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ABSTRACT

Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged
in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based
provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and
existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform
graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes
an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph
from attack-free audit logs, fits normal system entity interactions and then detects APT-exploited processes by
predicting the rationality of entity interactions. Firstly, ThreatSniffer understands system entities in terms of their
file paths, interaction sequences, and the number distribution of interaction types and uses the multi-head self-
attention mechanism to fuse these semantics. Then, based on the insight that APT-exploited processes interact
with system entities they should not invoke, ThreatSniffer performs negative sampling on the benign provenance
graph to generate non-existent edges, thus characterizing irrational entity interactions without requiring APT attack
samples. At last, it employs a heterogeneous graph neural network as the interaction prediction model to aggregate
the contextual information of entity interactions, and locate processes exploited by attackers, thereby achieving
fine-grained APT detection. Evaluation results demonstrate that anomaly-based detection enables ThreatSniffer to
identify all attack activities. Compared to the node-level APT detection method APT-KGL, ThreatSniffer achieves
a 6.1% precision improvement because of its comprehensive understanding of entity semantics.
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1 Introduction

APTs bring huge losses to governments or enterprises for their stealthiness and persistence, and
have been attracting much attention from cybersecurity researchers. In recent years, related studies
usually collect system audit logs, take system entities (e.g., processes) as nodes, and system interaction
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events (e.g., read, write, connect) as edges to construct a provenance graph, which provides the context
for system entity interactions. The provenance graph describes the running history of programs
in the system with a graph representation, bringing rich contextual information for detecting and
investigating APT activities [1,2].

Existing APT detection approaches based on provenance graphs can be categorized into rule-
based detection and learning-based detection. Rule-based detection approaches define rules through
prior knowledge about attack activities and match system entity behaviors with predefined rules to
achieve APT detection. This type of method can provide explanations for detection results that are
beneficial to attack investigation. However, many different techniques could be used for APTs, making
rule writing a difficult and burdensome task that requires specialized knowledge of threat models,
operating systems, and networks. According to a recent survey, the rules of commercial Security
Information Event Management (SIEM) products cover only 16% [3] of the public Tactics, Techniques,
and Procedures knowledge (TTPs). In addition, rule-based methods make it difficult to detect
unknown attacks while zero-day vulnerabilities are inevitable in APTs. Learning-based approaches
train deep learning models in a supervised or semi-supervised way to perform APT detection.
Supervised learning suffers from insufficient APT samples. Though semi-supervised learning can
train models only based on attack-free logs to detect attacks without the need for APT samples,
most existing semi-supervised provenance-based APT detection methods focus on detecting suspicious
provenance graphs containing APT attacks. These suspicious graphs often contain thousands of edges
and nodes, making it difficult for security engineers to quickly complete attack investigation [2].

This paper proposes a semi-supervised APT-exploited process detection approach called Threat-
Sniffer, which could achieve fine-grained APT detection based on attack-free audit logs. ThreatSniffer
understands system entities from their file paths, interaction sequences, and the number distribution
of interaction types. Then, considering that malicious processes exist some unexpected interactions
with other system entities, ThreatSniffer understands entity behavior through system entity interaction
rationality and then identifies anomaly processes. Evaluation results on the DARPA TC3 Theia dataset
show that ThreatSniffer can detect the processes associated with APT attack activities.

The contributions of this paper are summarized as follows:

1. To understand system entities comprehensively, ThreatSniffer embeds entity semantics from
three aspects: file paths, interaction sequences, and the number distribution of interaction types.
Moreover, ThreatSniffer employs a multi-head self-attention mechanism for semantic fusion.

2. To achieve fine-grained APT detection, ThreatSniffer employs a heterogeneous graph neural
network to understand the system entity interaction context in a provenance graph and predict the
rationality of interactions to identify anomaly processes.

3. To fit normal system activities, ThreatSniffer adopts a semi-supervised learning strategy for
model training. It performs negative sampling on the benign provenance graph to generate non-
existent edges to characterize irrational entity interactions.

4. ThreatSniffer is implemented and verified on the DARPA TC3 Theia dataset. The results
demonstrate that ThreatSniffer can detect processes exploited by attackers, and achieves higher
precision and recall than existing node-level APT detection methods.

The remaining paper is organized as follows: Section 2 introduces existing work related to
provenance graph APT detection; Section 3 introduces our motivation and overviews ThreatSniffer,
the APT-exploited process detection method proposed in this paper; Section 4 describes the imple-
mentation details of ThreatSniffer, including entity semantic embedding and fusion, provenance graph
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construction and negative sampling, and the interaction prediction model using graph neural network;
Section 5 describes the experimental environment and results; Section 6 summarizes this paper and
discusses the direction of future work.

2 Related Work

Rule-based APT detection on provenance graphs. Rule-based detection methods generate prede-
fined rules to describe security threats and then conduct rule matching on provenance graphs to
uncover potential attacks. Sleuth [4] designs tags to encode an assessment of the trustworthiness
and sensitivity of data as well as processes, and manually customizes policies for carrying out tag
propagation and identifying the system entities most likely to be involved in attacks. Sleuth can derive
scenario graphs of attack activities. Caused by dependence explosion, it would generate a graph
containing numerous benign nodes when facing long-running attacks. Based on Sleuth, Morse [5]
introduces tag attenuation and tag decay to mitigate the dependency explosion problem, reducing
scenario graph sizes by an order of magnitude. Considering Sleuth’s memory consumption issue when
handling large amounts of data, Conan [6] uses a finite state machine to describe system entities. It
transforms between different states via predefined rules, and alerts when a malicious state combination
occurs. Conan utilizes states instead of a provenance graph to record semantics, which ensures constant
memory usage over time. When there are a large number of concurrent operations in the system
(e.g., a large number of file read and write operations at the same time), Conan can’t ensure real-
time performance. Holmes [7] customizes detection rules based on TTPs to elevate alerts to the
tactics of an attack campaign. It then constructs high-level scenario graphs for intrusion detection.
The drawback of Holmes is that it assumes 100% log retention in perpetuity, which is practically
prohibitive. Rapsheet [8] introduces skeleton graphs to address the limitation. It creates more TTP
matching rules than Holmes. APTSHILED [9] defines suspicious characteristics of system entities
and transmission rules using TTPs, and enhances APT detection efficiency by adopting redundant
semantics skipping and non-viable node pruning. It outperforms Sleuth, Holmes, and Conan in terms
of detection time consumption and memory overhead. The detection effectiveness of the above rule-
based methods relies on the security engineers’ understanding of the attack procedure. To mitigate
this dependency, related research utilizes threat intelligence to augment detection rules. Poirot [10]
extracts Indicators of Compromise (IOC) and their interrelationships from cyber threat intelligence
to construct a query graph of attack behaviors. It then performs APT detection through an inexact
graph pattern matching between the provenance and query graph. In practice, attack steps described
in threat intelligence are not completely consistent with real attack activities recorded in provenance
data. To address this, DeepHunter [11] utilizes graph neural networks for graph pattern matching,
offering greater robustness compared to Poirot. ThreatRaptor [12] extracts structured threat behavior
from unstructured threat intelligence and describes the threat with TBQL, a domain-specific query
language, for querying malicious system activity. In summary, though rule-based methods can achieve
high detection accuracy and explainability. However, they necessitate meticulously crafted, high-quality
detection rules grounded in expert insights or threat intelligence, and they cannot handle unknown attacks.

