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ABSTRACT

Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in
elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL)
methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously,
classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an
extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities
presented in the images. To solve the overfitting problem, an optimal feature set has been formed by Enhanced
Wolf Pack Algorithm (EWPA), and their irregularities are identified by Dense-kUNet segmentation. In this paper,
Dense-kUNet for segmentation and optimal feature has been introduced for classification (severe, mild, light)
that integrates DenseUNet and kU-Net. Longer bound links exist among adjacent modules, allowing relatively
rough data to be sent to the following component and assisting the system in finding higher qualities. The major
contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm (EWPA), and
Modified Support Vector Machine (MSVM) based learning for classification. k-Dense-UNet is introduced which
combines the procedure of Dense-UNet and kU-Net for image segmentation. Longer bound associations occur
among nearby sections, allowing relatively granular data to be sent to the next subsystem and benefiting the system
in recognizing smaller characteristics. The proposed techniques and the performance are tested using several types
of analysis techniques 826 filled digitized mammography. The proposed method achieved the highest precision,
recall, F-measure, and accuracy of 84.4333%, 84.5333%, 84.4833%, and 86.8667% when compared to other methods
on the Digital Database for Screening Mammography (DDSM).
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1 Introduction

Three-dimensional (3D) images, breast arterial calcification (BAC), angiographic cardiac sickness,
and cardiovascular diseases (CVD) results have been connected to a common chance finding in
mammography are illustrated in Fig. 1 [1]. Breast artery severity can be found during testing programs,
according to a meta-analysis that found a frequency of 12.70% in breast cancer screening programs
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[2]. According to a comprehensive assessment of prior screened community surveys, the incidence
of breast arterial calcification was 12.70% (95.00% confidence interval: 10.40%–15.10%), whereas
23.00% of patients in the current research possessed it. This is most likely due to the current cohort of
patients a greater cardiovascular risk profile is associated with likely myocardial arterial disease than
asymptomatic persons participating in screening programs [2]. It is the hardening of minor cardiac
capillaries or arteries from the inside out, as opposed to the adventitial calcification of coronary artery
disease.

Figure 1: A patient report impacted by significant BAC and CVD [1] is as follows: (a) medial
oblique, (b) craniocaudally screening tests displaying aortic remineralization (c) contoured horizontal
rationalization of the left coronary artery on CCTA showing obstructionist coronary artery disease,
and (d) 3D CCTA restoration displaying obstructionist coronary artery disease in the left frontal
downward coronary artery

Breast arterial calcification has been linked to risk variables for vast populations of individuals
undergoing diagnostic mammograms an increased incidence of heart disease [2] and cardiac death [3];
however, only a small amount of study has been done on the relationship between breast vascular
stiffness and myocardial heart disease against computed tomography (CT) image. A multiple measure
has been used to quantify the degree of mineralization in the breast artery as indicated in Fig. 2
which was modified from the score [4]. Women’s cardiovascular disease risk is typically understated.
In addition to intimate relations hazard variables for cardiac disease including menopausal and
pre-eclampsia, traditional health conditions for heart illness such as pressure, diabetic mellitus, and
smoking were greater accurate predictors for women than for men [5].

Women are therefore greater likely to experience atypical heart painful symptoms which may be
related to their lower diagnostic and treatment rates [6]. This is especially significant for women below
the age of 55, who are expected to have undergone at least one cycle of mammography imaging [7]
according to current criteria. Diagnostic mammograms can identify hardening in the breast arteries,
according to a concept that found a frequency of 12.70% in breast cancer screening programs. It is the
hardening of tiny glandular capillaries from the inside out, as opposed to the adventitial calcification
of coronary artery disease. In huge partners of sufferers who underwent tested mammograms, chest
aortic remodeling is associated with hazard variables for cardiac disorder, the presence of cardiac
disorder [8], and an increased threat of cardiac fatalities [9]; but that said, the affiliation among chest
aortic calcified and CT individuality of cardiac blood vessel disorder has just been assessed in tiny
assessments to date.
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Figure 2: Scoring system for assessing the severity of breast arterial calcification: 0. no arterial
calcification; 1. few punctate arterial calcifications with no coarse, tram track or ring calcifications; 2.
coarse arterial calcification or tram track calcification in fewer than three vessels; 3. severe coarse or
tram track calcification affecting three or more vessels [4]

