that the speech stream in the time
domain is current, hence guaranteeing the preservation of information integrity.

The predictor and target network signals are representative of the magnitude spectra of the noisy
and clean audio signals, respectively. The input to the predictor consists of a series of eight consecutive
STFT vectors that have been corrupted by noise. The calculation of each output estimate in STFT
entails the utilization of the current STFT vector, which contains noise, in addition to the preceding
seven STFT vectors that also contain noise.

The de-noising network incorporated a 2-D convolutional layer which employed sliding filters
to do the processing of the input. The convolutional layer performs a convolution operation on the
input data through the systematic displacement of filters both for the vertical and horizontal direction
across the input. The process involves the dot product calculation between the filter weights and the
associated input values, and subsequently incorporating a bias term.

In practical applications, it has been observed that convolutional layers have a reduced parameter
count in comparison to fully connected layers. The FCNs consists of a cumulative sum of 16
convolutional layers. The initial set of 15 convolutional layers is comprised of clusters of three layers,
which are repeated five times. The convolutional layers in question have filter widths of 9, 5, and 9,
and correspondingly employ 18, 30, and 8 filters. The last convolutional layer is comprised of a single
filter with a width of 129.

Convolution operations in this network are solely executed in a unidirectional manner, specifically
inside the frequency dimension. Furthermore, the filter width in the temporal dimension remains
consistent at a value of 1 across all levels, except for the initial layer. In the architectural design of
CNNs, the sequential arrangement of Rectified Linear Unit (ReLU) and batch normalization layers
is typically observed after the convolutional layers.

The output of the network is represented as the magnitude spectrum of the de-noised signal.
Consecutively, the predictor input is used by the regression network to minimize the mean square
error between the output and target input. The conversion of the de-noised audio signal from the
frequency domain to the time domain entails the use of both the output magnitude spectrum and the
noisy signal phase [20]. The basic deep learning training scheme for denoising audio signal is shown
in Fig. 2.

3.2 Dataset

Mainly, in this paper, EMO-DB which includes Berlin Emotional Speech Database recordings is
used for training and testing [21]. The EMO-DB has 535 utterances said by ten actors (5 females,
5 males), each utterance expresses anxiety/fear, contempt, boredom, anger, happiness, neutrality,
or sadness. The EMO-DB dataset has various advantages, including carefully controlled recording
conditions that provide high-quality recordings and decrease speech signal acoustic variation. The
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dataset includes a variety of emotions and numerous speakers, enabling the construction of more
emotion recognition models which enable better robustness and generalizability.

Figure 2: Speech de-noising using deep learning network

3.3 Feature Extraction

Human speech is a multifaceted and dynamic signal which carries a prosperity of emotional
information. Numerous acoustic features such as pitch, rhythm, intensity, and spectral content can be
revealing of distinct emotions. Consequently, feature extraction and analysis are crucial for recognizing
emotions accurately as they enable the system to express the nuanced and multifaceted nature of
human emotions uttered in speech. Significantly, auditory provides valuable contextual information,
such as intonation, tone, and prosody that can contribute to the emotional content understanding.
These contextual cues are vital for distinguishing similar acoustic patterns that are associated with
diverse emotions.

Meanwhile, relevant information extraction from acoustic inputs allows models to consider a
wider set of features, it improves models’ capability to recognize complex emotional states so it is
significant for SER system success. The speech signal includes parameters that define speech. However,
speech features’ dynamic nature and temporal modifications make understanding difficult [22].

In theory, speech recognition can be achieved directly from the signal. However, due to voice
signal variation, feature extraction techniques are beneficial to mitigate its effects [23]. The recognition
process relies on feature extraction, which transforms or combines the original feature set to create new
features.

In speech recognition, the most widely used features are mfccDeltaDelta, spectralCentroid,
spectralFlux, pitch, and harmonicRatio, additional features and audio features extractor pipeline are
observed in Fig. 3.

Deep learning approaches are commonly employed by researchers for SER, with the Mel-scale
filter bank voice spectrogram being utilized as the input feature. To enhance the ability to identify
human emotions, it is advisable to take into account multiple acoustic characteristics inside our model.
The proposed framework employs a comprehensive extraction approach that integrates many audio
features, including MFCC, Chroma, Mel-Spectrogram, Tonnetz, and Contrast. The amalgamation in
question is designed to effectively decrease computing complexity, while simultaneously preserving
energy and bandwidth resources.
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Figure 3: Audio feature extraction pipeline

The MFCC has become the predominant feature in the field of voice recognition [24]. The primary
purpose of employing MFCC is to replicate the audio characteristics of the human ear. According to
previous research [25], the MFCC has been suggested as a reliable method for identifying monosyllabic
audio, eliminating the requirement for speaker identification.

