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ABSTRACT

Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to
train predictive models for defect prediction in the target project. However, existing CPDP methods only consider
linear correlations between features (indicators) of the source and target projects. These models are not capable
of evaluating non-linear correlations between features when they exist, for example, when there are differences in
data distributions between the source and target projects. As a result, the performance of such CPDP models is
compromised. In this paper, this paper proposes a novel CPDP method based on Synthetic Minority Oversampling
Technique (SMOTE) and Deep Canonical Correlation Analysis (DCCA), referred to as S-DCCA. Canonical
Correlation Analysis (CCA) is employed to address the issue of non-linear correlations between features of the
source and target projects. S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from
the dataset. The redundant features are then eliminated by maximizing the correlated feature subset using the
CCA loss function. Finally, cross-project defect prediction is achieved through the application of the SMOTE data
sampling technique. Area Under Curve (AUC) and F1 scores (F1) are used as evaluation metrics. This paper
conducted experiments on 27 projects from four public datasets to validate the proposed method. The results
demonstrate that, on average, our method outperforms all baseline approaches by at least 1.2% in AUC and 5.5%
in F1 score. This indicates that the proposed method exhibits favorable performance characteristics.
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1 Introduction

Software Defect Prediction (SDP) plays a crucial role in software testing, as it helps testers allocate
resources more effectively and improve testing efficiency [1]. The principle of defect prediction is to
identify faulty code units from a data corpus using learning models, to estimate the remaining defects
in the system. Training data for defect prediction can come from within the project (Within-Project
Defect Prediction, WPDP) or across projects (Cross-Project Defect Prediction, CPDP). However,
when there are new projects or limited historical defect data, WPDP may not be sufficient to address
these issues, and CPDP is needed to solve the problem of insufficient data. CPDP [2] is a method that
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builds a prediction model on a source dataset and applies it to a target dataset. CPDP methods include
homogeneous defect prediction (CPDP-CM) and heterogeneous defect prediction (HDP) [3], with the
difference being that the former uses the same set of metrics for both the source and target project
sets, while the latter uses different metric sets. Currently, CPDP is mainly used to address distribution
differences between the source and target data [4]. Researchers have proposed several methods [5–7]
and achieved promising results in defect prediction.

1.1 Motivation

Currently, CPDP faces challenges such as class imbalance [8–9] and different metric distributions.
Class imbalance refers to situations where some classes have a significantly larger number of samples
than others. Machine learning algorithms typically assume that the sample sizes of different classes
are roughly similar, so when a class imbalance occurs, the effectiveness of the learning algorithm
is compromised. When software engineers have sufficient training data from the same project or
other projects with a common metric set, they can use CPDP models [10–11] for cross-project defect
prediction. However, these CPDP methods may not be applicable if there is a lack of sufficient data
or if the source and target projects have different metric sets [3,12].

Furthermore, there are cases where the source and target projects have different metric sets,
making it challenging to find similarities in their data distributions in linear feature space. For example,
existing HDP methods only consider linear correlation between the features (metrics) of the source
and target projects. Specifically, Jing et al. [12] aimed to find linear correlations between the source
and target in the original feature space. Nam et al. [3] aimed to match the source and target metrics
by measuring the linear similarity of each source-target metric pair. These models may encounter
problems with linear inseparability, as they are insufficient to evaluate nonlinear correlations between
features. In conventional CPDP methods, there is no significant association between the items in
the source and target data sets, resulting in insufficient linear correlation in terms of data features.
However, if this paper can identify similar features between the source and target data sets and extract
the maximum feature-correlated subset from the two sets of data that lack linear correlation, it would
significantly aid in enhancing the predictive performance of the CPDP model by leveraging the feature
correlation within the datasets. Therefore, it is necessary to address both class imbalance and the
nonlinear correlations between data features.

1.2 Contributions

Based on the aforementioned issues, this paper proposes a novel CPDP method called S-DCCA,
aiming to address the problems of data distribution differences and linear inseparability. S-DCCA
utilizes deep canonical correlation analysis (DCCA) to identify the correlations among different
datasets. By doing so, this paper obtains the maximum correlated feature subset and eliminates redun-
dant features, and constructs a cross-project defect prediction model for evaluation. Additionally, to
alleviate the class imbalance in cross-projects, S-DCCA employs the SMOTE data sampling technique
to balance the class distribution.

In this study, this paper conducted detailed experiments using 27 different defect prediction
datasets. This paper adopted AUC and F1 as evaluation metrics. To explore the performance of
our S-DCCA method, this paper compared it with several state-of-the-art methods, namely Transfer
Component Analysis (TCA+) [10], Correlation Feature and Instance Weighting Transfer Naive Bayes
(CFIW-TNB) [13], minimum Hamming distance based on the Burak filter (BurakMHD) [14], Joint
Feature Representation with Double Marginalized Denoising Autoencoders (DMDAJFR) [15] and
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multi-source-based cross-project defect prediction (MSCPDP) [16]. The results of the experiments
demonstrate that our method achieves promising prediction accuracy. Compared to these three
methods, our approach improves AUC by 1.2% to 10.7% and F1 by 5.5% to 27.6%. The main
contributions of this paper are as follows:

• This paper proposes a novel CPDP method called S-DCCA, which combines the SMOTE
sampling technique with DCCA, achieving satisfactory prediction accuracy.

• This paper utilizes the DCCA method to discover data correlations between source and target
projects, thereby obtaining the maximum linearly correlated subset. To our knowledge, this
paper is the first to apply DCCA in the context of CPDP.

• This paper conducts experiments on 27 target projects and discusses the experimental results,
providing evidence of the effectiveness of our proposed method.

The remaining part of this paper is organized as follows: Section 2 presents related work on cross-
project defect prediction and canonical correlation analysis. Section 3 describes the proposed method.
Section 4 introduces the experimental settings required to validate the proposed method. Section 5
presents and analyzes the experimental results generated by the proposed method. Section 6 discusses
the threats to validity. Finally, Section 7 concludes the paper.