Currently, there is no methods are available for the automatic detection of BAC in mammograms.
Because most females between their 40 and 50 ages are routinely screened for breast cancer with
mammography, identifying BAC could provide a cost-efficient, productive, and far-reaching approach
to screening females for CVD. Deep learning models have shown promise in a variety of biomedical
activities; BAC detection remains a difficult task. Wang et al. [10] are the only ones who have BACs;
an approach was made to standardize CNN classification. Identification with twelve layers and its
findings indicate its DL model practicality is comparable to those of people specialists. Therefore, the
patch size has an impact; it only concentrates on the neighborhood of the selected pixel, limiting the
information required by the network for the overall representations of the input.

In this study, k-Dense-UNetis was introduced to detect BAC in mammograms automatically, to
develop as a CA danger sign, an automatic BAC detection in the future. Employ the summing process
as opposed to the concatenated process near the end of the links that take a lengthy time to load, which
merges highlight images at a similar grade and decreases the computing load, as opposed to the usual
U-Net model. The optimal features are picked using the Enhanced Wolf Pack Algorithm (EWPA)
and classified using Modified Support Vector Machine (MSVM) based learning techniques, and the
performance is tested using several types of analysis techniques 826 filled digitized mammography were
included in the study. The following is a summary of the publication’s findings and commitments:

• k-Dense-UNet is developed which combines the procedure of Dense-UNet and kU-Net for
image segmentation. Longer bound associations occur among nearby sections, allowing rela-
tively granular data to be sent to the subsequent subsystem and helping the system recognize
smaller characteristics.

• Enhanced Wolf Pack Algorithm is used to choose the best features which are then classified
using MSVM classifier.

• When compared to human performances, the given model demonstrates that deep learning can
outperform human specialists in this activity.

The remainder of the paper is organized as follows: Section 2 highlights previous studies, whereas
Section 3 describes the k-Dense-UNet framework including component choice and categorization that
is proposed. In Section 4, the datasets and experimental setup are described, followed by the results
and commentary. Finally, Section 5 closes the report with recommendations for future research.
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2 Related Work

AlGhamdi et al. [11] reported a deep learning (DL) approach for identifying BAC in mammog-
raphy. Use the U-Net system with thick connectivity to detect BAC in mammography efficiently,
influenced by encouraging results obtained in which the U-Net concept is used in several biological
classification tasks and the Dense Net in semantic classification. The provided approach aids in the
recycling of computations and improves the flow of gradients, resulting in improved accuracy and a
simpler training model.

Mordang et al. [12] proposed a method for removing BAC from positive results. Computer-Aided
Detection (CADe) system effectiveness in detecting malignant micro-calcifications will improve if
these false positives are removed. BAC is deleted from the identified instances in the last step. In
the BAC exclusion step, a GentleBoost classification is built on assessment characteristics that define
its form, structure, and roughness. There are additional new factors suggested to identify BAC from
similar successful findings.

Huang et al. [13] proposed to check the variation between BAC and chest diagnostic mam-
mograms, the Coronary Artery Disease-Reporting and Data System (CAD-RADS) based on Deep
Learning-coronary computed tomography angiography (CCTA). Wang et al. [14] compared the per-
formance of three deep learning architectures for detecting BAC in digital mammography: You Only
Look Once (YOLO), U-Net, and DeepLabv3+. To improve the BAC pattern, a basic multiresolution
filtering predicated on Hessian is developed, and the binary mask of BAC is then generated using
a personal self-binarization approach. Because BAC is small, a new metric was devised to properly
assess limited object segmentation, and the suggested method obtains the best reliability.

Yeh et al. [15] integrated a deep Q network with a state-action-reward-state-action learning
algorithm and a deep Reinforcement Learning (RL) network for BAC in mammography. An artificial
agent in the suggested approach learns the technique automatically and can iteratively change the
emphasis of concentration from an initial bounding box to a smaller bounding box containing the
BAC area.