Learning-based APT detection on provenance graphs. With training datasets with little domain
knowledge, learning-based approaches construct detection models for APT detection at various
granularities, where semi-supervised models for learning normal system behavior and supervised
models for identifying malicious behavior. StreamSpot [13] detects anomalies by dividing the stream-
ing provenance graph into multiple snapshots, extracting local graph features, and clustering the
snapshots. StreamSpot handles edges in the provenance graph with a stream fashion and is both
time-efficient and memory-efficient. But StreamSpot’s graph features are locally constrained. To
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mitigate this drawback, Unicorn [14] examines contextualized provenance graphs for APT detection.
It can model and summarize the evolving system executions and report abnormal system status.
StreamSpot and Unicorn regard suspicious provenance graphs containing attacks as alerts. Their
coarse-grained detection results are not conducive to security engineers’ attack investigation, because
these suspicious graphs require lots of manual work to find APT-exploited system entities. Pagoda
[15] builds a rule database to characterize benign system behaviors and detect suspicious paths in
the provenance graph. Pagoda cannot deal with sequence order transformation and sequence length
increase, which are very common when an intrusion process changes its behavior to a variant. To detect
these variants, P-Gaussian [16] introduces a Gaussian distribution scheme to characterize and identify
intrusion behavior and its variants. However, P-Gaussian still uses a rule database to model benign
behaviors. ProvDetecter [17] transfers causal paths into vectors, then a density-based cluster method is
deployed to detect the abnormal paths. Considering dependence explosion, based on the assumption
that malicious paths are uncommon, ProvDetecter only selects a certain number of rare paths for
detection. Attackers may exploit this assumption to evade detection. Atlas [18] utilizes lemmatization
and word embedding to abstract the attack and non-attack semantic patterns. It aims to help security
engineers recover attack steps while it requires manually providing some known malicious entities
as starting points for the paths. In recent years, graph neural networks have proven to be effective for
APT detection [2,19–21], and many researchers have utilized graph neural networks for fine-grained
APT detection. DepComm [22] divides a large provenance graph into process-centric communities and
then generates a representative InfoPath for each community as its summary. DepComm cooperates
with Holmes for APT detection. Since there are still some less-important events that cannot be
compressed by DepComm, it maintains a set of rules to handle these events. Watson [23] utilizes
TransE [24] to embed system entity interaction semantics, then combines interaction semantics as
the vector representation of behaviors. These vectors are subsequently used for clustering to detect
malicious behavior. ShadeWatcher [25] analogizes system entity interactions to user-item interactions
in recommender systems. It detects threats by predicting a system entity’s preferences for its interacting
entities. ShadeWatcher’s ability to achieve high-accuracy detection might be challenging when faced
with a large provenance graph. Recent research has focused on utilizing graph neural networks for
node-level APT detection. Deepro [26] achieves fine-grained APT detection by detecting attack-related
processes, but its supervised learning method faces the challenge of handling the imbalance between
benign and attack samples. In APT-KGL [27], threat intelligence is introduced to augment the APT
training samples, and a heterogeneous graph neural network is used to detect malicious processes.
Liu et al. [28] utilized an attention-based graph convolutional neural network to infer whether a
process is malicious or not. It downsamples and upsamples benign and attack samples respectively to
address the sample imbalance problem. Applying threat intelligence or sampling does not fundamentally
address the issue of a lack of attack samples. In addition, supervised models’ understanding of attacks
is largely constrained by attack samples. ProGrapher [29] combines whole graph embedding and
sequence learning to capture the temporal dynamics between normal snapshots. It detects abnormal
snapshots when it deviates from prediction. To achieve fine-grained APT detection, ProGrapher
introduces a novel algorithm to pinpoint abnormal entities by computing co-occurrence probability.
ThreaTrace [30] adopts node type as node labels and the number distribution of nodes’ edge type
as node features to perform semi-supervised learning with GraphSage [31] graph neural networks.
It regards the provenance graph as homomorphic and does not effectively take advantage of the rich
semantics contained in system audit logs such as file paths, entity interaction sequences, and various
types of system interactions.
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With the insight that malicious processes exist some unexpected entity interactions, ThreatSniffer
identifies anomaly processes by predicting interaction rationality. Thus ThreatSniffer has a finer detec-
tion granularity than StreamSpot and Unicorn. ThreatSniffer performs entity embedding from file
paths, interaction sequences, and the number distribution of interaction types, and uses a multi-head
self-attention mechanism for semantic fusion. Furthermore, ThreatSniffer utilizes a heterogeneous
graph neural network to incorporate the context into entity embeddings. Compared to existing APT
detection methods using graph neural networks, ThreatSniffer understands entity semantics more
comprehensively, thereby demonstrating better detection performance in Section 5.3. ThreatSniffer
selectively samples the non-existent edges from the benign provenance graph as irrational interactions,
enabling semi-supervised learning from attack-free audit logs. Consequently, compared to rule-based
and supervised learning approaches, ThreatSniffer is more likely to detect zero-day vulnerabilities
exploited in APT campaigns and achieves a higher recall.

3 Overview
3.1 Motivation

During the APT lifecycle, attackers typically exploit zero-day vulnerabilities to carry out attacks,
stealthily infiltrate the target system, and generate only a few malicious system entities. Audit logs
describe the interaction history of system entities. By connecting system entities, system entity
interaction provenance graphs can describe system behavior at a fine-grained level. The example
in Fig. 1 is the malicious part of a system entity interaction provenance graph. It demonstrates
nginx being exploited to execute a malicious dropper file. In this attack, the nginx is exploited to
drop a malicious executable file named dropper ( 3©). Then dropper is executed via shell ( 4© to 6©).
Subsequently, the attacker communicates with the dropper process ( 7© and 8©), controls it to conduct
information gathering ( 10© and 11©) and modify or read sensitive files ( 13© to 16©). Sensitive information
would be sent to the attacker via a temporary file.