For several decades in speech processing, MFCCs have been used as a benchmark feature
representation, owing to their ability to capture human auditory system characteristics and their
effectiveness for discriminative feature extraction from audio signals. As the human auditory system
does not distinguish all frequencies equally, the Mel scale is a perceptual scale that approximates
how humans perceive sound pitch. It is nonlinear and emphasizes lower frequencies, which are more
applicable for processing speech. MFCCs are derived from the Mel-scale filter banks which imitate
the human ear’s response to distinct frequencies. MFCCs afford a compact representation of speech
signal spectral characteristics. So, via a subset of coefficients selection, feature space dimensionality is
reduced, enhancing computing efficiency and mitigating potential overfitting in ML models. MFCCs
are relatively robust to variations in speakers and environmental conditions. Over and above, MFCCs
are relatively robust to the diversity of speakers and environmental conditions.

Even though MFCCs are appreciated for capturing confident aspects of speech, there are some
limitations to using them. MFCCs are disposed to the background noise impact, which can disguise
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or distort emotional cues in speech. So, pre-processing, such as noise reduction should be applied to
decrease noise influence.

The process for extracting audio MFCC features, as described in reference [26], consists of
multiple stages. The process commences with the pre-emphasis stage, wherein the audio stream is
amplified at higher frequencies. Following that, the processes of frame and windowing are executed.
The initial phase of audio processing involves dividing the audio signal into distinct temporal segments,
often spanning from 20 to 30 milliseconds. The application of the windowing approach serves to
alleviate disruptions occurring at the initial and final segments of the audio. The windowed results
are transformed into MFCC using the Fast Fourier Transform, Discrete Cosine Transform, and Mel
Filter Bank, under the aforementioned phases.

The MFCC, utilized as a feature in the field of SER, provides the benefit of effectively capturing
the acoustic characteristics of human speech. The utilization of the mel scale is advantageous due
to its near alignment with the frequency perception capabilities of the human auditory system. The
utilization of the logarithm of the power spectrum and its subsequent conversion to cepstrum in
the process of MFCC serves to effectively decrease the dimensionality of features and simplify the
computational complexity involved. Moreover, the utilization of short-duration frame segmentation
techniques in MFCC allows for the effective capture of temporal information in speech signals. This
enables the capturing of fluctuations related to temporal emotional shifts.

However, MFCCs do not explicitly capture prosodic features such as pitch and intonation which
play an essential role in conveying emotions over speech, which can limit their capability to characterize
certain emotional characteristics [27].

To address this limitation, prosodic features are integrated with MFCCs to provide a more
inclusive representation of emotional cues. In this paper, multiple feature sets that capture different
aspects of speech are combined to improve the emotion recognition system’s overall performance. In
this study, Chroma, Contrast, Mel-Spectrogram, and Tonnetz will be used with MFCCs as emotion
recognition features.

Chroma, conversely, is a method of extracting features that primarily concentrate on auditory
tones related to music [28]. The representation of tonal differences in audio as a basic characteristic is
facilitated by this technology. The outcome of implementing the Chroma feature extraction technique
yields a Chroma gram that is constructed based on a scale consisting of 12 distinct tone levels [29]. The
application of Chroma is intended to identify and differentiate between high and low-pitch attributes
in voice audio, as pitch might offer indications of particular emotional states.

Mel-Spectrogram, another audio feature extraction method, addresses the limitations of human
auditory perception in discerning high-frequency values [29]. In this study, the Mel-Spectrogram
is employed to extract information about frequency variations, particularly in the identification of
different emotional states. Tonnetz, derived from Chroma, is an additional feature extraction technique
that centers on acoustic harmony and classes of tone [30]. Contrastingly, a feature extraction approach
in audio proves valuable in estimating sound energy averages by considering each sub-bands peak and
values of the valley spectrum [31].

3.4 Sequential Feature Selection for Audio Features

After multiple features are extracted from the audio signals, the selection of features is system-
atically done based on the sequential feature selection technique. The approach employed for feature
selection in our framework is sequential feature selection.
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In this study, we used this technique to improve the performance and efficiency of the proposed
learning model by selecting a subset of relevant features successively.

This technique entails training the network using a specific feature set and iteratively adding or
removing features until the highest level of accuracy is attained [32]. This process aims to optimize the
accuracy of the network by systematically adjusting the set of features utilized.

Selection starts forwarded with an empty set of features then the most relevant feature iteratively
added until reaching the optimal accuracy or until further improvements in accuracy are no longer
observed this is called SFS. Sequentially, training starts with all features and iteratively removes the
least relevant features until no enhancement in accuracy is met this is known as SBS. Finally, a selected
subset of features through SFS or SBS turns into an input set for the Deep Bi-LSTM model to learn
the temporal information for the final state of emotion identification [32].