A deep learning model (Breast Cancer Convolutional Neural Network (BCCNN)) was suggested
by Abunasser et al. [16] to identify and categorize breast tumors into eight types. Because of their
excellent picture quality, the MRI scans were most accurate when magnified 400X.

A unique DeepBraestCancerNet DL model for the identification and categorization of breast
cancer was introduced by Raza et al. [17]. Six convolutional layers, nine inception modules, and one
fully linked layer make up the 24 layers of the suggested system. Additionally, batch normalization and
cross-channel normalization are the two normalization processes used by the design, together with
the clipped and leaky ReLu activation functions. A novel computer-aided diagnosis method based
on thermography and artificial intelligence was presented by Chebbah et al. [18] to assist radiologists
in accurately diagnosing breast disorders. To differentiate between normal and pathological thermo-
grams, supervised learning algorithms-based classifiers are applied utilizing the retrieved features.

Using digital mammograms, Gutierrez et al. [19] proposed an automated deep learning-based
breast cancer diagnostic (ADL–BCD) model. For feature extraction, a Residual Network (ResNet
34) based on a Deep Convolutional Neural Network is utilized. In particular, the ResNet 34 model’s
hyperparameters are tuned via the application of the Chimpanzee Optimization Algorithm (COA).
Digital mammograms are classified using the wavelet neural network (WNN) to identify breast cancer.
Mansour et al. [20] included pre-processing, a fully Gaussian aggregate model (GMM) based on more
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appropriate adaptive learning, localization of the area of interest based on connected element analysis,
and feature extraction predominantly based on AlexNet-DNN.

The review work shows how the DL methods are applied for BAC in mammography. U-Net system
with thick connectivity is introduced to detect BAC in mammography [11]. The multistage method
is proposed for the removal of false positives in BAC findings [12]. The Deep Learning method is
introduced to check the variation between BAC and on-chest diagnostic mammograms [13]. Three
deep learning architectures (YOLO, U-Net, and DeepLabv3+) are introduced for detecting BAC in
digital mammography [14]. A deep Q network has been introduced for detecting BAC [15]. BCCNN
[16], DeepBraestCancerNet [17], U-Net model [18], wavelet neural network (WNN) [19], and AlexNet-
DNN [20] have been introduced for breast cancer classification.

Research Gap: The initial research of applying DL techniques is used to evaluate CAD against
BAC. However, little study has been done on the use of these approaches to screen women for
cardiovascular disease (CVD) using BAC. There is a necessity to design a new DL algorithm for
accurate CAD classification, as well as to investigate the relationship among BAC on mammography
and grades based on the DL approach in women. The current classification study has focused on
boosting accuracy, which has resulted in considerable advancements in BAC identification. Previously,
semantic classification with deep learning had reached higher efficiency, but this structure proved to be
an extremely challenging task due to an overfitting model for capturing the patterns and regularities
in the training set for healthcare areas.

3 Proposed Methodology

In this paper, BAC classification is performed based on DL in the DDSM. Integrates combined
techniques named current Dense-kUNet with MSVM. This strategy avoids the model learning
unnecessary features and improves dataflow resulting in a more effective CNN. Use the summing
function rather than the concatenation near the conclusion of the lengthy connections that combine
image features of the identical stage as in the traditional U-Net architecture. EWPA algorithm is
used to enhance retrieved characteristics. Finally, MSVM classifiers are used to classify the specified
features. The architecture of the proposed framework is depicted in Fig. 3.