Figure 1: An example of the provenance graph

Malicious behaviors inevitably interact with the underlying operating system, which will be
exposed to and captured in system audit logs. Thus no matter how stealthy and slow APT attacks
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are, corresponding nodes and interactions can be found in the provenance graph. In recent years,
researchers have been leveraging provenance graphs to detect and investigate APT attacks. Conducting
attack detection and investigation based on provenance graphs presents the following two main
challenges:

Challenge 1: Fine-grained APT detection. An ideal APT detection scheme should be able to pin-
point the system entities exploited during the attack execution. These fine-grained detection outcomes
can substantially lighten the workload for security engineers conducting attack investigation. The key
to this challenge lies in fully understanding the rich semantics in the provenance graph, which can
greatly assist us in determining whether an entity has been exploited by attackers.

Challenge 2: Modeling normal behaviors from the attack-free audit logs. One characteristic of APT
attacks is the utilization of zero-day vulnerabilities. Compared to rule-based and supervised learning
approaches, anomaly detection has a higher likelihood of detecting zero-day vulnerabilities. The key
to this challenge is how to design appropriate deep-learning tasks to distinguish between normal and
malicious behavioral activities.

3.2 Approach Intuition

Based on careful observation and analysis of various provenance graphs containing APT activities,
two key insights may be helpful for provenance-based APT detection. The first insight is: system entities
in provenance graphs have different semantics in terms of file paths, interaction sequences, and the
number distribution of interaction types. As for file paths, directory names at each level in the file
path are crucial for understanding file semantics. System entities with similar file paths usually have
similar functions. For example, in Fig. 1, /etc/sudoer and /etc/passwd are both system configuration
files. For interaction sequences, a program tends to have a fixed behavior pattern. The shell process
in Fig. 1 is often cloned from the user-level program and then executes system commands through
sub-processes. For the number distribution of interaction types, different entity behaviors (considering
network accesses and file I/O) lead to different numbers of various interaction types. The second insight
is: the provenance graph context of a malicious process exists some conflicts. In the given contextual
background, malicious processes will interact with the system entities that should not be invoked,
making unexpected interactions appeared in the provenance graph. Take Fig. 1 as an example, the
cat process should not write data to tmp.txt after reading the sensitive file /etc/passwd. Therefore, it
is possible to use an interaction prediction model to learn entity interaction context and identify the
process nodes that are pertinent to potential attacks by predicting the interaction rationality, enabling
fine-grained APT detection.

When there is no malicious activity in the system, the provenance graph constructed from system
entities and interactions is defined as benign. When APT activity occurs, it would lead to some
unexpected entity interactions. In such instances, the provenance graph constructed from system audit
logs is regarded as suspicious. The suspicious provenance graph contains only a small number of
system entities and interactions directly associated with the attack behavior. Unlike StreamSpot or
Unicorn, which conduct APT detection at the graph-level without reporting specific attack entities,
ThreatSniffer constructs benign and suspicious provenance graphs from audit logs, and aims to learn
normal system entity interactions from the benign provenance graph and subsequently identify the
processes exploited by attackers in the suspicious provenance graph.
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3.3 ThreatSniffer Architecture

The architecture of ThreatSniffer, depicted in Fig. 2, is tailored to identify APT-exploited pro-
cesses from system audit logs during attack investigation. It acquires semantic insights regarding
system entities from diverse dimensions. Furthermore, based on the benign provenance graph, it
employs an interaction prediction model to align with the system’s normal interactions and identify
irrational interactions. ThreatSniffer encompasses three key modules: Entity Embedding, Provenance
Graph Construction, and Interaction Prediction.

Figure 2: The architecture of ThreatSniffer

Entity Embedding. This module extracts file paths, interaction sequences, and the number distri-
bution of interaction types from system audit logs. It then individually embeds entity semantics from
these three dimensions. These embeddings are subsequently fused through a multi-head self-attention
mechanism to yield initial node features within the provenance graph.

Provenance Graph Construction. This module obtains system entities and interactions from audit
logs and constructs a provenance graph following the direction of information flow. The provenance
graph contains rich contextual information about system entities. To train the model on benign data,
this module also performs negative sampling on the benign provenance graph to characterize irrational
entity interactions.

Interaction Prediction. This module uses a heterogeneous graph neural network to integrate entity
embeddings and the provenance graph, and then learns the system’s normal interaction behaviors
by distinguishing between normal edges and irrational edges generated by negative sampling. When
performing detection, this module identifies anomaly processes by predicting the rationality of system
entity interactions.

For challenge 1, ThreatSniffer understands system entities from file paths, interaction sequences,
and the number distribution of interaction types, and then uses a multi-head self-attention mechanism
for semantic fusion. Besides, ThreatSniffer employs a heterogeneous graph neural network for under-
standing entity context. By fully leveraging the rich semantics of the provenance graph, ThreatSniffer
can locate the anomaly processes by predicting the rationality of the system entity interaction.
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For challenge 2, ThreatSniffer takes judging the existence of entity interactions in benign prove-
nance as the training task for learning normal behaviors. More specifically, ThreatSniffer considers
interactions observed in the benign provenance graph as benign instances while negatively sampling
unobserved interactions as malicious.

3.4 Threat Model

The protection of system auditing modules or audit logs is beyond the scope of this paper. Same
with the threat models from the previous provenance-based APT detection works [25–30,32,33], this
paper assumes that system auditing modules (e.g., Auditd, ETW) fully record system interactions such
as file operations, network accesses, etc., from the system kernel, and that the underlying operating
system and system auditing modules will not suffer from kernel-level attacks since they are part of the
Trusted Computing Base (TCB). Besides, this paper further assumes that system auditing modules
employ a secure provenance storage system [34,35]. Attackers cannot undermine the integrity of
provenance data by tampering with or deleting system audit logs. At last, ThreatSniffer does not
consider hardware Trojan or side-channel attacks that are not visible in system audit logs, because
their behavior can not be captured by system auditing modules.

4 Methodology
4.1 Entity Embedding

Graph neural networks pass, aggregate, and update node features on the graph, thereby the com-
plex dependencies of the graph are incorporated into node features for subsequent tasks. Information-
rich and discriminative node features are crucial for high-quality graph neural network models.
Considering that system entity semantics are reflected in aspects like file paths, interaction sequences,
and the number distribution of entity interaction types, ThreatSniffer separately performs entity
embedding across these three dimensions and subsequently fuses these semantic representations.