3.4.1 Forward Selection

A basic instance of forward selection involves a group of four features. During the initial forward
selection iteration, each of the four features is individually tested by training a network and comparing
their respective validation accuracies. The feature that yields the highest validation accuracy is
recorded. In the subsequent forward selection iteration, the best feature from the first iteration is
combined with each of the remaining features. This results in pairs of features that are used for training.
If the accuracy in the second iteration does not surpass the accuracy achieved in the first iteration, the
selection process concludes. However, if the accuracy does improve, a new set of features that perform
the best is chosen. The forward selection loop continues until the accuracy no longer demonstrates
any further improvement. In Fig. 4, the phase of features forward selection is demonstrated.

Figure 4: Forward selection for the features
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3.4.2 Backward Selection

Backward selection for the features involves an initial training phase using a feature set that
encompasses all available features. The subsequent step involves systematically removing individual
features and assessing whether the accuracy of the model improves, Fig. 5 exhibits bachward selection
phase.

Figure 5: Backward selection for features

3.5 Deep Bi-LSTM Classifier

Practically, several standard classifiers are utilized for recognizing the emotion of humans from
their speech, including the SVM, KNN and Kernel Deterioration, Maximum Likelihood Bayes
Classifier (MLBC), Hidden Markov Model (HMM), Naive Bayes Classifier [33], GMM and NN [34].
Among these, the LSTM classifier has gained popularity and finds wide applications in numerous
fields, like speech recognition, machine translation, and language modeling. LSTM is an RNN feature
that offers effective solutions for a broad spectrum of problems. It is commonly employed to mitigate
the issue of vanishing gradients, although it does not eliminate this problem. However, LSTMs can
become inefficient, and demand increased bandwidth for training data.

The utilization of a variant of LSTM known as Bi-LSTM is employed to incorporate an improved
functionality. In practical terms, this approach involves the integration of two LSTM models to
effectively represent bidirectional long-term relationships within sequential data or across distinct time
steps. The aforementioned dependencies demonstrate their significance when RNN is assigned the
duty of acquiring knowledge from the complete time series at every time step.

The Bi-LSTM networks involve training each signal in both the forward and backward directions,
which allows for the disentanglement of recurrent networks. Both sequences are connected to the
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identical output layer. These models are capable of capturing and incorporating extensive contextual
information for each element within a sequence, including both preceding and subsequent elements.

The input sequence is initially subjected to processing by a forward LSTM layer. Subsequently,
the input sequence is provided to the LSTM network in reverse form through a backward layer. The
utilization of LSTM twice enhances the acquisition of long-term dependencies, hence leading to an
enhanced accuracy of the model. In the concealed layers, data undergoes bidirectional processing,
where bidirectional LSTM models gather relevant information from both preceding and succeeding
directions. This facilitates the retrieval of extensive contextual information. The aforementioned
information is subsequently directed toward the identical output layer in Bi-LSTM models. However,
the output of the Bi-LSTM model at time “t” is not solely determined by a single segment of the
sequence, but rather impacted by both the preceding and subsequent segments [35]. Bidirectional
RNNs are composed of a dual set of RNNs that are combined in a stacked configuration. In the
proposed model, the sequence of the input is processed through two RNNs, with one RNN operating
in the forward direction and the other RNN operating in the backward direction. The combined
output is computed by these two RNNs using their respective hidden states. As training a huge amount
of data with large and complex sequences is not correctly recognized by a simple LSTM network, in
this study, we have utilized a deep Bi-LSTM network to learn temporal signals and recognize the
sequential information in a sequence and analyze the emotional state of the speaker in speech cues.
Deep architectures denote the stacking of multiple layers of Bi-LSTM units which allow the model to
learn the input data hierarchical representations, as each layer catches different abstraction levels.

The basic structure block of a Bi-LSTM is the LSTM cell, the LSTM presents memory cells and
gates (input, forget, output) to adjust the flow of information. The LSTM equations include operations
for input, forget, and output gates, in addition to updating the memory cell are explained in detail in
[36,37]. This research utilizes a multi-layer deep Bi-LSTM model to extract information and detect
prolonged temporal patterns in audio data, with a specific focus on the task of recognizing emotions.
The forward and backward passes utilized a two-layer LSTM which makes the model a deep Bi-LSTM.
The overarching architecture of the multi-layer Bi-LSTM and deep BILST is depicted in Fig. 6.