Figure 3: General framework design of the proposed methodology



2212 CMC, 2024, vol.78, no.2

3.1 Input Dataset

Digital Database for Screening Mammography (DDSM) is a well-shared asset for breast cancer
detection. The Curated Breast Imaging Subset of Digital Database for Screening Mammography
(CBIS-DDSM) [21] is a subsequent edition of this dataset that includes pictures that have been
transformed into the standard DICOM format. The scans were taken from 1,700 women who had
one of three breast cancer-related disorders (normal, benign, and malignant). The Cranial-Caudal
(CC) and Medio Lateral Oblique (MLO) images of every breast, as well as the patient and his or
her surroundings imaging data, are included in the majority of instances. For 1,520 photos that
constitute examples of ground-truth training, along with ROI extraction and boundary areas, the set
also offers pathological diagnostics. This collection contains photos that are very huge in dimension,
having a median width of 3131 pixels and an aggregate height of 5295 pixels. BAC may be detected in
mammography as a risk factor for myocardial arterial illness. Dense-kUNet is introduced in abstract
separation with dense connectivity to instantaneously diagnose BAC in mammography impacted by
the promising outcomes acquired using the U-Net design and the Dense-kUNet with intently packed
connectivity to recognize BAC in mammography. The provided approach aids in the recycling of
computations and improves the flow of variations, resulting in improved accuracy and a simpler
training model.

3.2 Image Segmentation Using Dense-kUNet

k-Dense-UNetis introduced for BAC image recognition. Dense-UNet is introduced by adding
dense 1blocks into U-Net, resulting in deeper layers for enhanced information recovery, based on
the features of U-long Net skip interoperability and Density Net’s short skipped connecting method.
Secondly, Dense-UNet and kU-Net are combined to form the k-Dense-UNet system, which contains
numerous Dense-UNetsubsystems. By successfully transmitting data across close submodules, skip
associations are formed to aid the system in discovering fine characteristics. DenseNet [22] achieves
superior results by using dense connectivity, every level takes new information from every previous
level and transmits its unique showcase to all subsequent levels. The system shrinks and compresses as
a result of so compact unit architecture, resulting in increased operational and storage performance.
In practice, 33% of kernels with a stride size of 1 are used in all convolutional layers. ReLU is used for
activation functions. Sequential standardization is used to minimize coupling problems and boost the
development rate of the model.

Dense-kUNet is a hybrid of Dense-UNet and kU-Net. Fig. 4 shows an example of its design with
k = 1. It uses Dense-feature UNet extraction and blends it with kU-concept Nets of progressively
extracting characteristics to a finer scale. The up-sampling section of the DenseUNet submodule is
changed in momentum to the pooled section of the subsequent Density UNet, which is equivalent to
transferring coarser data to the next comment thread to receive additional exact picture classification
results, similar to U-Net. The red line indicates the lengthy skip connection between the max pooled
level and the corresponding up-sample level, the grey arrow suggests the 2 × 2 max pooling operations
are indicated by the grey arrow, and the blue arrow suggests the up-sampling operation is indicated by
the blue arrow. It is important to note that rather than the basic two with phase normalizing and ReLU
activating value, a three-convolution with batches normalizing and ReLU activating feature was used,
and three dense blocks were integrated after the network max pooling. The appropriate procedures
are highlighted by green arrows, and Yellow rectangular rectangles in the image represent these dense
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blocks. Set the input x to get the output y utilizing the density process. The mth layer in DenseNet
receives as input all of the previous layers feature-maps, x0, xm−1,

xm = Fm ([x0, x1, . . . , xm−1]) (1)

where [x0, x1, . . . , xm−1] is a mixture of showcase formed in layers 0, m–1, and Fm is a consequence of
third consecutive processes: batch normalization (BN), ReLU, and 3 × 3 possibilities. Every compact
block produces an m showcase, where m is the network’s level of increase. It is worth mentioning
that a 1 × 1 convolutional is applied to decrease the intricacy and size of dense blocks, and then a
3 × 3 convolutional input is conducted, which can considerably decrease the quantity of computation
without compromising the correctness model. ResNet bottleneck layer is designed to handle these
issues.
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Figure 4: Architecture of Dense-kUNet (k = 1)

The inbuilt procedure of every particular sub in the k-Dense-UNet prototype is comparable to
Dense-UNet, and the grey arrow suggests two-convolution with regularization and ReLUexcitation
feature, the black pointer reflects maximum accumulation of 2 × 2 scale, and the blue arrow reflects
average bundling procedure, the green arrow stands for procedure coherent with Dense-UNet, and
the red arrow symbolizes skip interconnection among adjoining sub-modules. The dense block is
represented by the yellow rectangular block, which has the same specification and functionality as the
Dense-UNet. Six down-sampling steps are followed by six up-sampling steps in the submodules. The
long skip connectivity within the submodules corresponds to six skip couplings among consecutive
submodules. kU-Net structure can help finer feature extraction by propagating coarser scales to
successive modules. kU-Net option greatly increases the platform’s intake screen range, while the
Dense-UNet benefit of the DenseNet feature extraction process.