File Path Embedding. Files of the same program are commonly situated in the same directory.
Moreover, the folder names of different directories also convey specific meanings. For instance,
whether it is a system directory or a program installation directory, the directory name bin in the
path indicates that the folder contains executable files. Each system entity in the provenance graph,
whether it is a file, a process, or a socket, is associated with a system file path. These paths contain
important semantic insights about the system entity.

ThreatSniffer extracts file paths of all system entities from audit logs. These file paths are
composed of multiple layers of directories. The same directory names tend to have the same semantics.
Each file path is considered as a sentence, and each directory name is considered as a word. Based on
the perspective that the directory order in a file path remains consistent and instances of polysemy
are rare in file paths, ThreatSniffer uses the Skip-Gram-based Word2vec [36] algorithm to generate
word embeddings for each directory name of file paths. Given a contextual window C, its goal is to
maximize the probability of predicting the context around a given target word t, as shown in Eq. (1)
[36].

probability =
V∑

t=1

∑
−C≤c≤C,c�=0

log P (wt+c |wt) (1)

C is the contextual window size, while wt and wt+c are the word embeddings of the target and
contextual words. P (wt+c |wt) is the conditional probability of generating the contextual word wt+c
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given the center word t, defined by the Softmax function, as shown in Eq. (2). V is the total number
of words in the corpus.

P (wt+c |wt) = exp
(
w�

t+cwt

)
V∑

i=1

exp
(
w�

i wt

) (2)

The above file path embedding method assigns a word embedding to each directory name.
Embeddings of directories or files with similar context are situated closer in the vector space,
which is in line with our intuitive understanding of system entities. For instance, even though the
entities /var/tmp/etilqs_MA815rf8hAKkd3W and /var/tmp/etilqs_sebAB6ur3dkvhCa have different file
paths, they are both temporary system files, so their file names etilqs_MA815rf8hAKkd3W and
etilqs_MA815rf8hAKkd3W have similar word embeddings. Note that ThreatSniffer doesn’t treat
entity paths as atomic individuals for embedding, it generates embeddings for each directory name
in the file path and then obtains the vector embedding using a weighted averaging approach.

Interaction Sequence Embedding. Through a careful analysis of system audit logs, it was observed
that some processes exhibit fixed behavioral patterns in the sequence of system entity interactions. For
example, during IP address resolution, the system will read /run/resolvconf/resolv.conf and /etc/hosts
in turn. To embed these semantics in system entity interaction sequences, ThreatSniffer first extracts
the interaction sequences from audit logs. It then employs a word embedding model to gain the system
entity vectors that contain behavioral pattern semantics from these interaction sequences.

ThreatSniffer handles system audit logs and extracts system entity interaction sequences in
chronological order. A significant consideration is that programs often generate numerous repetitive
entity interactions during network transfers or file I/O. To downsize these interactions, ThreatSnif-
fer ignores the timestamps of entity interactions and further simplifies interactions into a triplet
(subject, object, relation), where subject represents the initiator of the interaction (i.e., processes), object
represents the target of the interaction (i.e., files and sockets), and relation represents the type of
interaction (e.g., read and write). It only adds interaction to the interaction sequence when it appears
for the first time or has not occurred recently. Moreover, some processes collaborate with sub-processes
or other processes to accomplish tasks, and some processes have only a small number of system entity
interactions (more than 20% of the processes in the Darpa TC3 Theia dataset have fewer than 5
entity interactions), indicating there are also fixed behavioral patterns among different processes. So
the second consideration is preserving inter-process collaboration information without partitioning
logs by different processes. This prevents both increased processing time and the loss of valuable
inter-process collaboration information. Algorithm 1 delineates the procedure for extracting entity
interaction sequences using a sliding-window mechanism, with each interaction sequence containing
L system entity interactions, allowing for the overlap of neighboring interaction sequences.

Algorithm 1: Interaction sequence extraction
Input: Interactions stream I = {i1, i2, . . .}, Max consecutive repeat times T , Sequence length limit L,
Last sequence remain number N
Output: Interaction sequences S = {S1, S2, . . .}
1: S ← ∅, S ← [] , lastPositionDict < K, V >←< ∅,∅ >, position ← 0
2: for i ∈ I do
3: position ← position + 1

(Continued)



1740 CMC, 2024, vol.78, no.2

Algorithm 1 (continued)
4: if i /∈ K then
5: lastPosition ← position
6: else
7: lastPosition ← lastPositionDict < i >

8: end if
9: if position == lastPosition ∨ position > lastPosition + T then
10: Append i to S
11: end if
12: Update < i, position > to lastPositionDict
13: if S.length == L then
14: Add S to S
15: S ← S [−N : ]
16: end if
17: end for
18: return S

Because system entities are rarely polysemy, ThreatSniffer still uses Word2vec [36] as the sequence
embedding model. It extracts interaction types and object entities from each triplet in interaction
sequences and concatenates them together as a corpus to train the Word2vec model to obtain the
vector embeddings of each system entity.

Number Distribution of Entity Interaction Types. The behavior of nodes in the provenance graph
is reflected in the entity interactions connected to them. Different node behaviors lead to different
number distributions of interaction types. Considering the example of ransomware and remote shell
(as shown in Fig. 3), the ransomware process reads files and writes them to encrypted copies, and
then erases the original files. The remote shell receives commands from an external IP, executes the
corresponding commands, and then sends outcomes to the external IP. In addition, different types of
nodes have different interactions, e.g., file read and write exclusively appear between processes and
files rather than sockets. This difference in interaction type distribution can intuitively illustrate the
diversity of entity types. So the number distribution of interaction types is extractd as part of entity
features.

