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ABSTRACT

The RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) protocol is essential for efficient communi-
cation within the Internet of Things (IoT) ecosystem. Despite its significance, RPL’s susceptibility to attacks remains
a concern. This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the
decreased rank attack in both static and mobile network environments. We employ the Random Direction Mobility
Model (RDM) for mobile scenarios within the Cooja simulator. Our systematic evaluation focuses on critical
performance metrics, including Packet Delivery Ratio (PDR), Average End to End Delay (AE2ED), throughput,
Expected Transmission Count (ETX), and Average Power Consumption (APC). Our findings illuminate the
disruptive impact of this attack on the routing hierarchy, resulting in decreased PDR and throughput, increased
AE2ED, ETX, and APC. These results underscore the urgent need for robust security measures to protect RPL-
based IoT networks. Furthermore, our study emphasizes the exacerbated impact of the attack in mobile scenarios,
highlighting the evolving security requirements of IoT networks.
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1 Introduction

The Internet of Things (IoT) serves as the gateway to the vast realm of the Internet. Its primary
aim is to establish connectivity between all types of devices, ranging from the smallest to the most
intricate [1]. Leveraging its wireless capabilities and contextual awareness, IoT finds applications in
domains like smart cities [2] and healthcare [3] monitoring by employing cost-effective and energy-
efficient devices. Yet, many devices within the IoT realm are resource-constrained, requiring solutions
that are lightweight, secure, and adaptable for mobility [4]. One example is 6LoWPAN, an adaptation
layer within the IoT architecture, designed to function on devices with limited resources [5]. The IoT
landscape requires the development of streamlined applications to facilitate communication among
constrained nodes within restricted networks. 6LoWPAN operates across the network and data link
layers, optimizing the transmission of IPv6 packets in networks with resource limitations [5]. Due
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to the associated overhead, conventional routing methods like Adhoc On-Demand Distance Vector
(AODV) [6], Open Shortest Path First (OSPF) [7], and Dynamic Source Routing (DSR) [8] are not
advisable for use in such constrained networks. RPL introduced by the Internet Engineering Task
Force (IETF) within the ROLL group, offers an efficient routing solution for intelligent IP devices in
the context of 6LoWPAN [9]. Numerous Internet of Things (IoT) applications with limited resources,
such as agriculture [10], remote area monitoring [11], military deployments, and the healthcare sector
[12] employ the RPL protocol. It has solidified its status as the protocol of choice at the network
layer, emerging as a prominent routing solution within low-power and lossy networks (LLNs). As
the Internet of Things (IoT) continues to interconnect billions of devices, a critical need has arisen
to confront the array of threats targeting IoT [9]. The proliferation of resource-constrained devices
alongside the prevalence of lossy networks amplifies the scope of potential vulnerabilities within
the IoT landscape. Recent years have seen a surge in attacks on IoT networks, with adversaries
exploiting not only the communication channels but also the vulnerabilities presented by compact
devices themselves [13]. Even 6LoWPAN, though not immune, faces security challenges, leaving it
susceptible to exploitation, an issue that holds significant consequences, particularly within lossy
networks. RPL exhibits susceptibility to attacks that exploit aspects of network topology, traffic
patterns, and resource allocation. This research focuses on routing attacks with a particular emphasis
on the decreased rank attack within the context of RPL-based 6LoWPAN [14]. In the context of RPL-
based IoT networks, the concept of “Rank” plays a crucial role by offering a relative assessment of
the quality of paths to the intended destination. What distinguishes the Decreased Rank attack is
its exclusive association with the RPL standard, making it one of the most formidable threats to the
network’s routing efficiency and energy utilization. The importance of addressing Decreased Rank
attacks lies in the fundamental objectives of upholding network security and stability. These attacks
provide malicious actors with the means to manipulate traffic within the RPL network by altering
their priority status, resulting in reduced data throughput and undesirable communication delays.
Furthermore, these attacks pose significant risks to the security and privacy of IoT networks. They can
lead to data exposure and interception by diverting traffic and causing delays, as well as unauthorized
data access by manipulating routing paths, directly undermining privacy [15,16]. This dual impact on
network performance is of paramount significance, especially when considering the inherent resource
limitations of IoT devices. Detecting such routing attacks in the context of RPL-based 6LoWPAN
presents notable challenges, primarily due to the dynamic nature of IoT networks [17]. While our work
primarily focuses on analyzing the performance of the RPL protocol under decreased rank attacks
within static and mobile environments, it’s worth noting that the privacy-preserving mechanisms
discussed in [18,19] serve as illustrative examples of how privacy can be safeguarded in network
operations, a matter of utmost importance in the broader context of IoT network security.

2 Contributions

This study offers valuable insights into the impact of the decreased rank attack on RPL-based
networks. It achieves this through a meticulous analysis, quantifying changes in performance metrics,
including Packet Delivery Ratio (PDR), Average End-to-End Delay (AE2ED), throughput, Expected
Transmission Unit (ETX), and Average Power Consumption (APC). These metrics provide a holistic
view of how the attack affects various aspects of network operation, shedding light on its consequences.
The study’s consideration of both static and mobile network environments extends the applicability
of its findings to diverse scenarios, offering a more comprehensive assessment. The novel inclusion
of the Random Direction Mobility Model (RDM) within the decreased rank attack scenarios adds
an innovative dimension. Additionally, this study investigates node scalability, ranging from 10 to 40
nodes, addressing potential scalability challenges and delving into the attack’s impact as the network
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size fluctuates. This multidimensional analysis enhances our understanding of the implications of the
decreased rank attack in RPL-based networks, providing valuable insights for network practitioners
and researchers. Moreover, most works in the literature even the recent ones comely use the COOJA
simulator Contiki version 2.7 as a simulation tool. In this manuscript, we used the COOJA simulator
version 3.0, which has different and recent features compared to other versions including the update
of platforms and bug fixes. Furthermore, with its in-depth examination of the decreased rank attack
and its specific focus on details, this research serves as a critical resource in fortifying the security and
improving the performance of RPL-based IoT networks, especially in the face of evolving challenges.
It contributes to bridging the knowledge gap regarding the impact of the decreased rank attack on
RPL networks, supporting the development of more effective security strategies and protocols for IoT
environments.