Figure 6: Deep Bi-LSTM network (a) External architecture (b) Internal architecture

The above visual representation in Fig. 6a showcases the external structure, specifically highlight-
ing the training stage of the bidirectional RNN. The architectural design incorporates the hidden states
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derived from both the forward and backward passes, which are subsequently combined in the output
layer. Afterward the output layer, both cost and validation metrics are calculated. Subsequently, the
weights and biases are adjusted through the process of backpropagation. Stacking the Bi-LSTM by
joining the output of the lower layer to the higher layer input provides the internal structure of deep
Bi-LSTM as illustrated in Fig. 6b.

In the training phase, the model is fed with input sequences through the first layer of the Bi-
LSTM, creating hidden states for each time step. From the previous forward pass, hidden states are
concatenated with the backward pass hidden states to form the final hidden states for each time
step. Sequentially backpropagation through time is applied to update network weights to reduce
the difference between predicted and true output. Commonly, a loss function, like categorical cross-
entropy, is used to enumerate this difference. Practically, deep Bi-LSTM network training involves
various hyper-parameters adjusting, like rates of learning, dropout rates, and LSTM layer numbers.
To update the parameters of the model to minimize the loss, an optimization algorithm like Adam,
is used. Especially in deep architecture, regularization techniques, like dropout, can be applied to
prevent overfitting. As we trained the proposed model on different datasets, the model should be
fit to training data by adjusting epochs number and batch size based on the used dataset size.
During the testing phase, the trained deep Bi-LSTM is utilized for sequence prediction. for each time
step. Then, the evaluation of the trained model on the testing dataset is accomplished to assess its
generalization performance. The proposed model’s predictions are compared against the true output to
calculate metrics like accuracy, precision, recall, and F1 score. Experimentally, we found that the deep
architecture enhances the model’s capacity to capture complex patterns and representations in the data.
The deep Bi-LSTM network utilizes cells for both the forward and backward propagation, allowing
the network to generate output by considering preceding and subsequent sequences in a temporal
context, as the network functions bi-directionally. Algorithm 1 describes the complete training and
testing algorithm based on Deep Bi-LSTM and multi-features.

Algorithm 1: Proposed speech emotion recognition based Deep Bi-LSTM and multi-features.
Input: Selected speech samples of EMO-DB dataset.
Output: Classification accuracy
1. Loading the selected speech samples of EMO-DB database Tunpreprocessed .
2. For each Sample T ∈ Tunpreprocessed , Divide the samples into frames of 30 msec.
3. For each frame f ∈ sample T, perform denoising and Append f to new pre-processed sample
Tpreprocessed .
4. Split the set Tpreprocessed into training TTrain, validation TValid , and testing TTest datasets.
5. For each sample TTrain, employ Librosa to extract the MFCC, Chroma, Spectral Contrast
and Tonnetz features.
6. Sort the TTrain and TValid datasets by sequence length.
7. Build the Deep Bi-LSTM network.
8. Initialize the training hyper-parameters and identify the training options.
9. Train the Deep Bi-LSTM network with TTrain dataset.
10. Validate the Deep Bi-LSTM network with TValid dataset.
11. If Deep Bi-LSTM network is not optimized, then reinitialize the hyper-parameters from step 8.
12. Load the testing dataset TTest and Classify the samples using a pre-trained Deep Bi-LSTM model.

(Continued)
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Algorithm 1 (continued)
13. Match the similarity between the test and predicted labels.
14. Evaluate the accuracy of the model classification. If accuracy is optimal, then output classification

accuracy
else
the model is re-build from step 7.

4 Experiment Result and Discussion
4.1 Perform Speech Emotion Recognition

Emotions encompass alterations in both physical and psychological sensations that have an impact
on human behavior and cognition. They are directly related to temperament, personality, mood,
motivation, and vitality.

In this paper, we introduced a deep Bi-LSTM-based SER system. The development of a Structural
Equation Modelling (SEM) requires a substantial amount of annotated training data, a process that is
both time-consuming and costly. To tackle this difficulty, a thorough evaluation was conducted using
the publicly available EMO-DB dataset [21] to assess the proposed approach’s productivity. The uti-
lization of this dataset facilitated a comparative analysis between the suggested model and established
methodologies, thereby substantiating its superior performance, as it is extensively employed in studies
about speech emotion recognition.

The initial attempt at training yielded a 10-fold cross-validation accuracy of approximately 60%
due to a lack of enough training data. The model, when trained on an inadequate amount of data,
exhibits overfitting in certain folds and underfitting in others. The dataset’s size can be expanded by
employing audio augmentation to enhance the overall suitability. Various augmentation strategies can
be systematically or stochastically employed through cascading or parallel augmentation procedures.

A range of audio augmentation methods, including pitch shifting, time shifting, time-scale
alteration, noise addition, and loudness control, can be utilized to increase the size of an audio dataset.
This study employs simple data augmentation techniques, including the addition of noise and pitch
shifting, to enrich the data.