Figure 3: Examples of different processes

ThreatSniffer first counts the number of interaction types, denoted as M = |Xe|. It then
establishes a one-to-one mapping Me : Xe → N to assign a unique integer from 0 to M for each
interaction type. Subsequently, it employs a function F : V → N2∗M to obtain entity features F (v) =
[a0, a1, . . . , aM−1, aM , aM+1, . . . , aM∗2−1], for each entity ∀v ∈ V . Here, ai is computed as Eq. (3). Entity
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features are M ∗ 2 dimensions because the source and target nodes have different semantics [30].

ai =
{|{e|e ∈ In (v) ,Me (edgeType (e)) = i}| , i ∈ 0, . . . , M − 1

|{e|e ∈ Out (v) ,Me (edgeType (e)) + M = i}| , i ∈ M, . . . , 2 ∗ M − 1
(3)

Semantic Fusion. After gathering the d dimensional initial features of system entities from the
above three key aspects: file paths, interaction sequences, and the number distribution of interaction
types, to gain high-quality entity embeddings, ThreatSniffer employs the multi-head self-attention
mechanism [37] to fuse semantics as the semantic augmentation layer. This layer captures high-
level dependencies among different features. For each batch of input feature matrix X, ThreatSniffer
multiplies it separately by parameter matrixes Wq, Wk, and Wv, resulting in Q = {q1, q2, . . . , qn},
K = {k1, k2, . . . , kn}, and V = {v1, v2, . . . , vn}, where n represents the number of attention heads.
Then, it calculates the output values of each head using the scaled dot-product model as shown in
Eq. (4) [37] and integrates the semantic information from all n subspaces (as in Eq. (5) [37]). W 0 is a
learnable matrix. Finally, the outputs are subjected to layer normalization to obtain the ultimate entity
embeddings.

headi = softmax

(
qikT

i√
d/n

)
vi (4)

MultiHead (Q, K, V) = concat (head1, · · · , headh) W 0 (5)

4.2 Provenance Graph Construction

ThreatSniffer converts audit logs into a directed provenance graph with multiple types of edges
and nodes. Each log entry of audit logs represents a system entity interaction and can be denoted as
(subject, object, relation, timestamp), where subject and object are system entities associated with the
interaction, relation denotes the type of the interaction, and timestamp indicates the time when the
entity interaction occurs. Based on the entity interactions recorded in audit logs, a provenance graph
G = (V , E,Xv,Xe, Te) is constructed. Here, V represents nodes in the provenance graph G, correspond-
ing to system entities, and Xv = {process, file, socket} denotes the set of node types. E represents edges,
corresponding to all system entity interactions, and Xe = {execute, open, read, write, . . . , execute}
denotes the set of edge types. Te involves the chronological order of each edge. Since the provenance
graph is required to be directed, the information flow directions of different interaction types are
defined in Table 1 and used as the directions of the edges in the provenance graph. The provenance
graph often includes redundant system entity interactions generated by network transfer or file I/O.
To address this, the pruning approach described in Section 4.1 Interaction Sequence Embedding is
adopted to trim the provenance graph. This reduces the complexity of model learning and attack
investigation without losing any information about potential attacks.

Table 1: Direction of different interaction types

Subject Object Relation Direction

Process File Execute ←
Process File Open ←

(Continued)
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Table 1 (continued)

Subject Object Relation Direction

Process File Read ←
Process File Write →
Process File Unlink →
Process File ModiyFileAttributes →
Process Socket Connect ←
Process Socket RecvFrom ←
Process Socket RecvMsg ←
Process Socket ReadSocketParms ←
Process Socket SendTo →
Process Socket SendMsg →
Process Socket WriteSocketParms →
Process Process Clone →

After constructing a benign provenance graph from attack-free audit logs, ThreatSniffer per-
forms negative sampling to learn the system’s normal behavioral patterns from this benign graph.
Furthermore, interactions observed in the benign provenance graph are considered benign instances,
while interactions not observed are extracted as malicious instances. Due to the sparsity of the
provenance graph, there is an extreme imbalance between interaction pairs and non-interaction pairs.
It is infeasible to treat all unobserved interactions as malicious. Therefore, ThreatSniffer selectively
samples the non-existent edges from the benign provenance graph as irrational interactions. The
negative sampling procedure is delineated in Algorithm 2. Specifically, similar to the negative sampling
methods in mainstream recommender systems [38,39], ThreatSniffer achieves negative sampling by
replacing either the subject or object node with other nodes of the same node type. For each interaction
in the benign provenance graph, ThreatSniffer performs negative sampling of 2K non-existent edges
to create corresponding irrational interactions, where K interactions are generated by replacing subject
nodes and the other by replacing object nodes.

Algorithm 2: Interaction negative sampling
Input: Benign provenance graph G = (V , E,Xv,Xe, Te), Sample number K , Similarity threshold T
Output: Negatively sampled graph G′

1: E ′ ← ∅

2: for e(subject, relation, object) ∈ E do
3: sampleNumber ← 2 ∗ K
4: subjectType ← Xe (subject)
5: nodes ← {node|node ∈ V ,Xv (node) = subjectType}
6: while sampleNumber > K do
7: v′ ← getOneNode(nodes, asSubject)
8: e ← (v′, relation, object)
9: if calculateSimilarity(subject, v′) < T ∧ e′ /∈ E then
10: Add e to E ′

(Continued)
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Algorithm 2 (continued)
11: sampleNumber ← sampleNumber − 1
12: end if
13: end while
14: objectType ← Xe (object)
15: nodes ← {node|node ∈ V ,Xv (node) = objectType}
16: while sampleNumber > 0 do
17: v′ ← getOneNode(nodes, asObject)
18: e ← (subject, relation, v′)
19: if calculateSimilarity(v′, object) < T ∧ e′ /∈ E then
20: Add e to E ′

21: sampleNumber ← sampleNumber − 1
22: end if
23: end while
24: end for
25: G′ ← (V , E, E ′,Xv,Xe, Te)

26: return G′

Since it is impossible to treat all unobserved interactions as malicious instances, it is crucial to
include as much information as possible in a small number of negative sampling edges. In lines 7 and
17 of Algorithm 2, ThreatSniffer adopts a degree-based sampling method [40]. This method calculates
the probability of a node being selected for replacement based on the node’s out-degree or in-degree
(when the node is a source node or a destination node) in the provenance graph. Nodes with higher
degrees are more likely to be sampled for constructing negative samples. The fundamental idea behind
this strategy is that if a widely-used system entity has not interacted with a particular program, there is
a high probability that the program will not interact with this entity, thus learning more individualized
characteristics about this program.

There are a large number of semantically similar system entities (e.g., /var/tmp/etilqs_MA815rf8hA
Kkd3W and /var/tmp/etilqs_sebAB6ur3dkvhCa both correspond to temporary files of Sqlite). When
performing negative sampling for a given system entity interaction, these semantically similar system
entities should not be used to generate irrational samples for that interaction. Therefore, ThreatSniffer
calculates the similarity score between the replacement node v′ and the original node v involved in the

interaction, as shown in Eq. (6).
→
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4.3 Interaction Prediction

Graph neural network has a powerful cognitive ability to handle graph data. Recent research has
extensively utilized graph neural networks to carry out provenance graph-oriented attack detection.
In this interaction prediction model, ThreatSniffer utilizes a heterogeneous graph neural network
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for integrating entity embeddings (Section 4.1) and the provenance graph (Section 4.2). The model
incorporates contextual information in the provenance graph into entity embeddings and then
examines the rationality of system entity interactions to detect stealthy APT-exploited processes.