2 Background and Related Work

This section presents the existing work related to CPDP methods and CCA methods.

2.1 Cross-Project Defect Prediction Methods

The objective of CPDP is to identify modules in the target project that potentially contain defects.
To improve the performance of CPDP models, many new methods have been proposed. Existing CPDP
methods can be roughly categorized into three types: project and metric selection, feature selection,
and classifier approaches. In terms of project and metric selection, Wen et al. [17] combined source
selection with Transfer Component Analysis (TCA+) transfer learning and conducted empirical
studies on feature and project selection. Liu et al. [18] proposed a two-stage cross-project prediction
model. They selected the two most suitable source projects in the first stage and then applied TCA+
separately on the two projects to train the models. This approach addressed the instability issue of
TCA+. Asano et al. [19] used a Bandit algorithm to determine the most suitable projects to enhance
the model’s performance; Regarding feature selection, data quality has a significant impact on model
performance, and selecting appropriate predictive metrics in CPDP is also an important aspect, which
can be done automatically or manually; In terms of classifiers, the classification stage is the final step
of CPDP models, and researchers have been dedicated to improving the performance of classifiers.
Various methods have been proposed to enhance this stage. Qiu et al. proposed a novel distribution
adaptation method called Joint Distribution Matching (JDM) to reduce the divergence between source
and target projects [20]. Li et al. attempted to compare the performance of different combinations
of popular transfer learning methods and classification techniques [21]. Vashisht et al. explored the
influence of heterogeneous software metrics on source and target projects [22]. Cui et al. introduced
an Isolation Forest (iForest) filter to alleviate the difference in data distributions between source and
target projects [23], while Yu et al. investigated the effectiveness of feature subset selection and feature
ranking methods [24].

Furthermore, many CPDP methods have been proposed in terms of similarity measurement.
Similarity measurement allows for the selection of source instances that are most similar to the target
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instances, which is then used to select suitable training data. Turhan et al. [2] introduced a Burak
filtering method that selects the k most similar instances from the source dataset to the target dataset
and uses them as training data. Building upon the Burak filter, Peters et al. [25] proposed a new
Peters filter method that finds the instances in the training data set (TDS) that are closest to the test
instances, and selects the instances closest to the test instances as the final filtered TDS, utilizing the
structure of other projects to choose training data. He et al. [26] proposed the TDSelector method by
simplifying the training data and using a linear weighted function of instance similarity and defect
quantity. This method considers both the similarity and the number of defects for each training
instance. Yuan et al. [27] introduced the ALTRA method, which utilizes an instance-based filtering
approach to select modules from the source dataset that are more similar to the target dataset. By using
a two-stage iterative strategy with the unlabeled modules from the target dataset, a certain number of
modules are selected. Firstly, representative unlabeled modules are chosen using active learning and
labeled by experts in the first stage. Then, TrAdaBoost is employed to determine the weights of the
labeled modules and a weighted variable support vector machine is used to build the model for the
next iteration.

Although most CPDP methods focus on reducing the distribution differences between source
and target data, there are still issues related to defect prediction data features and hyperparameter
optimization [8,18,28]. This paper proposes a novel approach that utilizes Deep Canonical Correlation
Analysis (DCCA) [29] to compute the similarity between source and target projects and selects training
data in a supervised manner. Unlike other methods, by using DCCA, it is possible to obtain the
maximum linearly correlated subset more accurately, thereby improving the performance of CPDP
model training.

2.2 Canonical Correlation Analysis Methods

Canonical Correlation Analysis (CCA) [30] is a powerful tool used to find correlations between
two sets of variables. It has been widely applied in transfer learning and research on data distribution
similarity. CCA aims to learn a pair of projection transformations that correspond to the two sets
of variables, such that the projected variables have maximum correlation. Jing et al. [12] introduced
this effective transfer learning method, CCA, into cross-company defect prediction to make the data
distributions of source and target companies similar. Li et al. [31] proposed a novel Cost-sensitive
Transfer Kernel Canonical Correlation Analysis (CTKCCA) that utilizes kernelized canonical corre-
lation analysis (KCCA) to make the data distributions of source and target projects more similar in a
nonlinear feature space. Andrew et al. [29] introduced Deep Canonical Correlation Analysis (DCCA),
which may be more suitable for natural, real-world data such as visual or audio data compared to
KCCA. DCCA has a fast computation speed for testing representations and does not require inner
product computation. Liu et al. [32] applied DCCA to multimodal sentiment recognition and found
that DCCA exhibits better robustness, with transformed features from different modalities being more
homogeneous and discriminative in terms of sentiment.

Different from existing CPDP models, our approach introduces DCCA. The distinction between
our method and the aforementioned CCA-based methods lies in the fact that this paper first introduces
DCCA into the field of cross-project software defect prediction and proposes the S-DCCA method,
which incorporates the SMOTE data sampling technique.
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2.3 Canonical Correlation Analysis Methods

There are numerous data resampling techniques proposed for addressing class imbalance to
improve predictive performance. Among these techniques, SMOTE, proposed by Chawla et al. [33],
is one of the most popular techniques used for synthetic data generation. It is an improvement
over random oversampling, which, although balances the sample set, may introduce certain issues
such as multiple replications of minority class samples, increasing data complexity, and the risk
of overfitting. Generally, in oversampling, instead of simply duplicating samples, new samples are
generated using certain methods, which can reduce the risk of overfitting. In comparison to other
class imbalance techniques, sampling techniques only modify the instance distribution, making
them easier to implement and not reliant on the model. Goel et al. [34] evaluated data sampling
techniques in CPDP and concluded that the synthetic minority oversampling technique (SMOTE)
was suitable for handling class imbalance. Cheng et al. [35] proposed a group SMOTE algorithm with
a noise filtering mechanism (GSMOTE-NFM), which utilizes a Gaussian mixture model to accurately
estimate the probability density of each training instance, further identifying and filtering out noise
instances, and grouping instances based on their distribution characteristics for individual sampling.
Bennin et al. [36] demonstrated the impact of data resampling methods on software defect prediction
models. Gao et al. [37] found that SMOTE improved the performance of CPDP models. This indicates
that the SMOTE method is widely applied in CPDP and effectively handles class imbalance issues.