This paper is structured into several key sections, each contributing to a comprehensive explo-
ration of the subject matter. In Section 3, we delve into the core RPL specifications, shedding light on
the attack utilized in this study and offering insights into mobility within the RPL framework. Building
upon this foundation, Section 4 provides a thorough review of pertinent research, both in scenarios
involving RPL with and without attacks and across both static and mobile environments. Section 5
is dedicated to detailing the specific setups used in our simulations and the subsequent performance
evaluations. The experimental outcomes and a comparative analysis are unveiled in Section 6, allowing
for a deeper understanding of the results. Finally, in Section 7, we end the paper by summarizing our
findings and charting a course for future research endeavors in this domain.

3 Background

This segment delves into the RPL protocol, a prominent choice for LLNs. Additionally, it
furnishes an overview of the decreased rank attack within the context of RPL-based 6LoWPAN
networks.

3.1 RPL Overview

The RPL protocol was devised to meet the specific challenges presented by low-power and
lossy networks (LLNs) within the expansive landscape of IoT [9]. As the IoT continues to expand,
the necessity for effective communication among resource-constrained devices becomes increasingly
pivotal. RPL stands as a foundational solution that addresses these challenges, all while optimizing
energy usage and maintaining a high degree of adaptability. Its approach to efficient routing is rooted
in a combination of energy conservation and scalability, making it an essential protocol for LLNs.
The topology of the RPL network is structured as a Directed Acyclic Graph (DAG), which may be
further segmented into one or more Destination Oriented Acyclic DAGs (DODAGs). Each sink node,
within the network corresponds to a DODAG. Additionally, RPL enables three types of traffic flows;
point-to-point (P2P), multipoint-to-multipoint (MP2MP), and point-to-multipoint (P2MP) [20]. RPL
employs four values to maintain and identify its topology. The first parameter is RPLInstanceID,
which serves as the identifier for one or more Destination-Oriented Acyclic Graphs (DODAGs). In
cases where several InstanceIDs exist within the same network, each one defines a distinct set of
DODAGs that are independently optimized for various Objective Functions (OFs). These DODAGs
collectively form an RPL Instance, with all DODAGs in that instance using the same OF. The second
parameter is DODAGID, a unique identifier for each individual DODAG. When combined with
RPLInstanceID, it provides a unique designation for a specific DODAG within the network. The
third parameter is VersionNumber, which increments when a DODAG root reconstructs a DODAG.
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It can be employed to distinguish different versions of a DODAG when combined with InstanceID and
DODAGID. The final parameter is Rank, which identifies the position of an individual node within a
DODAG. It is determined based on the node’s relationship to the DODAG root during classification
within a specific DODAG Version [9].

ICMPv6 control messages are pivotal in optimizing RPL’s performance in low-power and lossy
IoT networks. They are fundamental for establishing and maintaining efficient routing paths, which
are crucial in such network environments. Among these messages, the DODAG Information Solicita-
tion (DIS) message is proactive, allowing nodes to gather information about the DODAG root and its
configuration parameters. This empowers nodes to identify potential parent nodes, enhancing routing
path optimization. On the other hand, the DODAG Information Object (DIO) message periodically
broadcasts essential configuration information from the DODAG root. It ensures all network nodes
share a synchronized understanding of the DODAG’s structure, including version details and node
ranks. The Destination Advertisement Object (DAO) message enables non-root nodes to broadcast
their presence, facilitating parent-child relationships within the DODAG. This supports the estab-
lishment of efficient routing paths and sustains network connectivity. The Destination Advertisement
Acknowledgment (DAO-ACK) message validates successful parent-child relationships and accurate
routing path configurations. Objective functions (OF) within the RPL protocol dynamically adjust
route selection criteria, considering metrics like energy efficiency, latency, link quality, and reliability
[21]. In RPL, communication within a Destination-Oriented Directed Acyclic Graph (DODAG)
involves two main types of routes: upward routes for data transmission from leaf nodes to the root, and
downward routes for control information and updates from the root to the network endpoints. These
bidirectional routes ensure efficient communication and network management. Furthermore, RPL
offers three operational modes for low-power and lossy networks: storing, non-storing, and hybrid
modes. Storing mode uses specific nodes with more resources as storing nodes to maintain routing
information. Non-storing mode dynamically makes routing decisions without local storage, suitable
for larger networks with resource-constrained nodes. Hybrid mode combines elements of storing and
non-storing, accommodating networks with mixed resource capabilities. The choice of mode depends
on factors like network size and node constraints. An integral component of RPL’s energy-efficient
approach is duty cycling, which alternates nodes between active and sleep states to manage energy
resources. While RPL includes inherent security mechanisms, vulnerabilities like rank manipulation
and selective forwarding should be addressed. Configurable parameters, including Trickle timer
intervals, minimum hop rank increase, and path cost, allow fine-tuning RPL’s performance to specific
network conditions [21].