3.3 Feature Selection Using Enhanced Wolf Pack Algorithm

WPA has a great overall searching capacity, but it is susceptible to localized optima and has a
sluggish resolving frequency, similar to most similar swarm intelligence algorithms. Opposition-based
learning is introduced to maintain population variety and avoid the algorithm.
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Step 1: Initialization: The fine traits of the original population in the feature reduction of BAC,
the original BAC is referred to as the xm. WPA is created at random, and it reduces the performance
of the algorithm [23]. The steps are as follows:

Randomly generate the starting population xm, NP = x1 (t) , x2 (t) , . . . , xm(t) of the random
generation algorithm is determined using the Eq. (2),

xj
i = xj

min + r (0, 1)
(
xj

max − xj
min

) ∀i = 1, . . . , m & j = 1, . . . , d (2)

where xj
i that represents the ith individual in BAC classification with feature dimension j, r is a random

number between 0 and 1, xj
min and xj

max indicate the upper and lower boundaries, respectively. NP
denotes the inverse population NP−1 = {

x̃1 (t) , x̃2 (t) , ..., x̃m (t)
}

is achieved, and each person inverted
answer by Eq. (3),

x̃ (t) = xj
min + xj

max − xj
i (3)

The optimal reduced feature xmbest chosen based on the classification procedure optimum values
NP∪NP−1, evaluate the results of the respective goal of xmbest and xμ correspondingly. The xmopbest which
is obtained by Eq. (4),

xmopbest =
{

xmbest if f (xmbest) > f
(
xμ

)
xμ otherwise

(4)

Step 2: Generation of head wolf: The wolf at xleader as the lead functional, the optimal mammography
feature is chosen. The head wolf will not engage in searching or maintaining its location in the
operation; instead, it is immediately repeated. If xleader < xi, xleader = x, where xi reflects the safari
wolf’s current position i. Eventually, the safari wolf i randomized travels on all sides unless that highest
number is reached Dir if the goal is met or the location can no longer be improved, the research is
terminated. xij is the location at jth point in dth feature dimension of the ith wolf.

xij = xi + r × xmopbest × slwa (5)

Step 3: Keep close to the prey: The leader wolf issues a call to action to the wolf pack, encouraging
them to revise existing pixel locations. The current pixel location of the ith wolf in d-dimension is stated
as Eq. (6),

xnewij = xij + r × xmopbest × stepb × (xi − xleader) (6)

where slwa is the wolf’s stride length when searching, and the wolf’s step length as they get closer is
represented by stepb, xi and xleader are in d-feature dimension, the ith wolf image position, and the head
wolf position.

Step 4: Encircle the prey: Eqs. (7) and (8), after identifying the prey, the head wolf transmits
messages to the encircling wolf pack to finish the invasion and suppression of the targeted animal,

xt+1
i =

{
Xt

i rm < θ

Xi + r × sle rm > θ
(7)

sle = slemin + (xmax − xmin) × e
ln

(
slemin/slemax

max iter

)
(8)

where Xi is the feature position of the head wolf, and Xt
i is the feature position of the ith wolf in the tth

phase, where t denotes the number of repeats and sle is the step length during invasion and suppression.
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Step 5: The wolf pack competitiveness and rejuvenation process. The wolves that are unable to
obtain an accuracy classifier in BAC food will be encircled and suppressed, while the remaining wolves
will be maintained. At the same time, new wolves are randomly produced in the identical quantity as
the ones that were destroyed.

Step 6: When the maximal amount of iterations, or the ideal quantity of the features indexing
variables has been attained, the wolf location is produced. If the maximal amount of repetitions is
never being achieved, go back to step 2. Fig. 5 shows a flowchart of how to choose the best features
using WPA.