3 Research Methodology

In this section, this paper will provide a detailed description of the Cross-Project Defect Prediction
based on SMOTE and Deep Canonical Correlation Analysis (S-DCCA) proposed in this paper. Fig. 1
illustrates the overall framework of the S-DCCA method.

Figure 1: The S-DCCA methodological framework
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3.1 Deep Canonical Correlation Analysis Methods

Fig. 2 depicts the schematic diagram of DCCA, which consists of the following steps.

View1 View 2

Figure 2: DCCA schematic

The diagram consists of two learning deep networks so that the output layers (the top layers of
each network) have maximum correlation. The blue nodes correspond to input features (n1 = n2 = 3),
the black nodes are hidden units (c1 = c2 = 4), and the output layer is yellow (o = 2). Both networks
have d = 4 layers. Let us assume that each intermediate layer of the first view in the network has c1
units, while the final (output) layer has o units. Let x1 ∈ R

n1 represent the parameters for the first view.
The output of the first layer for an instance x1 is given by y1 = s

(
W 1

1 x1 + b1
1

) ∈ R
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represents the weight matrix, b1
1 ∈ R

c1 represents the bias vector, and s : R �→ R is a non-linear function
applied component-wise. Then, the output y1 can be used to compute the output of the next layer, such
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) ∈ R
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is computed for the network with d layers. The instance for the second view, represented by f2 (x2), is
computed in the same way but with different parameters W 2

l and b2
l . The objective is to jointly learn the

parameters of both views, W υ

l and bv
l , to maximize corr (f1 (X1), f2 (X2)). If α1 represents the vector of
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2 ), this paper follows the gradient of the correlation objective estimated based
on the training data. Let H1 ∈ R

o×m and H2 ∈ R
o×m be matrices whose columns are the top-layer

representations generated by the deep models on the two views, for a training set of size m. Let H̄1 =
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m
H1 be the centered data matrix (or H̄2), and define Σ̂12 = 1

m − 1
H̄1H̄

′
2 and Σ̂11 = 1

m − 1
H̄1H̄

′
1 +

r1I as regularization constants r1 (or Σ̂22). Assuming r1 > 0, Σ̂11 is positive definite. The parameters W υ

l

and bv
l of DCCA are trained to optimize this quantity using gradient-based optimization. The total
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To compute the gradients of corr (H1, H2) concerning all parameters W υ

l and bv
l , this paper can

compute the gradients concerning H1 and H2 separately and then use back-propagation. If the singular
value decomposition of T is given by T = UDV ′, then

∂corr (H1, H2)

∂H1

= 1
m − 1

(
2∇11H1 + ∇12H2

)
(3)
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where
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where
∂corr(H1, H2)

∂H2
has a symmetric expression. This method uses a novel non-saturating sigmoid function

based on cubic roots to determine the output of nodes in the DCCA network.

3.2 S-DCCA Model Construction

Implementation Steps and Algorithm 1 of the S-DCCA Method:

Loading Data: This paper shows the source dataset and target dataset, converts them into tensors,
and preprocesses them. Then, this paper split the data into training and testing sets.

Model Construction: A deep neural network model, MlpNet, is created to map the source dataset
and target dataset through nonlinear transformations. The model consists of multiple hidden layers,
initialized based on the given number of nodes in each hidden layer and input size. MlpNet is
capable of capturing the complex relationships within the dataset and generating more expressive
feature representations, thereby providing more accurate and discriminative inputs for subsequent
CCA computations.

Defining the Loss Function: This paper uses the CCA loss function to compute the correlation
between the two datasets. The computation process includes the following steps:

• Normalize the outputs of the source dataset and target dataset by subtracting the mean and
dividing by the standard deviation;

• Calculate the covariance matrices of the source dataset and target dataset;
• Perform singular value decomposition on the covariance matrices to obtain singular values and

singular vectors;
• Compute the correlation based on the singular values and singular vectors.

By optimizing the CCA loss function, the DCCA method maximizes the correlation between
the datasets, obtaining the subset of maximally correlated features and improving the joint learning
performance of multiple datasets.

Model Training: During the training process, DCCA incorporates the Root Mean Square Prop-
agation (RMSprop) optimizer, which utilizes adaptive learning rates and regularization to optimize
the model’s performance. RMSprop is a method used for gradient computation in deep learning,
and the regularization term helps prevent overfitting by removing redundant features, resulting in
more stable and reliable outcomes. The regularization term typically includes L1 or L2 regularization.
L1 regularization helps generate sparse solutions and aids in removing redundant features, while L2
regularization prevents excessive model complexity by preventing the weights from becoming too large.
This paper trains the model and optimizes the corresponding parameters such as learning rate, batch
size, and regularization parameters.

Model Testing: This paper evaluates the model on the testing set by calculating the loss value and
output.

Feature Processing: Based on the division of the training and testing sets, a dataset with new feature
data is obtained.

Data Processing: To address the class imbalance, the SMOTE oversampling technique is applied
to the preprocessed source dataset, with the corresponding parameters adjusted accordingly.
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Classification: This paper employs a linear kernel support vector machine (SVM) to classify the
new data. The performance is evaluated using evaluation metrics based on the predictions of the
testing set.