3.2 Decreased Rank Attack

The Decreased Rank Attack is a strategically orchestrated exploitation of the RPL protocol’s
rank-based routing mechanism, designed to compromise the integrity and performance of IoT
networks. It is a type of traffic attack targeting RPL [14]. The attack strategy unfolds through distinct
phases. It initiates with the deliberate selection of a particular network node as the target for com-
promise, utilizing vulnerabilities, weak security mechanisms, or code injection to gain unauthorized
access. Once control is established, the attacker manipulates the node’s rank by intentionally lowering
it, misleading the network into placing it lower in the hierarchy than its actual position [14]. This
manipulated rank then entices legitimate nodes during parent selection, leading them to favor the
compromised node. Consequently, routing choices are diverted, enabling the attacker to direct traffic
through suboptimal paths. The impact is profound and multi-faceted. Disrupted routing hierarchy
results in inefficiencies, degraded performance manifests as reduced PDR and AE2ED and heightened
power consumption emerges from compromised nodes participating in suboptimal routing. Moreover,
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the attack raises significant security concerns, as unauthorized control over network nodes can lead
to unauthorized data access manipulation. These cumulative consequences underscore the need for
robust countermeasures to safeguard the integrity and security of RPL-based IoT networks against the
Decreased Rank Attack [14]. To enhance the comprehension of the Decreased Rank Attack process,
Fig. 1 illustrates a flowchart detailing the key steps involved in this attack. It begins with the attacker’s
meticulous selection of a target node, exploiting security vulnerabilities to gain unauthorized access.
Once in control, the attacker manipulates the node’s rank to appear lower in the hierarchy, enticing
legitimate nodes to choose it as a parent. This diverts routing decisions, leading to traffic being
routed through less optimal paths, causing inefficiencies and degraded performance, including reduced
Packet Delivery Ratio (PDR) and increased Average End-to-End Delay (AE2ED). Additionally,
compromised nodes in suboptimal routing increase power consumption. The attack concludes when
the attacker achieves their goals, significantly affecting the network’s efficiency and stability.

Figure 1: Decreased rank attack flowchart
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3.3 Mobility and RPL

The RPL protocol holds significant prominence in establishing efficacious communication path-
ways within Internet of Things (IoT) networks particularly in resource-constrained environments.
By employing a hierarchical framework termed a Destination-Oriented Directed Acyclic Graph
(DODAG), it optimizes energy utilization and ensures dependable data routing from source nodes
to sink nodes [9]. However, the ubiquity of mobile nodes in IoT networks introduces dynamism to
network topology. These mobile entities, encompassing vehicular units and unmanned aerial vehicles,
engender frequent alterations in connectivity patterns, thereby posing intricate challenges to sustaining
stable communication pathways as nodes undergo intermittent connectivity or traverse within the
network [22]. Regrettably, the inherent dynamism of mobile IoT networks fosters vulnerabilities
susceptible to exploitation by potential adversaries. Security breaches, including selective forwarding,
black-hole attacks, and spoofing, attain heightened impact due to the uncertainty inherent in node
positions and the fluid network configurations engendered by mobility. The correlation between
mobility and security attacks exacerbates the repercussions of malevolent actions. For instance, a
mobile malicious node may adroitly evade detection while traversing through the network, thus
compounding the efficacy of attack identification and subsequent mitigation [23]. Given this intri-
cate symbiosis, meticulous analysis of RPL’s comportment under both attack scenarios and node
mobility emerges as a critical imperative. This evaluative undertaking furnishes discernment into
the dynamic interplay between RPL’s operational performance and its security attributes within the
intricate environment of IoT ecosystems. By scrutinizing key metrics, encompassing packet delivery
ratios, latency profiles, energy consumption patterns, route stability indices, and convergence times,
researchers can unearth the protocol’s tenacity against security breaches and its adaptability to
the flux of network dynamics catalyzed by mobility. A deep understanding of how RPL handles
these interconnected challenges influences the development of protocol extensions that leverage
mobility insights. These extensions are designed to address emerging security threats while maintaining
communication pathways even in the dynamic context of modern IoT applications. Categorized by
[24], mobility models exhibit a binary division with Sink-based models and Non Sink-based models
constituting the two primary categories. Further subdivision of the latter yields two distinct sub-
categories: synthetic and Trace-based models. Notably, synthetic models encompass two sub-classes,
namely, entity mobility models and group-based mobility models. Within the realm of Entity mobility
models, a dual categorization emerges giving rise to Human-based models and Object-based models.
The Human-based models undergo additional bifurcation differentiating between Macroscopic and
Microscopic variants. Noteworthy is the classification of the object-based mobility models within
which the accidental and intentional models are positioned. These models are conventionally tailored
to represent object movements, while still accommodating the utilization of human or group-based
models. Furthermore, the intentional mobility models unveil a tripartite categorization, encompassing
Mobility models with spatial dependency, Mobility models with temporal dependency, and Mobility
models with geographical restrictions. Haut du formulaire.

4 Related Work

Numerous studies within the literature have been dedicated to investigating the implications of the
decreased rank attack on the RPL protocol, particularly in static environments. These investigations
delve into the potential vulnerabilities and disruptions caused by this attack type on the network’s
performance and reliability. In their research, authors in [25] demonstrated that a change in rank
value has a significant impact on network performance. They examined a scenario involving Wireless
Sensor Networks (WSNs) using power line communication, where a node’ changes. This resulted in
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the emergence of loops between child nodes and their parent node, ultimately causing an unstable
network topology. Authors [26] analyzed the influence of four distinct rank attacks on both RPL
performance and network topology. Their findings indicate that the parameters most significantly
affected are the delivery ratio, node count, the DIO messages, and network delay. In their work
[27], the authors introduced a novel rank-based attack strategy where the attacker deliberately sends
false rank and routing metric values into the network, intensifying the impact of the attack. This
maneuver compels neighboring nodes to establish routing paths through the node executing the
attack. In a separate study [28], researchers examined the consequences of rank attacks on spoofed IP
addresses. However, it is worth noting that this particular investigation does not differentiate between
the impacts of increased and decreased rank attacks. In [29], the authors presented both a practical and
simulated implementation of RPL, featuring tailored adjustments designed to support the needs of the
Advanced Metering Infrastructure (AMI) within the context of Smart Grid (SG) applications, which
have distinct wireless sensor network (WSN) routing requirements. They assess the performance of
RPL by conducting experiments with 140 nodes in a wireless sensor testbed (IoT-LAB) and simulated
scenarios with 1000 nodes using the Cooja simulator. These evaluations were carried out to gauge
RPL’s performance in networks of medium and high node densities. To gauge RPL’s effectiveness, the
authors employ two routing metrics for the selection of paths: ETX and HOP Count (HC). These
metrics play a pivotal role in assessing RPL’s performance across key factors, including network
latency, PDR, control traffic overhead, and power consumption. In their study conducted in [30],
the authors examined the effect of three specific attacks on RPL networks: Increase Number attack,
Hello Flooding attack, and Decrease Rank attack. They further explored the repercussions of these
attacks in scenarios involving multiple attackers and over time. The outcomes of their simulations
demonstrated that these attacks could significantly disturb network performance. Notably, the rise in
the attackers’ number primarily affects, E2ED, network throughput and PDR.