Initialize the location of wolf pack as 
features using opposition-based

learning

Select the wolf at the location with the best target function as 
the head one

The head wolf pushes wolf pack to update their positions through
call to action and keep close to the prey

The head wolf sends signals to wolf pack after finding the prey so as 
to complete the encirclement and suppression

The wolves that fail to get food will be eliminated and randomly
generate new wolves with the same number

Whether the maximum number of
iterations is reached?

Display optimal feature index as a results

Yes

No

Figure 5: Flowchart of optimal feature selection using EWPA

The processing of feature index input data is accomplished using MSVM Classifier. Dataset forms
a small subset c by considering the number of elements of each class. The original subset selection
technique yields a tiny subset c from the full image. The margin and error trade-off is regulated
by the Subset c. The margin between three classes means is used to create an outline of the ideal
separation hyperplane computation, with the nearest pixels identified as support vectors. The proposed
algorithm of the MSVM Classifier is illustrated in Fig. 6. The first subset selection process selected a
smaller sample c from the entire image, selecting objects near choice limits simulating the dispersion
of support vectors (SV), and training the MSVM are the stages involved. With n couplings as inputs,
an initial subgroup choice is taken from a small subset c of the D.D = {(

xi, yi

)
, i = 1, 2, . . . , n

}
where

x represents the feature set, y is the label, xi = x1
i , x2

i , ..., xd
i , where: xj

i : is a real value and yi = {0, 1}
with 0 signifying “normal”, –1 signifying “benign” and 1 representing “malignant”.
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INput optimal features of BAC

MSVM training

SV and Non SV sepration using
cosine kernel of SVM

Three class label geneartion of BAC
detection

Figure 6: Proposed algorithm of MSVM classifier

MSVM thereby attaining a small data set with the images (xk, yk) ε SVsmall. It has also the function
of segregating the SV and Non-SV. The objects that are adjacent to the hyperplane and images{
xhi, yhi

}
distant from hyperplanes are also made eminent. The MSVM is greatly involved twice in

minimizing the large training set size. The recovery of suitable statistical information from SV is
accomplished. The information is used by the entire images and the recovery of all SV is accomplished.
The optimal solution is obtained by filtering the solution twice employing MSVM. Non-separable
trained information is mapped from the input area to the characteristic area accomplished utilizing a
novel kernel method established on cosine distances (CK) and thereby optimizing the hyperplane that
appropriately separates the data. The modified kernel based on the cosine distance is defined using
Eq. (9),

CK (x, y) = − log
(
1 + Cos Dis

(
xpi, ypi

))
(9)

where CosDis = 1 − CosSim, cosSim = x.y
|x| |y| , xhi are the data gathered near the choice hyperplane

and SVsmall are the reference vectors derived from a short sample of information.

h ← min {N + N−}
|N|

hnormal < 0.10.1 ≤ hbenign ≤ 0.250.25 ≤ hmalignant ≤ 0.5 (10)

The computation of the modified characteristic area and the dot products of the projected
input values is done by the kernel function. The optimal hyperplane that separates the three classes
(“normal”, “benign”, and “malignant”) is obtained by Eq. (11),

wT.x + b =
∑l

i=1
wviyiCK (x, y) + b (11)

where, the optimal weight vector (w), wvi is the weight vector and yi is the label vector. The decision
function DF, which is used to make predictions by Eq. (12),

DF (x) = sign
(
wTx + b)

) ⇒ (i.e + 1, 0, −1) (12)

The general steps taken to accomplish the classification and prediction of BAC are given in
Table 1.
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Table 1: Algorithm steps of DTMSVM

Input data: The entire feature index from EWPA, Threshold 0.1, 0.25
Output Data: BAC detection results
Step 1: Load input training images
Step 2: Separate the image into xi as optimal feature set and yi as output three labels
Step 3: Map data from input space to feature space
Step 4: For that compute the value of h
Step 5: Selection of number of optimal features of minority, and majority classes.
Step 6: Find an optimal hyperplane using a modified kernel based on the cosine distance
Step 7: Find classification frontiers as support vectors using MSVM
Step 8: Output the three class label detection results

4 Experimental Results and Discussion

The k-folds cross-validation approach was used to further quantify the Dense-kUNet with MSVM
performance. The whole information was split into k-folds of similar dimensions at randomization,
with k = 5. (k−1) folds were used to train the model, and the remaining kth fold was used to test
it. The procedure was repeated till all pleats were used as a sample set, after which the efficiency was
determined as the estimate of all folds. Fig. 7 shows the input sample, and output results of methods.