In summary, firstly, this paper utilizes a deep neural network to initialize the two input data
sets. This paper employs a Multi-Layer Perceptron (MlpNet) to receive the input data and perform
non-linear transformations and feature extraction through multiple hidden layers. Each hidden layer
consists of a linear layer and an activation function. In the forward propagation process (from the
input layer to the output layer), the input data first passes through the linear layer of the first hidden
layer. The linear transformation maps the input data to the feature space of the hidden layer. Then,
a non-linear transformation is applied to the linearly mapped results through the activation function,
introducing a richer representation space. This non-linear transformation and feature extraction
process iterates through each hidden layer. Each hidden layer receives the output of the previous hidden
layer as input and maps it to a new feature space. Through multiple iterations of hidden layers, the
model can gradually learn higher-level abstract feature representations. The last hidden layer does
not have an activation function, only a linear layer. This linear layer maps the output of the last
hidden layer to the output layer’s dimension. This step can be seen as mapping and reconstructing
the extracted features to output the final result. Through this non-linear transformation and feature
extraction process, MlpNet can extract more representative and discriminative feature representations
from the raw data for subsequent correlation analysis and model training.

Secondly, This paper employs the CCA loss function and selects the top Outdim_size singular
values to calculate the correlations using singular value decomposition and eigenvalue decomposition,
resulting in the best correlations.

Thirdly, This paper utilizes the RMSprop optimizer to train the extracted feature data, enhancing
model performance with adaptive learning rates and regularization. This paper sets the learning rate
and regularization term parameters, which facilitate generating sparse solutions to prevent overfitting
and achieve the effect of removing redundant features.

Lastly, this paper applies the Smote oversampling technique to the processed data for handling
class imbalance. After evaluating the classification results, this paper obtain the detailed steps for
constructing the S-DCCA model.

Algorithm 1: The Proposed S-DCCA Approach
Input: Source datasets S, target datasets T.
Output: F1 and AUC
1 for each S, T of datasets do

/∗Building, training, and producing the new features by DCCA∗/
2 model = DCCA() /∗define MlpNet()∗/

/∗Initialize a Solver with DCCA model and other defined parameters θ∗/
3 solver = Solver (model, θ) /∗using RMSprop Optimizer∗/
4 new_data = Solver (S, T) /∗using cca_loss∗/

/∗Classify the new_data using SVM to calculate the AUC or F1∗/
5 new_data’ = SMOTE (new_data, label)
6 label’ = SVM (new_data’, label)

/∗caculate F1 and AUC with label, label’∗/
7 return F1 and AUC
8 end for
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4 Experimental Setup
4.1 Research Questions

To systematically evaluate the proposed S-DCCA method, this paper addresses the following
research questions:

RQ1: Which classifier performs the best in the DCCA-based cross-project defect prediction
model?

In this study, this paper compares the performance of different classifiers under the same
experimental settings to determine which classifier yields the best results. The selected best classifier
will be used for subsequent model evaluation.

RQ2: How does the proposed S-DCCA method perform compared to competing CPDP methods?

This paper compares the proposed method with existing state-of-the-art CPDP methods to assess
the effectiveness of the predictions obtained after training the S-DCCA model, using evaluation
metrics as benchmarks.

RQ3: Does the use of sampling techniques lead to improvement? Which sampling algorithm, when
combined with DCCA, yields the best results?

In this study, this paper compares the performance of DCCA combined with other sampling
algorithms to assess the effectiveness of DCCA when utilizing sampling methods. By evaluating the
metrics, this paper can determine the impact of sampling techniques on the performance of DCCA.
Furthermore, this paper identifies the most effective sampling algorithm in combination with DCCA
and selects it for subsequent model evaluations.

4.2 Data Set

This paper utilizes four publicly available datasets: ReLink, AEEEM, NASA, and PROMISE [38–
40], encompassing a total of 27 projects. Table 1 presents a detailed summary of these repositories.
Each project within ReLink, AEEEM, NASA, and PROMISE comprises 26, 61, 21, and 20 metrics,
respectively. Bal et al. [41] employed datasets such as AEEEM, NASA, Relink, and PROMISE.
Xu et al. [28] utilized datasets including AEEEM, NASA, and Relink. Additionally, Zhao et al. [42]
made use of the Relink and AEEEM datasets.

Table 1: 27 Data sets

Datasets Project # Samples # Features Defect rate

Apache 194 26 50.52%
Relink Safe 56 26 39.29%

Zxing 399 26 29.57%

EQ 324 61 39.81%
JDT 997 61 20.66%

AEEEM Lucene 691 61 9.26%
Mylyn 1862 61 13.16%
PDE 1497 61 13.96%

CM1 327 37 12.84%
JM1 7782 21 21.49%
KC1 1183 21 26.54%

(Continued)
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Table 1 (continued)

Datasets Project # Samples # Features Defect rate

NASA MW1 253 37 10.67%
PC1 705 37 8.65%
PC2 745 36 2.15%
PC3 1077 37 12.44%

Ant-1.3 125 20 16%
Camel-1.6 965 20 19.48%
Ivy-2.0 352 20 11.36%
Jedit-4.1 312 20 25.32%
Log4j-1.2 205 20 92.2%
Poi-2.0 314 20 11.78%

PROMISE Prop-6 660 20 10%
Synapse-1.2 269 20 31.97%
Tomcat 858 20 8.97%
Velocity-1.4 196 20 75%
Xalan-2.4 723 20 15.21%
Xerces-1.2 440 20 16.14%

4.3 Evaluation Measures

This paper evaluates the performance of the model using two widely used metrics, namely AUC
and F1. These commonly used metrics are adopted in various CPDP approaches. Bal et al. [41]
employed the AUC evaluation metric, while Yuan et al. [27] utilized both AUC and F1 metrics.
Similarly, Sun et al. [43] employed AUC and F1 metrics. Table 2 presents the confusion matrix, which
is a table used to summarize the classification model’s results. True Positive Rate (TPR), also known as
recall, refers to the frequency at which the model correctly predicts positive instances out of all actual
positive instances. False Positive Rate (FPR) represents the frequency at which the model incorrectly
predicts positive instances out of all actual negative instances. The formulas are as follows:

TPR = R = TP
TP + FN

FPR = FP
FP + TN

(6)

ROC represents the curve formed by plotting TPR against FPR at different classification thresh-
olds. The area under the ROC curve (AUC) indicates the overall performance of the classification
model, with a larger area indicating better performance.