In the conducted experiment, a deliberate selection of 55 augmentations per file was made, taking
into consideration the trade-off between processing time and the improvement in accuracy. First and
foremost, the generation of noisy speech signals involves the multiplication of the maximum value of
the speech signal, denoted as s, by the noise ratio. This operation results in the determination of the
noise amplitude. In previous iterations, the amplitude of noise was integrated with the original signal
to produce a speech signal containing additional noise. The utilization of the Fourier transform on
the primary vocal signal is employed to achieve pitch shifting. Upon reflection, it can be observed
that the signal in the frequency domain undergoes multiplication by a logarithmic phase factor, which
possesses a numerical value of 0.7. To complete the process of pitch shifting, the signal is ultimately
subjected to a Fourier inverse transform, which allows it to revert to the domain of the time.

The chance of pitch shifting is configured to 0.5, and the default range is employed. Next, establish
the probability of using time shifting as 1 and utilize a time range spanning from −0.3 to 0.3 s.
Ultimately, the probability of introducing extraneous signals is established at a value of 1, while
the signal-to-noise ratio (SNR) is configured within the range of −20 to 40 decibels (dB). Based on
empirical evidence, it is recommended to increase the dataset size to 29,425 instances, incorporating
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55 augmentations, to improve the overall fitting performance. Table 1 presents the outcomes of the
data augmentation performed on the EMO-DB database.

Table 1: The data quantity for each emotion in the EMO-DB database before and after augmentation

Emotion Count Data set after augmentation (55 augmentation)

Anger 127 6985
Anxiety/Fear 69 3795
Boredom 81 4455
Disgust 46 2530
Happiness 71 3905
Neutral 79 4345
Sadness 62 3410

Following a sequential process, the various characteristics were derived after the preprocessing of
the emotional signals. In the proposed framework, multi-feature extraction is performed with the help
of Librosa [38] which is a python package developed for the analysis of music and audio, it provides
the building blocks needed to generate music information for retrieval systems.

In terms of the outcomes of the extraction process, a comprehensive set of 182 features was
acquired. This set comprised 40 features based on the MFCC and 10 features depend on the Chroma
method. Additionally, the Mel-Spectrogram, Contrast, and Tonnetz methods yielded a total of 120, 7,
and 5 features, respectively. Sequential feature selection is then employed to select the features. Earliest,
the network is trained on a specific feature set, and then features are added or removed incrementally
until the highest accuracy is achieved. Foremost, a 30 ms Hamming window with a 20 ms overlap is
employed.

The feature sequences are sequentially inputted into the network to perform mean prediction and
estimate and predict the standard deviation. The characteristics are normalized using the mean and
standard deviation to ensure accurate recognition performance.

Subsequently, the feature is transformed into sequences consisting of 20 elements, wherein each
sequence overlaps with the preceding and succeeding sequences by 10 elements. This arrangement
corresponds to windows of approximately 600 milliseconds in duration, with an overlap of 300 mil-
liseconds. Ultimately, the feature vector array transforms into sequences.

Formerly, the feature vectors were organized into sequences consisting of 20 feature vectors apiece,
by using 10 feature vectors overlaps. To ensure a one-to-one correspondence between the sequences
and their respective labels in the training and validation sets, it is necessary to replicate the labels. To
ensure that the categorization array includes all emotions, it is necessary to construct an empty array
encompassing all emotional classes and afterward add it to the validation tags. This approach accounts
for the possibility that not all speakers possess utterances for every emotion.

Finally, the recovered normalized features are inputted into a deep Bi-LSTM model to capture
temporal patterns, identify the sequential information inside a sequence, and determine the ultimate
speaker’s emotional state in speech signals. The deep Bi-LSTM network employed a total of four
bidirectional hidden layers, with respective LSTM cell sizes of 100, 100, 50, and 30. Furthermore,
dropout layers were incorporated within the training process to mitigate the risk of overfitting. These
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dropout layers were assigned probabilities of 0.5, 0.5, 0.3, and 0.3, respectively. Lastly, the Softmax
function is employed as an activation function for the output layer to achieve the classification.

4.2 Implementation Environment

To assess the suggested model, the methodology recommended in this study was employed,
employing various hardware and software configurations. Table 2 provides a thorough summary of
the components assembled to carry out the proposed model. This public inventory of resources used
ensures replicability and further research by providing insight into the computational backbone of our
methods. We successfully executed the model and acquired the results by using the provided hardware
and software.

Table 2: Implementation specifications

Model implementation

RAM 16 GB
GPU NVIDIA GeForce MX450
CPU 11th Gen Intel (R) Core (TM) i7-11370H @ 3.30 GHz
OS Windows 10 Pro
Programming
environment

Matlab

Cross-validation 10-fold

4.3 Model Optimization

During the training phase, the Adam optimizer was used to optimize the model, and the most
effective bias correction method was picked to enhance performance. The experiments were conducted
by employing both un-normalized and normalized features while considering various batch sizes and
learning rates to determine the most optimal approach.