With a sample number of 256 and a strong velocity, the retraining was completed using stochastic
gradient descent (0.9). The learning rate (lr) was 0.01 at the start. Precision, recall, F-measure,
Accuracy, and Matthews Correlation Coefficient (MCC) were used to evaluate the suggested Dense-
kUNet with MSVM, DenseNet with DL [11], and SCU-Net [13]. Table 2 displays the numerical results.
The following are the definitions for these measurements:

Precision = TP
TP + FP

∗ 100 (13)

F − measure = 2 · Precision × recall
precision + recall

∗ 100 (14)

Accuracy = sensitivity + specificity
2

∗ 100 (15)

recall = TP
TP + FN

∗ 100 (16)

MCC = TP * TN − FP * FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

∗ 100 (17)

The precision, and recall curves derived from 826 mammography images using Dense-kUNet
with MSVM, UNet, SCU-Net, denseNet-DL, and Deep Q-Network (DQN) are shown in Fig. 8.
When analyzing these results, the Dense-kUNet with MSVM model brings the advantages of dense
connectivity and kU-Net routes together. As shown, Dense-kUNet with MSVM model achieved
84.4333% precision rate. In comparison, the DenseNet with DL achieved 81.4557%, DQN achieved
82.4416%, SCU-Net achieved 75.0912%, and UNet achieved 73.5581%. Dense-kUNet with the
MSVM model achieved an 84.5333% recall rate. In comparison, the DenseNet with DL achieved
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79.7642%, DQN achieved 82.6175%, SCU-Net achieved 72.1342%, and UNet achieved 70.4463%.
When utilizing a limited dataset, the SCU-Net mitigates the problem of overfitting by encouraging the
system to acquire a more exclusionary set of characteristics.

Cancer Input Image UNet Dense-kUNet

Benign Input Image UNet Dense-kUNet

Normal Input Image SCU-Net denseNet-DL

Benign Input Image SCU-Net denseNet-DL

Figure 7: Input sample and output sample

Table 2: The numerical results of proposed and existing methods

Metrics UNet SCU-Net denseNet-DL Deep Q-Network
(DQN)

Dense-kUNet-
MSVM

Precision (%) 73.5581 75.0912 81.4567 82.4416 84.4333
Recall (%) 70.4463 72.1342 79.7642 82.6175 84.5333
F-measure (%) 71.9685 74.2341 80.3341 82.5294 84.4833

(Continued)
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Table 2 (continued)

Metrics UNet SCU-Net denseNet-DL Deep Q-Network
(DQN)

Dense-kUNet-
MSVM

Accuracy (%) 72.2145 75.1220 82.3425 84.1548 86.8667
Error (%) 27.7855 24.8780 17.6570 15.8452 13.1333
MCC (%) 69.8221 71.0000 78.0000 82.0874 84.0000
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Figure 8: Precision and recall comparison of classifiers

As illustrated in Fig. 9, SCU-Net achieves an error rate of 24.8780%, which is lower than the
DenseNet with DL. Meanwhile, DenseNet with DL achieves an Error rate = 17.6570%, which is lower
than that achieved by using Dense-kUNet with MSVM with an Error rate = 13.1333% at the same
FPR rate. Achieved highest error rate of 27.7855%, and DQN lowest error rate of 15.8452% than other
existing methods. Dense-kUNet with MSVM model is more successful at identifying and tracking
BAC. This is a truly encouraging outcome in terms of putting a system like this into medical practice
and utilizing it to assess the risk of myocardial arterial illness. Because the features were obtained
from the pooling layer, and the best feature was selected using EWPA optimization techniques, and
then fused using a proposed approach, which was then categorized using a fast MSVM algorithm.
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Figure 9: Error rate comparison of classifiers
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Fig. 10 shows the F1-score generated after max-pooling levels in the contraction approach, which
is deeply sufficient to produce and display distinguishing characteristics for categorization, to highlight
the ability of the Dense-kUNet with the MSVM model to learn discriminative features. The Dense-
kUNet with MSVM model learns BAC patterns with varied size, orientation, and perspective, as seen
by the data. Based on non-BAC features, the algorithm was able to detect the existence of BAC and
separate them from other types of nodules detected in mammograms. UNet, SCU-Net, denseNet-
DL, DQN, and Dense-kUNet-MSVM give the accuracy results of 71.9685%, 74.2341%, 80.3341%,
82.5294%, and 84.4833% by Fig. 11.
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Figure 10: F-measure comparison of classifiers
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Figure 11: Accuracy comparison of classifiers