Extending the investigation to dynamic settings, the literature also encompasses studies focusing
on the decreased rank attack’s impact within a mobile environment. Recognizing the unique chal-
lenges posed by mobility, researchers have explored how nodes’ changing positions and intermittent
connections can exacerbate the effects of the attack. Authors in [31] provided a comprehensive review
of routing protocols designed for Low-Power and Lossy Networks (LLNs), with a specific focus
on RPL and its relevant mobility extensions. The authors conducted simulations of RPL and its
extensions using Cooja under various conditions employing the Random Waypoint Model (RWP).
Their findings led to a classification of these protocols into two groups. The first group, although
more responsive to mobility, suffers from poorer performance due to their substantial control of
traffic requirements. Conversely, the second group includes less responsive protocols with lower control
traffic, leading to superior overall performance. This underscores the adverse impact of control
traffic on maintaining routing tables in LLNs, which operate at low data rates and face spectrum
usage limitations. Authors in [32] assessed RPL’s performance across three distinct configurations:
network scalability, multiple sinks, and mobility models. They employed two distinct scenarios for their
evaluation. The first scenario was based on group models, where they arbitrarily selected the RPG and
Nomadic Model. In contrast, for the entity models, they opted for three specific models: Random Walk
(RWK), Random Waypoint (RWP), and Self-Similar Least Action Walk (SLAW). On the other side,
authors of [33] conducted comprehensive testing of RPL and assessed its performance within real-
world IoT applications. Their evaluation encompassed a range of scenarios that considered various
application requirements and challenges. These scenarios involved factors such as node mobility,
outdoor and indoor environments, and deployment constraints. In [34], authors assessed the impact of
two IoT routing attacks including the decreased rank attack and DIS attack when a mobile attacker
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is involved, aiming to provide a thorough evaluation in comparison to scenarios involving a static
attacker. They compared these attacks with regard to PDR and average power consumption. Through
simulations, the authors found that when the attacking node exhibits mobility, there is an average
power consumption increase of 36.6% and a 14% reduction in PDR compared to situations where
the attacking node remains stationary. In [35], Ibrahim et al. assessed the impact of the RPL rank
attack using the standard RPL protocol, evaluating it in both static and mobile environments. Their
findings reveal that the rank attack exerts a more pronounced influence on RPL performance in mobile
environments, whereas its effect is diminished in static environments. Authors in [14] examined the
impact of the rank attack on RPL. They also conducted extensive simulations across four different
network topologies, which encompassed two variations of grid topologies, a random topology, and a
random topology featuring mobile nodes. In [36], the authors explored the network performance of the
RPL protocol, employing it within static networks to manage power consumption while maintaining
network topology Quality of Service (QoS). Furthermore, they delved into RPL’s behavior within a
mobile context, assessing its performance with the Random Waypoint (RWP) mobility model and
quantifying its power consumption. To gauge the effects of these models and their power usage, they
conduct a comparative analysis between the static model and the RWP model, both utilizing the RPL
routing protocol. In their work presented in [37], the authors examined the RPL’s performance in
the context of a smart home network topology. Their study included a systematic analysis where they
illustrated how each type of rank attack variant and the location of the attacking node within the
network topology could potentially degrade network performance. Moreover, in [38], the researchers
provided an extensive examination of the rank’s influence on RPL networks. They conducted thorough
experimental analyses across four distinct RPL network topologies and assessed the consequences
of the rank attack. To ensure a comprehensive evaluation of the rank attack’s impact, the authors
utilized both grid-based and randomized variations of network topologies. Within the grid context,
the topology was further categorized into grid corner and grid center, dependent on the location of
the sink node. Meanwhile, in consideration of mobility, the random topology was subdivided into
two variations: one with stationary nodes and the other involving mobile nodes. Table 1 provides an
overview of pertinent research and highlights its distinctions from existing literature that has explored
the effects of the decreased rank attack on the RPL network in both static and mobile environments.

Table 1: Comparative overview of prior research and the current study

Related
work

Year Performance metrics Simulator Mobility
support

Attack

[25] 2010 Stabilization time, DIOs generated NS2 No No
[26] 2013 Number of affected nodes, E2ED,

throughput, PDR, number of DIO messages
generated

Cooja 2.5 No Yes

[27] 2016 PDR, DIOs generated, percentage of
network nodes converged, E2ED

Cooja No Yes

[31] 2016 Control traffic, data traffic ratio, CPU usage,
radio usage, PDR, delay

Cooja Yes No

[27] 2017 PDR, E2ED Cooja 2.7 No Yes

(Continued)
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Table 1 (continued)

Related
work

Year Performance metrics Simulator Mobility
support

Attack

[32] 2018 Control traffic overhead, energy
consumption, PDR, number of hops, ETX

Cooja Yes No

[29] 2019 Control traffic overhead, PDR, ETX,
latency, average power consumption

Cooja No No

[33] 2019 Throughput, latency, PDR, average
power consumption.