Precision refers to the frequency at which the model correctly predicts positive instances. Recall,
on the other hand, is the frequency at which the model correctly identifies positive instances out of all
actual positive labels. The formulas are as follows:

Precise = P = TP
TP + FP

Recall = R = TP
TP + FN

(7)

The F1 score represents the harmonic mean of precision and recall, providing an overall reflection
of the algorithm’s performance. The harmonic mean F1 can reflect the algorithm’s performance as a
whole:
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F1 = 2 ∗ P ∗ R
P + R

= 2TP
2TP + FP + FN

(8)

Both AUC and F1 score range from 0 to 1, where higher values indicate better predictive
performance.

Table 2: Confusion matrix

Actual

Positive Negative

Predicted Positive TP FP
Negative FN TN

4.4 Comparison Methods

To evaluate the effectiveness of S-DCCA, this paper compares it with a range of representative
CPDP methods, including TCA+ [10], CFIW-TNB [13], BurakMHD [14], DMDAJFR [15] and
MSCPDP [16]. Nam et al. [10] used the state-of-the-art transfer learning method, TCA, to make
the feature distributions in source and target projects similar, and proposed TCA+ which selects
appropriate normalization methods for TCA. Zou et al. [13] introduced a CPDP model called
CFIW-TNB based on NBC with a dual-weight mechanism, which can improve the performance
of predictors better than single-instance weighting or feature weighting. Bhat et al. [14] proposed a
training data selection method (BurakMHD) that first transforms the dataset and then filters the
training data, which helps select relevant data for CPDP. Zou et al. [15] proposed a novel feature
representation learning transfer method that addresses the issue of existing CPDP methods ignoring
local representations and mixing instances with different class labels, resulting in problematic fuzzy
predictions near the decision boundary. Zhao et al. [16] introduced a new MSCPDP method that
can simultaneously utilize knowledge from multiple source projects related to the target project to
construct a defect prediction model.

To evaluate whether DCCA benefits from sampling techniques, this paper selected four commonly
used sampling techniques, including Random Oversampling (ROS), Random Undersampling (RUS),
ADASYN [44], and SMOTE.

4.5 Parameter Settings

Firstly, to address the class imbalance problem, this paper employed the SMOTE [33] sampling
technique to alleviate this issue. Secondly, this paper used a linear SVM as the classifier for evaluation,
and in Section 5.1, this paper explains why we chose the SVM classifier. For the parameters of the
three comparison methods mentioned above, this paper kept them consistent with the original papers.
For the size of the new space learned by the S-DCCA model (the number of new features), outdim_size
was set to 10. The input sizes for both sets of data, input_shape1, and input_shape2, were set to
61. Regarding the parameters for training the network, this paper utilized the Root Mean Square
Propagation (RMSprop) optimizer, with a batch size of 800 samples per training batch. The learning
rate was set to 1e-3, and the regularization parameter (reg_par) was set to 1e-5.
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4.6 Evaluation Settings

This paper uses 27 projects from four publicly available datasets as the benchmark dataset. To
evaluate the performance of the CPDP models, this paper selects one project from the same dataset
as the source data and another project as the target data, resulting in 200 combinations. For each
combination, this paper randomly samples data from the source dataset and uses 80% of the instances
as training data based on the Pareto principle. To assess the performance of CPDP methods, this paper
repeats the above steps 30 times and calculates the average performance across all combinations in the
same dataset.

4.7 Statistical Test and Effect Size Test

The Scott-Knott ESD test, proposed by Tantithamthavorn et al. [45], is a statistical test method
widely used for analyzing whether certain methods are superior to others. It can also generate global
rankings for these methods. The Scott-Knott ESD test utilizes hierarchical clustering analysis to
divide different methods into significantly distinct groups, where the effect size is not negligible. This
ensures that there are no statistically significant performance differences within the same group, while
statistically significant performance differences exist between different groups.

5 Experimental Results
5.1 Comparison Results of Classifiers

RQ1: Research Question 1: Which classifier performs the best in the cross-project defect prediction
model based on DCCA?

In this study, this article selected 7 projects from the NASA dataset and repeated the steps 10
times.

Tables 3 and 4 present the comparison results of AUC and F1 scores for S-DCCA using four
different classifiers. The best values are highlighted in bold. From the tables, this article observes that
overall, SVM outperforms the other classifiers significantly, achieving the highest AUC of 0.651, which
is an improvement of 9.9% to 11.9% compared to the other classifiers. Similarly, it achieves the highest
F1 score of 0.566, representing an improvement of 9.4% to 32.4% compared to the other classifiers.

Table 3: Comparison of AUC of S-DCCA under NASA dataset and different classifiers

Target RF NB LR SVM

CM1 0.531 0.541 0.536 0.641
JM1 0.524 0.56 0.526 0.593
KC1 0.577 0.503 0.516 0.555
MW1 0.553 0.588 0.524 0.651
PC1 0.54 0.577 0.519 0.563
PC2 0.528 0.526 0.612 0.62
PC3 0.501 0.53 0.558 0.574
Average 0.536 0.546 0.542 0.6
Improvement 11.9% 9.9% 10.7% –
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Table 4: Comparison of F1 of S-DCCA under NASA dataset and different classifiers

Target RF NB LR SVM

CM1 0.357 0.319 0.33 0.415
JM1 0.448 0.491 0.503 0.561
KC1 0.526 0.378 0.42 0.429
MW1 0.423 0.41 0.464 0.525
PC1 0.45 0.36 0.567 0.54
PC2 0.546 0.355 0.464 0.566
PC3 0.446 0.389 0.519 0.543
Average 0.457 0.386 0.467 0.511
Improvement 11.8% 32.4% 9.4% –

Figs. 3a and 3b depict box plots comparing the performance of different classifiers in terms of
AUC and F1 scores, respectively. The top horizontal line represents the maximum value within the
non-outlier range, the line within the box represents the median, the cross represents the mean, and
the bottom horizontal line represents the minimum value within the non-outlier range. In the figures,
higher values for the maximum, median, mean, and minimum indicate better performance in the
respective metrics. From the plots, this article can observe that Fig. 3a, on the NASA dataset, the SVM
classifier consistently outperforms the other classifiers in terms of the maximum, mean, median, and
minimum values. For Fig. 3b, on the NASA dataset, the SVM classifier’s maximum is slightly lower
than LR, but the median, mean, and minimum values are superior to the other classifiers.