As shown in Fig. 12, the suggested approach is matched to state-of-the-art procedures. UNet,
SCU-Net, denseNet-DL, DQN, and Dense-kUNet-MSVM give the MCC results of 69.8221%,
71.0000%, 78.0000%, 82.0000%, and 84.0000%. The most effective way for selecting features EWPA
is the suggested technique of features merging, which is much superior because the initial features had
a long computing time, which was reduced after the feature selection stage.

Implications of Experimentation Analysis: The results achieved by classifiers are measured in terms
of precision, recall, F-measure, accuracy, MCC, and error. The results achieved by the proposed
system have 10.8752%, 9.3421%, 2.9766%, and 1.9917% higher precision when compared to Dense-
kUNet with MSVM, UNet, SCU-Net, denseNet-DL, and DQN. Similarity proposed system has
14.087%, 12.3991%, 4.7691%, and 1.9158% higher recall when compared to Dense-kUNet with
MSVM, UNet, SCU-Net, denseNet-DL, and DQN. The proposed system has 12.5148%, 10.2492%,
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4.1492%, and 1.9539% higher F-measure when compared to Dense-kUNet with MSVM, UNet, SCU-
Net, denseNet-DL, and DQN. The proposed system has 14.6522%, 11.7447%, 4.5242%, and 2.7119%
higher accuracy when compared to Dense-kUNet with MSVM, UNet, SCU-Net, denseNet-DL, and
DQN. The proposed system has 14.1779%, 13.0000%, 6.0000%, and 1.9126% higher MCC when
compared to Dense-kUNet with MSVM, UNet, SCU-Net, denseNet-DL, and DQN. Results analysis
by MCC and accuracy shows how the proposed system will exactly detect the class than the other
methods.
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Figure 12: MCC comparison of classifiers

5 Conclusion and Future Work

Using deep learning based approaches the automatic detection of BAC in has been achieved
by Dense-kUNet with MSVM. Dense-kUNet combines the short-dense and long-summation con-
nections of both approaches. Long-summation linkages are interconnected with the contractual and
growing components to retain localized characteristics, while the teaching architecture extensive
internet connectivity was introduced to the purchasing and growing routes, taking advantage of Dense-
feature kUNet extraction functionality and combining the idea of kU-Net to progressively retrieve the
characteristics to a finer scale. Using the dense block’s short skip connectivity and the Dense-kUNet
submodules’ long skip connectivity, it can produce more exact image differentiation maps, and the
skip connection between neighboring submodules. EWPA-based feature identification and an MSVM-
based classifier are introduced to help locate and integrate the small sections of the identified BAC.
Results achieved by the proposed classifier are 84.4333%, 84.5333%, 84.4833%, 86.8667%, 13.1333%,
and 84.0000% for precision, recall, F-measure, accuracy, error, and MCC. It shows that the proposed
system has 14.6522%, 11.7447%, 4.5242%, and 2.7119% higher when compared to other classifiers like
UNet, SCU-Net, denseNet-DL, and DQN. In the future, data augmentation, filtering methods for
noise removal, different optimization technologies, and novel deep learning methods for classification
can be focused in future. In the present system, noises are presented in the input samples which may be
solved by using filtering methods. It has a higher computation time for classification it may be solved
by introducing parallel processing methods. Multi-modal biometrics by Conjugate 2DPalmHash Code
(CTDPHC) has been used for securing the patient details in BAC.
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