Cooja Yes No

[34] 2020 PDR, average power consumption Cooja Yes Yes
[35] 2020 Control overhead, preferred parent changes,

convergence time, energy consumption,
lifetime

Cooja 3.0 Yes Yes

[30] 2022 Throughput, latency, PDR, average
power consumption

Cooja 3.0 No Yes

[14] 2022 Packets received, control message count,
inter-packet time, average power
consumption

Cooja 2.7 Yes Yes

[36] 2023 Node power, control traffic overhead, ETX,
hop count, PDR

Cooja 2.7 Yes No

[37] 2023 Packet overhead, average inter-packet time,
PDR, average power consumption

Cooja 2.7 Yes Yes

[38] 2023 PDR, delay, throughput, ETX, interval DIO
rate, energy cons, beacon interval, DAO rate,
preferred parent change

Cooja 3.0 No Yes

This paper 2023 PDR, throughput, E2ED, ETX, average
power consumption

Cooja 3.0 Yes Yes

In the landscape of research on the RPL protocol within IoT networks, our paper distinguishes
itself in several crucial aspects. First and foremost, we introduce an innovative dimension by incorpo-
rating the Random Direction Mobility Model (RDM) and elevating network density as key elements
of our study. Unlike many prior works that have not explored the implications of RDM or increased
network density, our research delves into uncharted territory, providing a unique perspective on
RPL’s performance. Furthermore, we conduct a thorough examination of RPL, utilizing an extensive
range of performance metrics such as Packet Delivery Ratio (PDR), Average End to End Delay
(E2ED), throughput, Expected Transmission Count (ETX), and average power consumption. This
multifaceted evaluation ensures a comprehensive understanding of RPL’s strengths and limitations
under varying conditions. What sets our paper apart is the seamless integration of the decreased rank
attack into both static and mobile environments. While other studies have considered these elements
individually, our work uniquely combines them, offering insights into the complex challenges that IoT
networks face in the presence of this attack. Lastly, our use of Cooja 3.0, a more advanced version
of the simulator, provides enhanced accuracy and reliability for our experiments, setting our research
on a firm foundation. In summary, our paper contributes significantly to the field by providing a



236 CMC, 2024, vol.78, no.1

fresh perspective, a wider array of performance metrics, a novel combination of attack and mobility
scenarios, and the advantage of an updated simulator version, all of which amplify the importance of
securing IoT networks in the evolving landscape.

5 Simulation Setups and Performance Evaluation
5.1 Simulation Setups

In this section, we outline our proposed scenarios, which encompass both stationary and mobile
nodes. Additionally, we provide insights into the specifics of the mobility models employed for this
experiment. We utilize the Random Direction Mobility model (RDM) to mitigate the impact of
density waves and maintain consistent neighbour numbers per node during simulations. The RDM
model, introduced in references [24] and [39], addresses the uneven distribution of mobile nodes
within the Random Waypoint (RWP) model [24]. In RDM, nodes initially select both a random
direction and speed and start moving in the chosen direction at the selected speed until reaching
the simulation boundary. At this point, a new direction and speed are determined, and the process
iterates. Notably, a significant challenge in handling the behavior of mobile nodes when they approach
simulation boundaries is addressed by variations such as the Random Direction with Reflection
and Random Direction with Wrap Around models. The unique attribute of the RDM model is that
nodes determine random directions rather than random positions and temporarily halt at boundaries,
ameliorating the issue of node accumulation at the simulation center. Consequently, node distribution
across the simulation area achieves greater uniformity over time. For our experimental setup, we
leveraged the Cooja simulator, a cycle-accurate platform built in Java, renowned for its ability to
emulate Off-The-Shelf Internet of Things (IoT) devices [40]. This simulator seamlessly operates within
the Contiki operating system (OS), meticulously designed to cater to the complexities of resource-
constrained IoT-embedded devices [41]. Our research and analyses were carried out using the Zolertia
One (Z1) IoT platform, a product developed by Zolertia R [42]. This platform features the energy-
efficient Texas Instruments MSP430 Micro-Controller (MCU) as its Central Processing Unit (CPU),
complemented by the Chipcon CC2420 radio module for wireless communication [42]. An essential
aspect of our experiments was the consideration of mobility, which was facilitated by incorporating
a dedicated mobility plugin into the Cooja simulator. This expansion of capabilities allowed us to
effectively simulate mobile IoT applications. For generating patterns of movement among mobile
nodes, we harnessed BonnMotion, an open-source Java-based software developed at the University
of Bonn in Germany [43]. This tool empowered us to generate and meticulously assess mobile ad
hoc applications. Our approach began with defining the network scenarios under examination and
the specific simulation metrics in use. The experimental setup involved using the Z1 platform, which
boasts specific hardware features. The platform’s Micro-Controller Unit (MCU) is the MSP430, while
the transceiver used is the CC2420. The operational voltage range for the MCU falls within the range of
1.8 V to 3.6 V, and for the transceiver, it is 2.1 V to 3.6 V. The platform is designed to operate effectively
within a temperature range of 40°C to +85°C. The clock frequency is limited to a maximum of 16MHz.
In different operational modes, the platform exhibits varying power consumption. In the MCU’s active
mode, the current consumption is 2 mA, while in the low-power mode, it reduces significantly to just
0.5 μA. During radio transmission, the platform consumes 17.4 mA, and when in IDLE mode, it draws
426 μA. The current consumption is higher during radio reception, at 18.8 mA. In the Off mode, the
platform’s current consumption is the lowest, at 0.1 μA. These hardware specifications played a crucial
role in our experiments, ensuring the accurate simulation and assessment of IoT devices under various
conditions [42].
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5.2 Network Configurations

Based on the information presented in Table 2, a series of simulation scenarios were executed
within a 10000 m2 environment to comprehensively study RPL’s performance under various mobility
patterns. The network configuration included varying numbers of sensor nodes: 10, 20, 30, and
40, all governed by a singular gateway node. The simulation employed Z1 motes, as mentioned
before, and utilized the UDP transport layer protocol, along with the IEEE 802.15.4 PHY and MAC
layers. Communication was facilitated through a radio medium modeled as a unit disk graph, with
a transmission range established at 50 m. To assess network robustness, the experiment introduced
dynamic elements by designating 10%, 20%, 30%, and 40% of the nodes as attackers. Furthermore,
60% of the nodes were set as mobile, moving at a consistent speed of 1 to 2 m/s. Data packets, each sized
at 30 bytes, were transmitted at intervals of 60 s, enabling a comprehensive analysis of the network’s
performance and resilience under the specified conditions. The simulations extended for one hour,
allowing for an accurate observation of the network’s actual performance.