The provenance graph contains rich contextual information about system runtime. For example,
Firefox (Process) → /home/admin/clean (File) → Clean (Process) illustrates the steps of download-
ing and executing a program. Nevertheless, the system entity embedding approach introduced in
Section 4.1 cannot adequately capture these causal dependencies. Graph neural network learns these
complex dependencies in a provenance graph by aggregating and updating node embeddings along
edges on the graph, achieving an effective integration of entity embeddings and provenance graph.
Specifically, for a given system entity v, ThreatSniffer adopts the heterogeneous graph neural network
as the convolutional layer of interaction prediction model. This layer aggregates embeddings of one-
hop neighbors (aka ego network [41]) and updates the vector representation of entity v. This new vector
contains the entity’s initial embedding and causal dependencies. ThreatSniffer learns rich context in
the provenance graph by stacking multiple convolutional layers.

The following Fig. 4 shows the procedure of a convolutional layer, which aggregates and updates
entity embedding in a provenance graph. In the rest of the narrative, the notation u and notation v
represent the source node and destination node, respectively.

Figure 4: Heterogeneous graph convolutional layer

To learn the direction of edges in the provenance graph, graph neural networks take a node v as the
destination node, and aggregate embeddings from source nodes. This loses the contextual information
when node v is the source node. Therefore, ThreatSniffer adds corresponding reverse edges for each
interaction type in the provenance graph. These reverse edges enable the aggregation to retain the
complete context of node v. As step (a) in Fig. 4, ThreatSniffer adds reverse edges such as ReadBy and
WrittenBy for the Read and Write interactions.

During the convolution of each layer, since there are many different interaction types in the
provenance graph, ThreatSniffer employs the heterogeneous graph neural network to handle each
interaction type separately, as shown in Eq. (7). In this formula, fr is the convolutional layer applied
for each interaction type r, and MAX is the aggregation function.

h(k+1)

v = MAX
r∈R,v∈dst(r)

(
fr

(
gr, hk

ru
, hk

rv

))
(7)

As step (b) in Fig. 4, taking node v as the destination node, ThreatSniffer extracts subgraphs gr

for each interaction type from the 1-hop neighbors of node v. In step (c), it convolves each interaction
type separately using Eq. (8) [31] as fr to obtain new node embeddings under different interaction
type views, e.g., hk−1

v,Read and hk−1
v,Write. Then each new embedding of node v has incorporated its neighbor
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information of the corresponding interaction type.

hk
v,r = σ

(
W · MEAN

({
hk−1

v

} ∪ {
hk−1

u , ∀u ∈ Nr (v)
}))

(8)

Nr (v) represents neighboring nodes of v with interaction type r. hv
k ∈ R

d denotes the d dimensional
vector representation of node v in the No. k propagation layer. This vector aggregates the contextual
information of the k-hop neighbors of node v. Similarly, hk−1

v is the vector representation of node v in the
No. k − 1 propagation layer, and h0

v is the entity embedding generated by Section 4.1. The convolutional
layer integrates the embeddings of each node in Nr (v) with the embedding of node v itself, takes their
average, multiplies by a learnable parameter W , and subsequently employs an activation function σ

to update the node embedding. ThreatSniffer chooses elu [42] as the activation function here because
it does not suffer from neuron death.

In step (d), ThreatSniffer adopts max pooling as the aggregation function MAX to fuse these
newly obtained node embeddings. Compared with other aggregation functions, max pooling tends to
learn representative features, thereby enhancing the model’s expressive capacity.

Once the update for entity embeddings is completed, to predict whether an interaction between
two entities is likely to occur, threatSniffer concats their vectors and uses a three-layer Multi-Layer
Perceptron (MLP) to compute the interaction rationality score.

4.4 Training and Detection

In short, ThreatSniffer embeds system entities from three aspects and fuses these embeddings
using a multi-head self-attention mechanism. Moreover, it constructs provenance graphs from system
audit logs and samples non-existent edges as irrational interactions. It then detects anomaly processes
with the interaction prediction model. The training and detection procedures are described as follows.

In the training phase, the input is attack-free logs and the negatively sampled benign provenance
graph. ThreatSniffer’s training goal is to distinguish between original benign interactions and irra-
tional interactions produced through negative sampling on the benign provenance graph. Specifically,
ThreatSniffer extracts entity file paths and interaction sequences to gain entity embeddings with
Word2vec. After getting file path embeddings, interaction sequence embeddings, and the number
distribution of entity interaction types, ThreatSniffer uses a multi-head self-attention mechanism to
fuse semantics. Based on the fused entity embeddings and the negatively sampled benign provenance
graph, ThreatSniffer aggregates and updates entity embeddings using a heterogeneous graph neural
network, and then computes the rationality of generating interaction between two given entities.
Subsequently, ThreatSniffer calculates the loss and conducts back-propagation to fit normal system
entity interactions without the need for attack samples. Note that the irrational interactions generated
via negative sampling are only used for model training, meaning that entity embeddings will not be
aggregated or updated along these negatively sampled edges. The multi-head self-attention mech-
anism and interaction prediction model are optimized by minimizing cross-entropy through back-
propagation and gradient descent. Since for each interaction in the provenance graph, ThreatSniffer
generates 2K non-existent edges as irrational interactions, the training data suffers from sample
imbalance. To mitigate this, ThreatSniffer uses the weighted cross-entropy loss, as shown in Eq. (9), to
balance the information learned from the benign and irrational samples. The weights for benign and
malicious samples are set to 2K:1. Output of the training phase is four models, i.e., Word2vec for file
path, Word2vec for interaction sequence, multi-head self-attention, and heterogeneous graph neural
network.
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Lwce = − 1
N

N∑
i=1

[2K · yi · log (pi) + (1 − yi) · log (1 − pi)] (9)

In the detection phase, input audit logs may contain APT activities and only a limited number
of system entities and interactions are related to the attack. The flowchart of detection is depicted in
Fig. 5. Firstly, ThreatSniffer will extract and embed file paths and interaction sequences with trained
Word2vec models. Additionally, a suspicious provenance graph will be constructed. The graph makes
it easy to count the number distribution of entity interaction types. Secondly, the file path embeddings,
interaction sequence embeddings, and number distribution of entity interaction types are fed into the
trained multi-head self-attention model for semantic fusion. At last, the new fused entity embeddings
and the suspicious provenance graph are integrated by the trained heterogeneous graph neural network
to calculate the interaction rationality of two entities involved in each edge, which belongs to the
input provenance graph. When the rationality score is smaller than the predefined threshold, the
corresponding interaction is considered unexpected. Since at least one of the two entities involved in an
interaction is a process, ThreatSniffer takes the process as the initiator of the unexpected interaction,
thus the process is regarded as the result of anomaly detection. This result can be provided to security
engineers for further investigation.