To be able to evaluate the reliability of the suggested framework, the Scikit-Learn package is
utilized to partition 10% of the dataset to perform tests. The remaining 90% is allocated randomly
to create training data and validation data, with a ratio of 9:1.

The model’s empirical validation is contingent upon conducting complete experiments utilizing
three distinct speech-emotional datasets, namely IEMOCAP, EMO-DB, and RAVDESS. The emo-
tions distribution description in detail of different classes and participation of each class in percentage
for the three used datasets is described in Fig. 7.

Tables 3 and 4 give a comprehensive depiction of various parameters and their accompanying
outcomes as obtained from the proposed model. The tables presented in this study encompass both
un-normalized and normalized features, providing a comprehensive examination of the data. The
determination of the superlative learning rate and batch size for the entire model is conducted before
running full tests on all datasets.
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Figure 7: Emotion distribution for each dataset: (a) IEMOCAP (b) EMO-DB (c) RAVDESS
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Table 3: Proposed model performance using un-normalized features on the IEMPOCAP dataset,
RAVDESS dataset, and EMO-DB dataset

Dataset Batch-size Learning rate Accuracy (%)

IEMPOCAP

256
0.01 75.22
0.001 75.86
0.0001 75.14

512
0.01 77.34
0.001 77.97
0.0001 77.02

1024
0.01 76.42
0.001 76.88
0.0001 76.45

RAVDESS

256
0.01 80.52
0.001 80.65
0.0001 80.23

512
0.01 82.44
0.001 82.78
0.0001 82.05

1024
0.01 81.36
0.001 81.22
0.0001 80.16

EMO-DB

256
0.01 88.24
0.001 88.92
0.0001 88.17

512
0.01 90.22
0.001 91.65
0.0001 91.27

1024
0.01 89.02
0.001 89.97
0.0001 89.41

Based on the findings presented in Tables 3 and 4, it is evident that the implementation of feature
normalization leads to enhanced identification accuracy across different datasets. The utilization of
feature normalization led to a 0.5% increase in recognition accuracy for the IEMOCAP dataset, a 0.3%
increase for the EMO-DB dataset, and a 0.2% increase for the RAVDESS dataset, in comparison to
using un-normalized features.
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Table 4: Proposed model performance using normalized features on the IEMPOCAP dataset,
RAVDESS dataset, and EMO-DB dataset

Dataset Batch-size Learning rate Accuracy (%)

IEMPOCAP

256
0.01 82.43
0.001 82.67
0.0001 82.11

512
0.01 77.34
0.001 77.97
0.0001 77.02

1024
0.01 76.42
0.001 76.88
0.0001 76.45

RAVDESS

256
0.01 84.22
0.001 84.55
0.0001 84.13

512
0.01 83.44
0.001 83.78
0.0001 83.05

1024
0.01 82.32
0.001 82.24
0.0001 82.10

EMO-DB

256
0.01 90.61
0.001 90.94
0.0001 90.24

512
0.01 92.77
0.001 92.51
0.0001 92.60

1024
0.01 90.34
0.001 90.55
0.0001 90.10

As environmental issues can present variability that may not be interrelated to the emotional state
of the speaker, feature normalization may aid in producing feature vectors that are more robust to
variations in the environment.
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5 Results

This section aims to assess the performance of the proposed model in speaker-dependent emotion
recognition, to showcase the superiority of our proposed model compared to other existing models. In
the majority of approaches employed in SER systems, the model is trained using an extensive amount
of the available data, though reserving a substantial proportion for evaluation purposes. The dataset
is divided into two subsets, namely the training set and the test set. The training set is allocated 80%
of the samples, while the test set is allocated the remaining 20% of the samples. In the study referenced
by [39], a total of 428 samples from the EMO-DB dataset were designated for training, whereas 107
samples were put aside for testing.

Recently, academics have made significant advancements in the development of different method-
ologies aimed at discerning the emotional state of individuals through the analysis of their verbal
utterances. The classifiers known as GMM and HMM were able to obtain an accuracy rate of 77%
in the presence of SNR of 40 dB, as reported in reference [40]. Based on the analysis of multiple
methodologies, it is seen that the majority of procedures yield a performance ranging from 75% to 85%
when applied to the EMO-DB dataset. The comparative analysis of the proposed model’s performance,
concerning other established approaches for SER that utilize spectral information for classification,
is presented in Table 5. The performance analysis was conducted using the EMO-DB dataset, which
was divided into two sets with an 80/20 split. Specifically, 80% of the data was utilized for training the
model, while the remaining 20% was reserved for testing purposes.