Table 2: Simulation setups

Settings Values

Transmission range 50 m
Dimension area 10000 m2

Sensor nodes’ number 10, 20, 30, 40
Attacker nodes’ number 10%, 20%, 30%, 40%
Mobile nodes’ number 40%
Radio medium Unit disk graph medium
Transport layer protocol UDP
PHY and MAC layer IEEE 802.15.4
Node velocity 1 to 2 m/s
Data packet sending interval 60 s
Simulation time h

5.3 Performances Metrics

The simulation was conducted with the primary objective of comprehending the repercussions of
the deceased rank attack within two distinct environmental contexts: static and mobile settings. The
assessment pertained to the effect of this attack on the network’s operational efficiency. The evaluation
criteria encompassed key performance indicators, including throughput, PDR, E2ED, ETX and APC,
renowned for their paramount relevance and responsiveness in gauging network performance.

The PDR is a fundamental quantitative measure characterizing the efficacy of data transmission
and quantifies the ratio of successfully conveyed data packets to the total dispatched packets within
the network. This parameter is mathematically encapsulated by the following formula [30]:

PDR = Preceived

PGenerated

∗ 100 (1)

where Preceived and PGenerated represent the total number of packets received by the sink node and the total
number of packets generated by the source nodes, respectively.
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The E2ED refers to the time interval that elapses between the initiations of data transmission from
a source node to its eventual reception at the destination node. It is given using the following Eq. 2 [30]:

E2ED = Timereceiver − Timesent (ms) (2)

where Timereceiver is the value of the timestamp when the packet is received at the destination node. While
Timesent is the value of the timestamp when the packet is transmitted from the source node.

Throughput quantifies the speed at which data is successfully transmitted through a network,
often expressed in Kilos bits per second (kbps) or packets per second (PPS) [30].

Throughput = Total received Data
Simulation Time

(kbps) (3)

where “Total Received Data” refers to the quantity of successfully received data at the destination node
during the simulation. “Simulation Time” is the duration of the simulation.

ETX serves as a metric within wireless ad hoc networks for estimating the expected number
of transmissions required for a packet to successfully traverse a link between two nodes. It helps
quantify the reliability of a link by considering factors such as packet loss and interference. The ETX
calculation employs the PDR, where the reciprocal of the PDR yields the ETX value as shown in the
formula below [29]:

ETC = 1
PDR

= PGenerated

Preceived

(4)

The average power consumption (APC) refers to the mean rate at which energy is consumed
by simulated nodes within a network over a specific duration. It is a vital metric for assessing the
energy efficiency of networked devices and their impact on battery life. The APC is calculated using
the following equation [30]:

APC = Energestvalue ∗ I ∗ V
Rtimersecond ∗ Runtime

Mw (5)

Energestvalue refers to the energy consumption value obtained from the Energest module in Contiki.
It provides information about energy consumption by various components such as the CPU, radio, and
other peripherals. I and V represent respectively the current (in amperes) consumed by the node and the
voltage (in volts) supplied to the node. Rtimersecond: Refers to the time (in seconds) of the Rtimer module,
which is a real-time timer module in Contiki. Runtime depicts the total runtime of the simulation (in
seconds).

6 Experiment Outcomes and Comparative Study

Within this section, we present the findings derived from our thorough experiments.

6.1 Packet Delivery Ratio (PDR)

Figs. 2a and 2b depict the PDR under decreased rank attack in two distinct environments: the
static environment in (a) and the mobile environment in (b). The primary focus of these visualizations
is to analyze the impact of varying parameters on the PDR. Specifically, the number of nodes and
the percentage of attackers have been manipulated to discern their effects on network performance. In
Fig. 2a, corresponding to the static environment, the PDR is depicted with respect to the number of
nodes (10, 20, 30, 40) and varying percentages of attackers (up to 40%). A noteworthy observation
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is that the PDR demonstrates a decline when compared to the baseline scenario without attacks.
Moreover, an intriguing trend surfaces when the nodes’ number escalates: the PDR experiences a
decrease. This trend accentuates the sensitivity of the network’s PDR to changes in node density.
Concurrently, in Fig. 2b, within the mobile environment, a similar analytical framework is applied.
The PDR is plotted against the identical parameters of node count and attacker percentage. Notably,
the graph displays analogous tendencies as its static counterpart, reflecting the PDR’s response
to the interplay between node count, attacker presence and network mobility. Furthermore, both
figures consistently reveal the influence of attacker prevalence on the PDR. The percentage of
attackers correlates with a decrease in the PDR, underscoring the disruptive nature of attacks on
network reliability. As the attacker percentage increases, the PDR steadily diminishes, underscoring the
critical importance of robust security measures in maintaining desirable PDR levels. Fig. 3 provides a
representation of the dynamics of PDR, in specific scenarios, emphasizing the significance of network
configuration and security considerations in governing data transmission reliability.
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Figure 2: PDR in (a) static (b) mobile environment under decreased rank attack