Figure 5: The flowchart of detection phase

5 Evaluation
5.1 Dataset and Experimental Setup

This paper evaluates the effectiveness of ThreatSniffer on the DARPA TC3 Theia dataset [43].
The public APT dataset is a set of Linux system entity interaction logs collected during the third
red-team vs. blue-team adversarial engagement in April 2018. Red-team attackers used Firefox
backdoors, browser extensions, and phishing email attachments to carry out APT campaigns during
the engagement. The interaction logs and ground truth are publicly available [44]. The GroundTruth
file records the tools and attack steps exploited by attackers. These attack details make it easy to
classify benign and attack activities according to the attack details documented in the GroundTruth
file. Processes associated with attack activities are marked as Positive, and processes occurring during
attack activities but unrelated to the attack are marked as Negative. The benign provenance graph is
constructed based on benign activities and benign interactions are divided into training and validation
sets at a 9:1 ratio. The suspicious provenance graph is constructed based on attack activities.

All experiments are conducted on a server with an Intel Xeon Platinum 8255C CPU (12 ∗
2.50 GHz), 43 GB of physical memory, an Nvidia RTX 3090 (24 GB) GPU, and an operating system
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of Ubuntu 20.04. ThreatSniffer is implemented with Python 3.8, Pytorch 1.10 [45], and Deep graph
libaray 0.9.1 [46]. Entity embeddings are vectorized in 128 dimensions, where 50 dimensions are file
path embeddings, 50 dimensions are interaction sequence embeddings, and the other 28 dimensions
are number distributions of interaction types. Self-attention mechanism head count is set to 16. The
number of convolutional layers to learn interaction contextual information is 2. The adam optimizer
[47] is adopted for model training with a learning rate of 0.001 and a fixed batch size of 2048.
ThreatSniffer is trained for 60 epochs and the training is terminated when the loss on the validation
set doesn’t decrease for 5 consecutive epochs. The dropout [48] technique is adopted to address the
over-fitting problem and the dropout rate is set to 0.2.

The metrics Precision, Recall, and F1-score are used to evaluate the effectiveness of ThreatSniffer
detecting APT-exploited processes. The precision represents the proportion of processes predicted
by ThreatSniffer as anomalies that are truly related to APT campaigns. The recall represents the
proportion of all processes related to APT campaigns that are successfully detected by ThreatSniffer.
The F1-score calculates the harmonic mean of Precision and Recall, providing a balanced metric.

5.2 Impact of Negative Sampling Number

ThreatSniffer performs negative sampling on the benign provenance graph to characterize irra-
tional entity interactions. The negative sampling number K indicates that each benign interaction is
understood through 2K non-existent edges. This subsection vary the key parameter K from 5 to 25 to
investigate its impact on detection performance. Experimental results are shown in Fig. 6.

Figure 6: Impact of parameter K

As the negative sampling number K increases, ThreatSniffer gains a better understanding of
benign interactions through more irrational edges. Recall increases with the number of negative
samples in the initial stages. At K = 15, ThreatSniffer can detect all APT-exploited processes.
Subsequently, an excessive number of irrational edges leads to overfitting, which results in more
false positives and reduces the model’s precision. Considering both precision and recall, the negative
sampling number of K = 15 is chosen for other experiments, where the F1-score is at its peak.

5.3 Comparison Study

Different from existing graph-level APT detection studies such as StreamSpot [13] and Unicorn
[14], ThreatSniffer is a node-level detector that detects anomaly processes related to APT campaigns.
Unfortunately, there are only a few fine-grained APT detection studies with available source code,
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i.e., ShadeWatcher [25], APT-KGL [27], and ThreaTrace [30]. ShadeWatcher is not fully open-source.
Its key component is proprietary. So this subsection compares ThreatSniffer with ThreaTrace and
APT-KGL to evaluate its detection effectiveness. ThreaTrace designs a GraphSage-based multi-model
framework. It takes the node type as the label of entity to learn different kinds of benign nodes in the
benign provenance graph. APT-KGL conducts supervised learning on the provenance graph and then
detects APT-exploited processes. It defines meta-paths and then applies meta-path-based heteroge-
neous graph attention network [49] to learn context and embed system entity. Their open-source code
[50,51] are used to train models to detect APT-exploited processes. Since ThreatSniffer only reports
processes related to APT campaigns while ThreaTrace reports entities, for a fair comparison, the
process entities are filtered from ThreaTrace anomaly detection results to compute evaluation metrics.
The experimental results are shown in Table 2.

Table 2: Results of the comparison experiment

Method Precision Recall F1-score

ThreaTrace 0.294 0.345 0.317
APT-KGL 0.683 0.966 0.8
ThreatSniffer 0.744 1 0.853

ThreatSniffer shows better detection performance than ThreaTrace. ThreaTrace is almost unable
to detect APT-exploited processes1. Its basic idea for APT detection is that the predicted node types of
anomaly entities will deviate from their actual types. This idea does not align with our intuition about
APT campaigns. Processes associated with attack activities inevitably generate unexpected system
entity interactions, but these interactions do not cause process nodes to be predicted as other types
of nodes, e.g., a malicious process reading and leaking a sensitive file will not cause the node to
be recognized as a socket or file entity. In addition, ThreaTrace only uses number distributions of
interaction types as entity initial features. Its GraphSage-based multi-model framework does not take
into account the semantic differences of various interaction types in the provenance graph. As a result,
ThreaTrace is hard to comprehensively understand system behavior.

Compared to APT-KGL, ThreatSniffer shows better detection performance. ThreatSniffer per-
forms anomaly-based detection. It fits normal system activities and treats deviations from normal
activities as anomalies. Given that APTs are likely to involve unknown attacks, recent research
(e.g., ShadeWatcher [25], ProGrapher [29], Kairos [33]) suggests that anomaly-based detection is
relatively suitable for the scenario of APT detection. This enables ThreatSniffer to identify all attack
activities and achieves a higher recall. APT-KGL also employs a heterogeneous graph neural network
to consider the heterogeneous characteristics of provenance graphs. However, it only relies on the
provenance graph to obtain entity embeddings, ignoring the rich semantics of system entities in
aspects such as file paths, interaction sequences, etc. ThreatSniffer gets system entity embeddings
from multiple aspects and then utilizes a multi-head self-attention mechanism for semantic fusion.
Thus ThreatSniffer has a more comprehensive grasp of entity semantics. Entity embeddings with rich
semantics enable deep learning models to distinguish benign behaviors from attack activities more
accurately [33,52,53]. This is the key factor contributing to ThreatSniffer’s higher precision.