Figure 3: Results of different classifiers indicated by AUC and F1 (box plots)

Figs. 4a and 4b display combined graphs showcasing the performance of different classifiers in
terms of AUC and F1 scores, respectively. In the plots, RF, NB, and LR classifiers are represented
with bar charts, while the SVM classifier is shown as a line chart. From the figures, this article can
observe that in most of the projects within the NASA dataset, the results obtained after applying
SVM yield the best results.
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Figure 4: Results of different classifiers indicated by AUC and F1 (combined graph)

Answering RQ1: Based on the results tested on different projects, our SVM classifier outperforms
the other classifiers in terms of AUC and F1 values on the NASA dataset. Overall, S-DCCA improves
the performance of all classifiers by at least 9.9% and 9.4% in terms of AUC and F1 scores, respectively.
Therefore, this article concludes that the SVM classifier exhibits the best performance in terms of
evaluation metrics, and thus, this article selects it for training purposes.

5.2 Comparative Results with Baseline

RQ2: How does the proposed S-DCCA method perform compared to competing CPDP methods?

Tables 5 and 6 represent the comparison results of AUC and F1 scores between S-DCCA and
other baseline methods. The best values are highlighted in bold. From the tables, this article observes
that S-DCCA outperforms more than half of the projects compared to the other baselines, achieving
the highest AUC of 0.692, which is an improvement of 1.2% to 10.7% compared to the other baselines.
Similarly, it achieves the highest F1 score of 0.601, representing an improvement of 5.5% to 27.6%
compared to the other baselines.

Table 5: Comparison of AUC at S-DCCA and baseline

Target BurakMHD TCA+ CFIW-TNB DMDAJFR MSCPDP S-DCCA

Apache 0.594 0.597 0.543 0.601 0.556 0.572
Safe 0.528 0.621 0.661 0.589 0.602 0.633

(Continued)
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Table 5 (continued)

Target BurakMHD TCA+ CFIW-TNB DMDAJFR MSCPDP S-DCCA

Zxing 0.606 0.517 0.527 0.551 0.533 0.692
EQ 0.675 0.632 0.688 0.537 0.575 0.687
JDT 0.656 0.635 0.622 0.603 0.63 0.606
Lucene 0.666 0.533 0.654 0.536 0.58 0.644
Mylyn 0.574 0.559 0.573 0.514 0.594 0.597
PDE 0.64 0.555 0.623 0.549 0.603 0.624
CM1 0.62 0.542 0.629 0.498 0.567 0.617
JM1 0.582 0.531 0.505 0.502 0.486 0.587
KC1 0.533 0.508 0.539 0.515 0.497 0.516
MW1 0.531 0.585 0.606 0.528 0.548 0.688
PC1 0.63 0.594 0.568 0.532 0.557 0.583
PC2 0.646 0.587 0.552 0.557 0.578 0.684
PC3 0.624 0.527 0.555 0.544 0.619 0.551
Ant-1.3 0.647 0.547 0.644 0.594 0.729 0.636
Camel-1.6 0.566 0.56 0.525 0.517 0.568 0.526
Ivy-2.0 0.653 0.577 0.629 0.587 0.659 0.665
Jedit-4.1 0.632 0.636 0.626 0.565 0.641 0.643
Log4j-1.2 0.551 0.539 0.576 0.528 0.582 0.559
Poi-2.0 0.561 0.609 0.629 0.534 0.558 0.634
Prop-6 0.599 0.532 0.599 0.553 0.574 0.64
Synapse-1.2 0.61 0.557 0.606 0.546 0.623 0.595
Tomcat 0.663 0.708 0.596 0.579 0.621 0.553
Velocity-1.4 0.516 0.301 0.509 0.609 0.604 0.575
Xalan-2.4 0.635 0.547 0.579 0.481 0.592 0.523
Xerces-1.2 0.482 0.649 0.659 0.574 0.64 0.595
Average 0.601 0.566 0.593 0.549 0.589 0.608
Improvement 1.2% 7.4% 2.5% 10.7% 3.2% –

Table 6: Comparison of F1 at S-DCCA and baseline

Target BurakMHD TCA+ CFIW-TNB DMDAJFR MSCPDP S-DCCA

Apache 0.437 0.397 0.396 0.493 0.324 0.389
Safe 0.445 0.455 0.552 0.442 0.451 0.601
Zxing 0.363 0.436 0.311 0.338 0.36 0.475
EQ 0.569 0.497 0.357 0.284 0.319 0.478
JDT 0.458 0.463 0.393 0.397 0.422 0.489
Lucene 0.242 0.285 0.341 0.228 0.321 0.313
Mylyn 0.264 0.292 0.372 0.23 0.325 0.369
PDE 0.315 0.364 0.368 0.253 0.379 0.308
CM1 0.25 0.458 0.397 0.226 0.412 0.454

(Continued)
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Table 6 (continued)