The decline in PDR under a decreased rank attack within a network utilizing the Random Walk
mobility model is attributed to interconnected factors. First, the disruption of routing paths emerges
as a pivotal influence. The inherently erratic and unpredictable movement patterns characteristic
of the Random Walk model interact with nodes possessing artificially lowered ranks, resulting in
suboptimal routing decisions and the subsequent misrouting or loss of packets. Furthermore, the
model’s dynamic nature complicates the establishment of reliable communication paths, accentuated
by the intrusion of nodes with compromised ranks. Consequently, the PDR diminishes due to increased
inefficiencies and disruptions in data transmission. The attack’s effect on the network’s resilience is
noteworthy, impeding the adaptability required for coping with dynamic scenarios. The compromised
routing paths underscore the vulnerabilities within routing mechanisms and stress the importance of
secure protocols. This reduction in PDR stands as an evident marker of the attack’s effectiveness in
undermining communication integrity. In response, devising robust security measures and adaptive
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routing strategies becomes imperative to counteract the impacts of the decreased rank attack and to
sustain dependable data delivery within the intricacies of the Random Walk mobility model.
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Figure 3: E2ED (a) static (b) mobile environment under decreased rank attack

6.2 The End-to-End Delay

In Figs. 3a and 3b, both depicted as line charts, a comprehensive analysis E2ED is presented in a
static and a mobile environment respectively in (3a) and (3b). The primary intent of these visualizations
is to explore the influence of varying parameters on the E2ED metric. In Fig. 3a, which corresponds
to the static environment, the E2ED is plotted against varying numbers of nodes (10, 20, 30, 40) and
different percentages of attackers (10%, 20%, 30%, 40%). One notable observation is the discernible
increase in E2ED compared to the baseline scenario without attacks. Notably, the network devoid of
attacks attains the lowest E2ED value, indicating its performance in ensuring fast and efficient data
delivery. Moreover, when the nodes’ number increases, E2ED increases. This pattern highlights the
network’s sensitivity to changes in node density. Additionally, the influence of attacker nodes becomes
evident. As the percentage of attackers increases, a parallel rise in E2ED becomes apparent. This trend
emphasizes how attackers negatively affect data transmission efficiency. In addition, the analysis of
Fig. 3b reveals similar findings within a mobile environment. The line chart compares the performance
of E2ED under different parameters including node count and attacker percentage. Similar to the
static scenario, the consistent behavior of E2ED in response to mobility dynamics is highlighted by
the persistent overarching trends. Ultimately, graphs cohesively elucidate the intricacy of E2ED within
both environments. They underscore the effects of node density and attacker presence on network
performance, accentuating the imperative of robust security measures and adaptive routing strategies.
Importantly, the findings delineate that the network featuring 40% attacker nodes attains the highest
E2ED value, underscoring the acute vulnerability of compromised networks to protracted end-to-end
delays.

The increased E2ED resulting from the decreased rank attack within a network employing the
Random Walk mobility model has implications for communication efficiency, network robustness,
and security vulnerabilities. This effect highlights how node movement patterns, compromised routing
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paths, and data transmission integrity are intricately connected. Firstly, higher E2ED values indicate
disruptions in communication routes due to compromised routing during an attack. In scenarios where
nodes exhibit movement, under the Random Walk model compromised routes further complicate
establishing pathways. Secondly, the attack weakens the network’s adaptive resilience by introducing
compromised nodes. This erosion of adaptability is reflected in the elevated E2ED, exposing limita-
tions in dynamic scenarios and sustaining reliable data transmission. Thirdly, the amplified E2ED
serves as a prominent indicator of the attack’s success in tampering with network communication.
This underscores vulnerabilities within routing mechanisms, emphasizing the necessity for fortified
protocols to avert unauthorized interference. Moreover, the impact is palpable on user experience,
with extended E2ED leading to delayed data delivery, especially critical in real-time applications. As
a result, it becomes more crucial to implement security measures and routing strategies to ensure data
transmission integrity within the Random Walk mobility model.

6.3 Throughput

Fig. 4 comprises a diagram, illustrating the throughput performance in distinct scenarios. The
x-axis of the diagram delineates the varied nodes’ number (going from 10 to 40), while the y-axis
represents the throughput values. The diagram is divided into two sections: Without attack and under
decreased rank attack for both static and mobile environments. RA stands for the static network’s
decreased rank attack, whereas MRA corresponds to the decreased rank attack in the mobile network.
Simulation results show that static networks without attack exhibit the highest throughput values
underscoring the significance of stability and the absence of malicious interference. When mobility
or decreased rank attacks are introduced, a reduction in throughput becomes evident. This is also
evident for both static and mobile environments, reaffirming the effect of mobility and compromised
routing on data throughput.

Figure 4: Throughput within a static and mobile environment under decreased rank attack

The reduction in throughput when the of nodes number increases in the presence of both the
decreased rank attack and a Random Walk mobility model is a result of an intricate interplay of
factors. The larger network size leads to heightened interference and contention for the wireless
medium, causing more packet collisions and retransmissions. Additionally, the complex routing
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paths in larger networks introduce inefficiencies, necessitating longer paths and more hops for
communication. The impact of compromised routing decisions due to the decreased rank attack
further exacerbates this issue, contributing to higher latency and increased retransmissions. Due to its
random nature, the Random Walk mobility model introduces variability in link qualities and affects
throughput consistency. Furthermore, increased channel utilization, due to more nodes, intensifies
traffic, adding to the retransmission load and reducing effective throughput. The combination of these
factors results in diminished throughput, impacting the quality of service and highlighting the need
for robust routing, security mechanisms and congestion control strategies to mitigate the challenges
posed by larger networks with mobility and attacks.

6.4 Expected Transmission Count (ETX)

Fig. 5 depicts a comprehensive overview of how the ETX metric changes in response to variations
in the number of nodes and percentages of attacker nodes for both static and mobile environments.
As shown in Fig. 5, with an increase in the number of nodes, the ETX values also increase. This
indicates that as the network grows in size, the overall transmission count required for successful packet
delivery rises. The observed behavior remains consistent regardless of the variations in the percentage
of attacker nodes. Furthermore, Fig. 6 illustrates another important observation. Regardless of the
number of nodes, when the percentage of attacker nodes increases, the ETX values rise. This indicates
that the presence of attacker nodes affects the overall link quality and reliability. Both static and mobile
environments exhibit this behavior, suggesting that attacker nodes have a consistent effect regardless
of node mobility. The figure also highlights a noteworthy point. At the maximum values of 40 nodes
and 40% attacker nodes, the ETX reaches its peak. This indicates that the network experiences its
highest transmission count requirement under these conditions. The graph visually demonstrates the
influence of both the network density and the presence of attacker nodes on ETX values. Lastly, the
figure draws attention to the impact of node mobility on the network. It is evident that mobility affects
the behavior of the network and consequently the ETX metric. This insight underscores the importance
of considering mobility when analyzing and optimizing network performance.