1ThreaTrace labels the nodes in GroundTruth file and their 2-hop ancestors and descendants as anomalies, even if these nodes are not related to the attack [33]. That is
why our reproduction results for ThreaTrace are worse than those in that paper.
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5.4 Ablation Study

Feature Ablation. ThreatSniffer understands system entities from three aspects: File Paths (Feat1),
Interaction Sequences (Feat2), and Number Distribution of Interaction Types (Feat3). This exper-
iment evaluates their contributions to entity semantics separately. Specifically, the three embedding
modules aforementioned in Section 4.1 are individually removed to validate the effectiveness of
different features. Results as shown in Table 3 and Fig. 7.

Table 3: Results of feature ablation experiment

Feature Precision Recall F1-score

Feat1+Feat2 0.676 0.793 0.73
Feat1+Feat3 0.477 0.724 0.575
Feat2+Feat3 0.641 0.862 0.735
Feat1+Feat2+Feat3 0.744 1 0.853

Figure 7: ROC curves of feature ablation experiment

The results indicate that removing any one of the features, i.e., File Paths, Interaction Sequences,
and Number Distribution of Interaction Types, leads to varying degrees of decline in detection per-
formance. This suggests that all features contribute positively to the APT-exploited process detection
task. The detection performance of ThreatSniffer decreases most when the features in interaction
sequences are removed. This is because understanding system entity interaction behavior requires
not only knowing the entities involved in interactions but also comprehending the temporal order of
interaction sequences. The program behavioral patterns involved in interaction sequences are crucial
for understanding interaction behavior. Removing the features in file paths or the number distribution
of interaction types has a comparatively minor impact on the model’s detection effectiveness. This
indicates the semantics in these two aspects only play a secondary role in understanding entity
interaction behavior. In some entity attributes such as file paths, APT-exploited entities do not exhibit
obvious distinctions from regular system entities, highlighting the stealthy of APT campaigns.

Module Ablation. ThreatSniffer employs a multi-head self-attention mechanism for semantic
fusion and conducts negative sampling to extract non-existing edges as irrational interactions. It then
adopts a heterogeneous graph neural network to learn the entity interaction context in a provenance
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graph and finally uses an MLP to predict the interaction rationality of two given system entities. This
experiment removes or replaces each module of ThreatSniffer separately to verify their effectiveness.
Each comparison model for module ablation is designed as follows, and the experimental results are
shown in Fig. 8.

Model-1: It concats entity initial embeddings together instead of using the multi-head self-
attention mechanism for semantic fusion.

Model-2: It uses the single-head self-attention mechanism for semantic fusion.

Model-3: It samples irrational interactions according to a uniform distribution instead of the
degree-based sampling.

Model-4: It directly feeds entity embeddings into the three-layer MLP without using the graph
neural networks to understand entity interaction context.

Model-5: It uses a dot product to predict the entity interaction rationality instead of MLP.

Figure 8: Results of module ablation experiment

To verify the effectiveness of adopting the multi-head self-attention mechanism for semantic
fusion, the multi-head self-attention module is replaced with plainly concat (Model-1) or single-head
self-attention (Model-2). As shown in Fig. 8a, when the self-attention mechanism is removed or the
number of attention heads is reduced, the detection performance decreases, indicating that the multi-
head self-attention mechanism can learn the high-level dependencies between different features.

To verify the impact of the degree-based negative sampling component, the degree-based sampling
is replaced with random negative sampling (Model-3). The experimental results are shown in Fig. 8b,
the model is still able to find all processes associated with APT campaigns, indicating that attack
activities do generate some unexpected system entity interactions. These irrational interactions conflict
with their contextual background. This characteristic of the attack activities can be captured by
sampling non-existent edges as irrational interactions. However, random negative sampling makes
lower precision, i.e., Model-3 produces more false positives since degree-based negative sampling can
learn more individualized characteristics of entities, enabling ThreatSniffer to have a more accurate
understanding of normal system entity interactions.
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To validate the necessity of provenance graph contextual information for understanding system
entity interactions, the entity embeddings are directly fed into MLP without the graph neural network
aggregating the entity interaction context (Model-4). As shown in Fig. 8c, the decline in detection
performance after removing the graph neural network is obvious. Because the provenance graph
contains the interaction types and causal dependencies between system entities, which intuitively
describes the behavior of system entities. The interaction context in provenance graph is vital for
understanding entity interaction. This is in line with the experience in the field of NLP, where context
enables a better understanding of the current word.

To verify the effectiveness of using MLP to predict entity interaction rationality, MLP is replaced
with a dot product (Model-5). The results in Fig. 8d indicate that MLP yields better detection
performance, as the MLP possesses stronger expressive capabilities compared with the dot product.

6 Conclusion and Future Work

This paper introduced an APT-exploited process detection approach called ThreatSniffer. It
embeds and fuses system entity semantics from three aspects: file paths, interaction sequences, and
the number distribution of interaction types, then employs a semi-supervised interaction prediction
model for detecting anomaly process. Based on the above design, ThreatSniffer achieves fine-grained
APT detection. Evaluation results demonstrate that ThreatSniffer outperforms other node-level APT
detection methods. ThreatSniffer can work as a part of SIEM, and point out specific anomaly system
entities to speed up attack investigation or threat hunting. Compared to graph-level anomaly detection,
fine-grained results and their context are easier to correlate with IOC or other threat intelligence, thus
reducing the manual efforts of security analysis.

One limitation of anomaly detection models is false positives. Typically, security engineers need
to consult a large amount of reference material to confirm false positives as benign. Recently, large
language models (LLM) have demonstrated remarkable advantages in knowledge integration and
utilization. LLM might be a new way to assist security engineers in analyzing alerts. Our future
work plans to utilize common LLM [54] or security-specific LLM [55] as auxiliary tools for security
engineers analyzing the causes of alerts. Another limitation is data poison. ThreatSniffer requires
attack-free audit logs as the dataset for training. If attackers poison the training data to include
malicious activities, ThreatSniffer will fail to detect such attacks. In practice, audit logs that have been
checked by security engineers can be used.
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