Target BurakMHD TCA+ CFIW-TNB DMDAJFR MSCPDP S-DCCA

JM1 0.223 0.453 0.401 0.328 0.423 0.48
KC1 0.342 0.482 0.457 0.42 0.402 0.439
MW1 0.291 0.427 0.425 0.415 0.434 0.504
PC1 0.245 0.424 0.457 0.337 0.439 0.522
PC2 0.258 0.414 0.472 0.389 0.435 0.543
PC3 0.348 0.457 0.503 0.388 0.424 0.554
Ant-1.3 0.324 0.351 0.349 0.314 0.469 0.317
Camel-1.6 0.346 0.439 0.338 0.296 0.313 0.526
Ivy-2.0 0.282 0.415 0.432 0.309 0.442 0.333
Jedit-4.1 0.458 0.449 0.522 0.384 0.528 0.39
Log4j-1.2 0.511 0.406 0.473 0.415 0.406 0.318
Poi-2.0 0.263 0.256 0.367 0.282 0.287 0.306
Prop-6 0.26 0.324 0.371 0.308 0.325 0.332
Synapse-1.2 0.457 0.301 0.378 0.331 0.507 0.309
Tomcat 0.247 0.459 0.328 0.289 0.441 0.545
Velocity-1.4 0.519 0.296 0.321 0.293 0.413 0.42
Xalan-2.4 0.348 0.268 0.324 0.285 0.437 0.311
Xerces-1.2 0.243 0.201 0.318 0.233 0.34 0.355
Average 0.345 0.388 0.397 0.33 0.399 0.421
Improvement 22.0% 8.5% 6.0% 27.6% 5.5% –

Figs. 5a and 5b illustrate box plots comparing the performance of different CPDP methods in
terms of AUC and F1 scores, respectively. The top horizontal line represents the maximum value
within the non-outlier range, the line within the box represents the median, the cross represents the
mean, and the bottom horizontal line represents the minimum value within the non-outlier range. In
the figures, higher values for the maximum, median, mean, and minimum indicate better performance
in the respective metrics. Here, this article discards outliers. From the plots, this article can observe
that Fig. 5a, in comparison with all baseline methods, S-DCCA exhibits the best mean and minimum
values despite having a slightly lower median than BurakMHD and a slightly lower maximum than
TCA+. However, overall, its performance remains superior. For Fig. 5b, in comparison with all
baseline methods, S-DCCA demonstrates the best maximum, mean, and median values (with the
median slightly higher than TCA+). Although the minimum value is slightly lower than CFIW-TNB,
its overall performance remains the best.

Figs. 6a and 6b display combined graphs showcasing the performance of different CPDP methods
in terms of AUC and F1 scores, respectively. In the plots, the three baseline methods are represented
with bar charts, while S-DCCA is shown as a line chart. Due to the large number of projects, only
partial project names are displayed on the x-axis. From the figures, this article can observe that in the
majority of the projects, the results obtained after applying S-DCCA yield the best performance.
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Figure 5: Results of different classifiers indicated by AUC and F1 (box plots)

Figure 6: Results of different classifiers indicated by AUC and F1 (combined graph)
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Answering RQ2: Based on the results tested on different datasets, our S-DCCA outperforms
all baselines in terms of AUC and F1 scores across all datasets. On average, S-DCCA improves the
performance of all baselines by at least 1.2% and 5.5% in terms of AUC and F1 scores, respectively.

5.3 Results of Ablation Experiments

RQ3: Does the use of sampling techniques lead to improvement? Which sampling algorithm
performs the best when combined with other sampling algorithms?

In this section, this article selected seven projects from the NASA dataset. The experiments were
repeated for 10 iterations.

Tables 7 and 8 present the comparison results of AUC and F1 scores for DCCA using four dif-
ferent sampling algorithms, with the best values highlighted in bold. The experiments were conducted
with random oversampling (ROS), random undersampling (RUS), ADASYN, and SMOTE. From the
tables, this article observed that overall, SMOTE outperformed other sampling techniques, with the
highest AUC of 0.688. When combined with DCCA, the performance improved by 1.1% to 6.5%. The
highest F1 score was 0.554, with a performance improvement of 0.6% to 7.5% when combined with
DCCA and other sampling techniques.

Table 7: Comparison of DCCA AUC for NASA dataset under different sampling methods

Target DCCA +ROS +RUS +ADASYN +SMOTE

CM1 0.62 0.591 0.588 0.533 0.617
JM1 0.557 0.568 0.583 0.581 0.587
KC1 0.513 0.535 0.512 0.529 0.516
MW1 0.618 0.579 0.649 0.629 0.688
PC1 0.546 0.57 0.591 0.571 0.583
PC2 0.607 0.623 0.679 0.617 0.684
PC3 0.511 0.543 0.577 0.621 0.551
Average 0.567 0.573 0.597 0.583 0.604
Improvement – 1.1% 5.3% 2.8% 6.5%

Table 8: Comparison of DCCA F1 for NASA dataset under different sampling methods

Target DCCA +ROS +RUS +ADASYN +SMOTE

CM1 0.435 0.407 0.468 0.423 0.454
JM1 0.403 0.434 0.432 0.441 0.48
KC1 0.481 0.529 0.454 0.517 0.439
MW1 0.478 0.457 0.477 0.501 0.504
PC1 0.434 0.488 0.476 0.578 0.522
PC2 0.51 0.457 0.464 0.475 0.543
PC3 0.507 0.548 0.499 0.442 0.554
Average 0.464 0.474 0.467 0.482 0.499
Improvement – 2.2% 0.6% 3.9% 7.5%
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Figs. 7a and 7b present box plots of the AUC and F1 scores for different sampling algorithms.
The top horizontal line represents the maximum value within the non-outlier range, the horizontal line
within the box represents the median, the cross indicates the mean value, and the bottom horizontal
line represents the minimum value within the non-outlier range. In the figures, higher values for the
maximum, median, mean, and minimum indicate better performance for the two metrics. This article
excluded outliers in the plots. From Fig. 7a, on the NASA dataset, although the median of SMOTE is
slightly lower than random undersampling, and the minimum value is lower than ROS and ADASYN,
the maximum and mean values are better than other sampling techniques. For Fig. 7b, on the NASA
dataset, although the maximum value of SMOTE is lower than ADASYN, the median, mean, and
minimum values are better than other sampling techniques.

Figure 7: Different sampling techniques results represented by AUC and F1 (box plots)

Figs. 8a and 8b present combined plots of the AUC and F1 scores for different sampling
algorithms. ROS, RUS, and ADASYN are represented by bar charts, and SMOTE is represented by a
line graph. From the figures, this article can see that in most projects of the NASA dataset, the results
obtained after applying SMOTE have the best performance.