Figure 5: ETX within static and mobile environments under decreased rank attack
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Figure 6: APC (a) static (b) mobile environment under decreased rank attack

The observed increase in ETX values when nodes’ number in the network was augmented under
the decreased rank attack within a random direction mobility model can be attributed to a combination
of factors. Firstly, the rise in network density introduces heightened interference and traffic. With
more nodes contending for the wireless medium, collisions become more likely, leading to increased
packet loss and retransmissions. This, in turn, adversely affects the overall link quality and prompts
an increase in ETX values. Secondly, the larger network size introduces longer communication paths
and a greater number of potential points of failure. Consequently, the reliability of individual links
decreases, necessitating more retransmissions to ensure packet delivery which increases the ETX
values. Thirdly, the random direction mobility model accentuates the instability of link conditions due
to frequent node movements. As nodes shift around the network, link quality fluctuates, requiring
additional retransmissions for successful communication, further contributing to higher ETX values.
Lastly, the compounded effects of the decreased rank attack aggravate the challenges posed by
the previous factors. The attackers’ deliberate degradation of link quality amplifies the impact of
interference, mobility, and network size, ultimately resulting in the observed increase in ETX values.
The combination of these factors underscores the complexity of wireless network behavior and the
multi-faceted nature of the observed outcomes.

6.5 Average Power Consumption (APC)

Fig. 6 presents the APC in two distinct network scenarios: (a) a static environment and (b) a mobile
environment, both under the decreased rank attack. An interesting observation in both scenarios is that
the average power consumption increases when varying the total number of nodes and the percentage
of attacker nodes. In the static environment depicted in Fig. 6a, the average power consumption
increases as the number of nodes and percentage of attacker nodes increase. Similarly, in Fig. 6b,
representing the mobile environment, a parallel behavior emerges, but with a significant impact. In
Fig. 6b, we can observe that the APC goes up from 0.8, to 1.1 mW when 40% of attacker nodes are
present. Additionally, in Fig. 6a it rises from 0.6 to 0.9 mW for the same percentage. Consequently,
when compared to a static network, mobile networks exhibit a significant rise in average power usage.
This figure provides valuable insights into the interplay among network parameters, attacker nodes,
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and mobility, shedding light on their combined influence on average power consumption during a
decreased rank attack.

The observed rise in average power consumption within a random direction mobility model
network as both the number of nodes and the percentage of attacker nodes increase can be attributed
to a confluence of factors. Firstly, the expanded network size ushers in heightened network activ-
ity, with more nodes engaging in data transmission and processing, demanding increased power
resources. Secondly, the larger node population amplifies the possibility of interference and collisions,
necessitating retransmissions that consume additional power. Thirdly, the malicious activities of
attacker nodes including generating fake traffic or disrupting network operations, contribute to power
consumption by compelling legitimate nodes to counteract the effects of the attack. Fourthly, the
inherent overhead of managing node mobility in such a network, involving routing table updates and
dynamic topology adjustments contributes to elevated energy usage. Furthermore, dynamic routing
path changes induced by node mobility, increase power consumption as nodes establish and maintain
new routes, often influenced by attacker nodes. Moreover, the mobility itself, with nodes constantly
adapting to changing positions, can be energy-intensive due to power adjustments for maintaining
connectivity. Additionally, the heightened contention for channel access among an increased node
count leads to delays and retransmissions, further elevating power usage. Lastly, as the network
grows in complexity, efficient resource allocation becomes more challenging, necessitating additional
computational efforts and communication, which consume power resources.

7 Conclusion

This study undertook a comprehensive evaluation of RPL’s performance under diverse scenarios,
shedding light on its limitations in adapting to changing network topologies and mobility challenges.
We specifically investigated RPL’s behavior in static and mobile settings, employing the random
direction mobility model (RDM) while subjecting it to the decreased rank attack. Our analysis encom-
passed variations in node quantities and the percentage of malicious nodes in both static and mobile
environments, gauged through five key metrics: Average End-to-End Delay (AE2ED), throughput,
Packet Delivery Ratio (PDR), Expected Transmission Count (ETX), and average power consumption
(APC). In the presence of a decreased rank attack operating within RDM, various facets of network
performance undergo notable alterations. Primarily, the Packet Delivery Ratio experiences a decline,
signifying an increased rate of lost or undelivered packets. Simultaneously, Expected Transmission
Count values rise, reflecting the heightened need for packet retransmissions and additional hops due to
the attack-induced routing disruptions. Average End-to-End Delay registers an increase, attributable
to delays introduced by the attack, affecting routing decisions and data transmission. Throughput
decreases as a consequence of the attack’s interference with data flow, resulting in greater packet
loss and retransmissions. Lastly, average power consumption tends to surge due to increased energy
expenditure on packet transmissions and retransmissions, primarily as packets follow longer paths.
These findings underscore the perturbing effect of a decreased rank attack and underscore the critical
importance of implementing robust security measures, particularly in dynamic and mobile network
environments, to safeguard against such disruptions. In summary, this study provides crucial insights
into the challenges faced by RPL-based IoT networks and the tangible impact of the decreased rank
attack. These findings have significant implications for the development of protective measures and the
long-term resilience of IoT networks in the face of ever-evolving threats. Our future goal is to expand
on the insights from this research to create an anomaly intrusion detection system. This system will
be designed to identify internal attacks by continuously monitoring specific performance parameters
sensitive to such attacks within a mobile environment.
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