Table 5: Comparison of SER models performance on EMO-DB

Models Features Classifier Accuracy (%)

Basu et al. [41] Acceleration,Velocity CNN-LSTM 80
Ogawa et al. [35] MFCCs CNN-DNN 88.22
Pulatov et al. [39] MFCC Bi-LSTM 91.4

GTCC 92.1
Proposed Multi features with

sequential selection
Deep Bi-LSTM 93.58

Table 5 presents the outcomes of the comparison between proficient SER assignment schemas,
including the one provided in this research work. However, in the execution of sentence encoding and
retrieval SER tasks, our system demonstrated superior performance compared to the chosen models,
especially when incorporating semantic data. This accomplishment demonstrates the sophisticated
expertise of our model and suggests it is probable to outperform existing methodologies in the domain
of recognition of voice emotion.

To enhance the comprehensiveness of the study, additional experiments were conducted using
natural emotional data from the IEMOCAP, EMO-DB, and RAVDESS datasets. The IEMOCAP
and EMO-DB corpora consist of 10 actors, while the RAVDESS dataset comprises 24 players. The
LOSO cross-validation method is employed to train and validate the suggested model. The k-fold cross
approach involves doing training using k−1 speakers, followed by validation with the speaker that was
not included in the training set. The aforementioned procedure is executed k times. Finally, validation
accuracy is determined by calculating the average of the k-folds.
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To assure the dependability of the proposed model, a random selection process is employed using
the Scikit-Learn package. This process involves dividing the dataset into three subsets: a testing set
including 90% of the data, a train set, and a validation set, each containing 5% of the remaining
data. The division of the remaining data into the train and validation sets is completed randomly,
with a ratio of 9:1. The comprehensive evaluation of the suggested model is demonstrated in terms of
precision, recall, and F1 score at the class level for each emotion. Each statistic within the context of the
model represents a unique facet of its efficacy. Tables 6–8 provide a comprehensive description of the
numerical results for each dataset.

Table 6: The performance of the proposed model using the IEMOCAP dataset

Emotion Precision Recall F1 score

Anger 0.89 0.94 0.91
Sadness 0.86 0.92 0.89
Happiness 0.99 0.87 0.93
Neutral 0.89 0.92 0.90

Table 7: The performance of the proposed model using the EMO-DB dataset

Emotion Precision Recall F1 score

Anger 0.98 0.96 0.97
Anxiety/Fear 0.91 0.91 0.91
Boredom 0.94 0.96 0.95
Disgust 0.93 0.89 0.91
Happiness 0.96 0.90 0.93
Neutral 0.88 0.91 0.89
Sadness 0.92 0.97 0.94

Table 8: The performance of the proposed model using the RAVDESS dataset

Emotion Precision Recall F1 score

Anger 0.90 0.98 0.94
Calm 0.91 0.94 0.92
Sadness 0.94 0.92 0.93
Happy 0.94 0.83 0.88
Neutral 0.90 0.83 0.86
Disgust 0.93 0.93 0.93
Fear 0.91 0.90 0.90
Surprise 0.90 0.94 0.92
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The evaluation of the performance for the proposed model’s classification was accomplished on
three datasets: IEMOCAP, EMO-DB, and RAVDESS. The confusion matrix for emotion prediction
for each dataset is presented in Figs. 8–10, respectively. The confusion matrix displays the observed
and projected emotional outcomes for each category.

Figure 8: Confusion matrix of emotion prediction on IEMOCAP dataset with 90.92% accuracy

Figure 9: Confusion matrix of emotion prediction on EMO-DB dataset with 93% accuracy

Figure 10: Confusion matrix of emotion prediction on RAVDESS dataset with 92% accuracy
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The figure above displays the accuracy of recognition for the proposed model on the IEMOCAP
dataset. In the conducted experiment, the acquired accuracy rates for the recognition of various
emotions were as follows: 94% for anger, 92% for sadness, 87% for happiness, and 92% for neutrality.
The experiment’s ability to accurately identify emotions surpasses the current leading outcomes. Fig. 9
displays the outcomes of the EMO-DB dataset.

The suggested model demonstrated superior performance in experimental trials conducted on
the EMO-DB dataset, with an average recall rate of 93% in accurately recognizing emotions. In this
experimental study, the system demonstrated a high level of recognition for emotions such as anger,
boredom, and melancholy, ranking them prominently. Additionally, the system achieved a recognition
rate of over 90% for emotions such as fear, happiness, and neutrality. The emotion of disgust was
recognized at a slightly lower rate of 89%. The system exhibited confusion in distinguishing between
happy and neutral emotions, often misclassifying mostly happy feelings as neutral, much like a speaker-
independent model. The suggested approach exhibits superior performance compared to previous
baseline techniques in terms of effectiveness and significance. The performance and generalization of
our model for SER are demonstrated by evaluating it on the REVDESS dataset. The results of this
evaluation can be observed in Fig. 10.