Figure 8: Different sampling techniques results represented by AUC and F1 (combined graph)
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In response to RQ3: Based on the results tested on different projects, DCCA showed improvement
after applying all four sampling techniques. Our SMOTE technique achieved better AUC and F1
averages than other sampling techniques on the NASA dataset. Overall, when combined with all
sampling techniques, DCCA’s performance improved by at least 1.2% and 0.6% in terms of AUC and
F1, respectively. Therefore, this article concludes that the SMOTE sampling technique can enhance
DCCA, and it provides the best improvement. Thus, this article chose to combine DCCA with SMOTE
for training.

6 Discussion
6.1 Statistical Test and Effect Size Test Study

Figs. 9a and 9b present the test results of S-DCCA compared to various baseline methods using
ScottKnott ESD, represented by AUC and F1 scores. This article utilized box plots to illustrate the
results, with the horizontal line in the middle indicating the median. As the median values of the
baseline methods have been presented in the previous section, this article will not provide a detailed
description of the results in this section. Fig. 9 demonstrates that our S-DCCA method outperforms
the state-of-the-art CPDP method. The ScottKnott ESD test further confirms that our S-DCCA
method consistently ranks among the top performers in terms of AUC and F1, indicating statistically
significant performance differences and non-negligible effect sizes.

Figure 9: Ranking using ScottKnott ESD represented by AUC and F1

6.2 Implications

The method proposed in this paper is a simple and effective CPDP approach. Previous research has
mainly focused on defect prediction within the same project, and many researchers have not considered
the issue of non-linear correlations between data in cross-project defect prediction. By introducing
the DCCA method, this article proposes S-DCCA, which improves the similarity between the source
and target datasets, obtains relevant feature subsets, reduces computational bias in subsequent
experiments, and enables accurate defect prediction across different projects. This is also the first
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application of deep canonical correlation analysis, typically used in image-related fields, to CPDP.
The results of this study are valuable for researchers in the field.

6.3 Threats to Validity

This section describes potential threats that may affect our research work in terms of construct,
internal, and external aspects.

Regarding construct threats, in real-world classification problems, dataset distributions are often
imbalanced. In this study, this article used the SMOTE oversampling technique to alleviate class imbal-
ance issues. However, this algorithm cannot overcome the problem of imbalanced data distribution and
may lead to marginalization of the distribution. This article did not consider whether other methods for
handling imbalanced data could yield better results, and this article only used AUC and F1 evaluation
metrics, which may produce different predictive outcomes when using other evaluation metrics.

Regarding internal threats, it is important to consider factors that may influence experimental
results when conducting experiments and comparisons. For methods without available source code,
this article used the same parameter settings and carefully implemented them according to the
descriptions in the respective papers to mitigate such threats. However, due to potential implemen-
tation differences, there may be biases in the comparison between our method and these baseline
methods. Additionally, comparisons with other advanced CPDP methods could also be considered.
Furthermore, different data partitioning ratios may result in different predictive outcomes. Hence, in
our experiments, this article followed the common practice of using the Pareto principle, randomly
selecting 80% of the data as training data, and repeating the process 30 times. However, this article did
not consider the possibility that selecting different partitioning ratios may yield better results.

Regarding external threats, in this paper, this article utilized four publicly available datasets for
experimentation, which are widely applied in various domains [46,47]. Although S-DCCA outper-
forms current state-of-the-art baseline methods in terms of predictive performance across 27 different
projects, there is no guarantee that the same results will be obtained on other datasets. This article did
not take into account the possibility of different outcomes on other datasets.

7 Conclusion

This study proposes a cross-project defect prediction method based on SMOTE and deep
canonical correlation analysis (S-DCCA) to address the issue of data distribution differences between
source and target projects. S-DCCA calculates correlation, selects the subset of highly correlated
features, and eliminates redundant features for model training. Finally, based on the comparison
results of classifiers, this article selects the support vector machine (SVM) classifier and utilizes the
SMOTE oversampling technique to obtain the final prediction results. To evaluate the performance
of the S-DCCA method, this article conducts experiments on 27 projects from four publicly available
datasets and uses AUC and F1 scores as evaluation metrics. The experimental results demonstrate
that S-DCCA outperforms other baseline methods in terms of prediction effectiveness and exhibits
good performance. This indicates that the S-DCCA method can accurately predict defects across
different projects. With its simplicity and effectiveness, S-DCCA can assist researchers in reliable defect
prediction among diverse projects. S-DCCA represents a feasible novel CPDP method that reduces
data distribution differences between source and target projects, thereby improving the performance
of cross-project defect prediction.
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For future work, this article will investigate transfer learning methods to address class imbalance
issues and incorporate them into the S-DCCA method to further enhance the predictive performance
of CPDP. Transfer learning excels at transferring knowledge across domains, which aligns with
the main idea of addressing data distribution differences in CPDP. Despite having the same set of
metrics, the inherent differences between source and target projects manifest in the diversity of data
distribution. Therefore, our focus will be on how to combine transfer learning to mitigate marginal
distribution differences and conditional distribution differences between source and target projects.
Several methods have been proposed to reduce marginal and conditional distribution disparities.
Long et al. [48] introduced Joint Distribution Adaptation (JDA) to minimize the distance between the
joint probability distributions of the source and target domains. However, JDA falls short in addressing
the discrepancy between marginal and conditional distribution adaptations, with varying degrees of
importance. Wang et al. [49] proposed Balanced Distribution Adaptation (BDA), which incorporates
a balancing factor, denoted as μ, to adaptively adjust the importance of marginal and conditional
distribution alignment based on specific data domains. Nevertheless, BDA does not address the
precise calculation issue of the balancing factor μ. To tackle this, Wang et al. [50] presented Dynamic
Distribution Adaptation (DDA), which treats μ as a parameter in the migration process and determines
its optimal value through cross-validation. By integrating the DDA transfer learning method, this
article can better adjust the marginal and conditional distributions to address class imbalance issues.
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