According to the data presented in Fig. 10, the suggested model demonstrated a high level of
accuracy in recognizing emotions. Specifically, the recognition rates for anger, calmness, sorrow,
disgust, fear, and surprise were found to be 98%, 94%, 92%, 90%, 93%, and 94%, respectively. However,
it is important to note that the rates of happy and neutral feelings were relatively low in comparison to
other emotions, even though their recognition rates were superior to those achieved by state-of-the-art
approaches.

Furthermore, based on Table 9, a comparative analysis of the proposed system with other baseline
SER methods is held respectively on IEMOCAP, EMO-DB, and RAVDESS datasets.

Table 9: Comparison of the proposed method with baseline methods works on IEMOCAP, EMO-DB,
and RAVDESS datasets

Dataset Baseline method Overall accuracy

[42] 66.5
[43] 64.74

IEMOCAP [44] 69.32
[16] 72.25
Proposed method 90.92
[16] 85.75
[45] 76.74

EMO-DB [46] 65.30
[47] 69.72
Proposed method 93.0
[16] 77.02
[45] 73.26

RAVDESS [47] 65.67

(Continued)
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Table 9 (continued)

Dataset Baseline method Overall accuracy

[48] 56.5
Proposed method 92.0

From the above table, it can be seen that the proposed method assessed on three standard datasets
outperformed and demonstrated noteworthy results compared with previous studies which proved the
proposed method’s effectiveness and robustness.

Due to the use of sequential selection-based multi-features which keep only dominant features
by excluding the irrelevant ones, the performance of the proposed model’s accuracy in emotion type
determination has been significantly improved. In addition, using salient and normalized features with
a deep Bi-LSTM network also delivers an increase in pattern correlation between features so that the
proposed model can demonstrate performance improvements, especially accuracy.

In summary, integrating SER using deep Bi-LSTM into the domains of mathematics and machine
learning holds the potential to provide more emotionally intelligent systems, improve user experience,
and offer valuable insights for both educational and research endeavors.

The proposed model can be integrated into mathematics teaching systems to acclimate the style of
education based on the emotional state of the student. For example, provide supplementary assistance
or alternate elucidations if it detects annoyance or bewilderment.

Furthermore, emotional information incorporation into ML algorithms can enhance their perfor-
mance as understanding the emotional context can aid predictions or recommendations improvement.

6 Conclusion

The present CNN technology employed by the SER system is plagued by numerous difficulties,
notably the lack of model accuracy. Consequently, we have proposed a methodology for SER that aims
to improve emotion detection by extracting multi-discriminative features from voice signals using deep
Bi-LSTM.

The initial training of the network involved utilizing a specified set of features. Subsequently,
the network iteratively incorporated or removed individual features until a point was reached where
further adjustments no longer increased accuracy. The utilization of the mean and standard deviation
in the process of normalizing recovered characteristics efficiently mitigates the presence of variation.
The discriminative features are fed into a deep Bi-LSTM model following the normalization step. The
objective of this model is to ascertain the ultimate state of the sequence, extract the latent information,
and categorize the speakers’ emotional states. To assess the resilience of the suggested methodology, a
series of experiments were done employing three widely utilized datasets: IEMOCAP, EMO-DB, and
RAVDESS. The emotion recognition accuracy was improved to 90.92% for the IEMOCAP dataset,
93% for the EMO-DB dataset, and 92% for the RAVDESS dataset. The findings obtained from the
testing of the suggested system have demonstrated the importance and strength of SER in accurately
identifying the speaker’s emotional state.

While MFCCs are treasured for confident aspects of speech capturing, MFCCs are computed
over short, fixed-length frames of speech, which may not capture the dynamic changes in emotional
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expression that occur over longer time scales. Nevertheless, MFCCs principally capture acoustic
features it miss semantic content direct representation. In future work, longer analysis windows or
overlapping frames may be used to capture more temporal context.

On the other hand, in deep bidirectional models there are two topologies, the forward and
backward directions can be combined after each layer or only at the output layer. In this paper, we
merely use one topology in which the training phase of the bidirectional RNN, forward and backward
are combined in the output layer only. In future work, both topologies of deep Bi-LSTM can be applied
in our framework and comparing them. Furthermore, audio data usage in conjunction with visual
modalities can also be an exhilarating area for research in the future, by way of visual cues, such as body
language and facial expressions, which can express appreciated emotional information. Moreover, the
proposed framework can be further used for an aspiration for recognition and identification of the
speaker which is used in many real-world problems.
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