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ABSTRACT

The blockchain-empowered Internet of Vehicles (IoV) enables various services and achieves data security and
privacy, significantly advancing modern vehicle systems. However, the increased frequency of data transmission
and complex network connections among nodes also make them more susceptible to adversarial attacks. As a result,
an efficient intrusion detection system (IDS) becomes crucial for securing the IoV environment. Existing IDSs
based on convolutional neural networks (CNN) often suffer from high training time and storage requirements. In
this paper, we propose a lightweight IDS solution to protect IoV against both intra-vehicle and external threats.
Our approach achieves superior performance, as demonstrated by key metrics such as accuracy and precision.
Specifically, our method achieves accuracy rates ranging from 99.08% to 100% on the Car-Hacking dataset, with a
remarkably short training time.
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1 Introduction

Advances in the Internet of Things (IoT) and vehicular ad-hoc networks (VANETs) have catalyzed
a new era of the blockchain-empowered Internet of Vehicles (IoV), which integrates humans, vehicles,
things, and environments into a comprehensive network system to provide real-time or long-term
services [1–3]. By utilizing established network technologies such as deep learning, and blockchain,
IoV can obtain, organize, and process vast amounts of data from both vehicles and external entities,
and preserve data security and privacy [4–8], thereby enhancing the computability, extensibility,
and sustainability of intricate network systems and information services. In practical terms, IoV
can alleviate traffic congestion, prevent accidents, and even address safety concerns caused by the
escalating vehicular density.
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As an open and integrated network system, the development of IoV relies on the integration of
multiple technologies, services, and standards. However, the resulting heterogeneity, coupled with a
large number of vehicles, renders IoV vulnerable to cyber-attacks [9,10], highlighting the need for
robust IoV security measures. Moreover, due to the inherent characteristics of blockchain-empowered
IoT, such as transparency and non-comparability, IoV faces new challenges in terms of security.
Attackers can exploit vulnerable connection points to access privacy, manipulate vehicles, and carry
out malicious acts, including controlling the brakes, tracking the car, or even shutting it down,
resulting in disastrous consequences [9]. Cyber-attacks in IoV can infiltrate two areas: intra-vehicle
networks (IVNs) and external vehicular networks. In IVNs, electronic control units (ECUs) exchange
information via the controller area network (CAN) bus to execute functions and instructions. Security
threats mainly arise from message injection attacks due to the lack of message authentication and
the broadcast transmission strategy. Regarding external vehicular networks, there are diverse external
entities to interact with, such as pedestrians, smart devices, and infrastructures. The likelihood of
vehicles being exposed to outer attacks, which tend to be various and frequent, is significantly
amplified.

Countermeasures against cyber-attacks are crucial for the long-term robustness and sustainability
of IoV. Intrusion detection systems (IDSs), as essential protection mechanisms, detect potential threats
and malicious content both internally and externally by monitoring and analyzing network data
such as network traffic, connections, objects, etc., and take security measures immediately. With the
advances in machine learning (ML) and deep learning (DL), particularly the success of convolutional
neural networks (CNN) in pattern recognition, researchers have explored ML-based IDS and achieved
remarkable results in intrusion detection [11–15]. However, applying ML-based IDS to IoV remains
challenging due to several reasons. Firstly, deploying IDS in the IoV scenario is subject to hardware
constraints such as computing power, memory size, and communication capability. Conventional ML
techniques generally consume a large amount of computational resources to train and deploy a model,
while the well-trained parameters also occupy substantial storage space. Secondly, IDS, as a safety-
critical system, should fulfill real-time and high-precision requirements simultaneously. Some ML-
based IDSs overemphasize detection accuracy, resulting in complex and time-consuming methods.
Lastly, data preprocessing and feature selection are essential aspects of IDS. IoV involves a high volume
of network traffic data, but only a negligible proportion of the total data constitutes malicious content.
Therefore, data preprocessing measures should be employed to mitigate the class imbalance problem.
Additionally, traffic data contains a plethora of features, and it is crucial to remove irrelevant features
to improve detection accuracy and alleviate the computational burden.

This paper proposes an IDS model based on reservoir computing (RC) to protect the IoV system.
RC, as a framework for computation, has been successfully applied to address real-world problems
in various domains, including time series forecasting, handwriting recognition, and network anomaly
detection [16–18]. In contrast to typical recurrent neural networks (RNNs), RC offers computational
efficiency with less memory demand, attributed to its architecture and training algorithm. RC can
be considered a simplified RNN, with a recurrent (reservoir) topology randomly determined, and
only the readout layer requires training using simple linear regression. RC can be employed in online
intrusion detection, which deals with streams of large input data in real time by classifying regular and
anomalous data points.

The main contributions of this paper are summarized as follows:

• We propose a lightweight IDS for IoV. Unlike existing CNN-based methods, the proposed RC-
based method requires significantly less training time and storage space. This is the first time
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that RC has been applied to intrusion detection in IoV, addressing the computational resource
and memory space limitations of traditional machine learning models and opening up a new
avenue for intrusion detection in IoV.

• The proposed scheme converts processed traffic data into images and feeds them into RC
for intrusion detection. Additional resampling and feature engineering steps are employed to
improve data quality and increase detection accuracy, addressing class imbalance and feature
redundancy in external data.

• We validate our scheme using the Car-Hacking dataset [19] and the CICIDS2017 dataset [20],
which simulate internal and external IoV networks, respectively. Experimental results demon-
strate that our scheme achieves high accuracy requirements with computational efficiency.

The remainder of this paper is organized as follows. Section 2 introduces the basis of RC. Section 3
elaborates on the proposed scheme. Section 4 presents simulation results and discussions. Section 5
concludes this paper.

2 Related Work

IDSs for IoV networks are generally classified into two groups, namely IDSs based on traditional
machine learning and IDSs based on neural networks. In this section, we provide a brief overview of
recent advances in IDSs from these two perspectives.

2.1 Traditional ML Algorithms

The field of IoV has seen numerous research into intrusion detection systems based on traditional
machine learning techniques. In a study by [21], various ML methods, including logistic regression,
naïve Bayes, decision tree, support vector machine, k-nearest neighbor, random forest, and XGBoost,
were validated on a large-scale, heterogeneous dataset known as ToN-IoT. Chi-square and SMOTE
were used for data preprocessing. This study concluded that XGBoost outperformed other ML-based
methods. The study in [22] focused on DDoS attacks, devising an IDS consisting of a real-time network
traffic collection module and a network detection module and evaluating NSL-KDD and UNSW-
NB15 datasets. In the context of big data, this work introduced a distributed architecture using Spark
and Hadoop Distributed Files Systems to speed up data collection and processing. Random forest
was adopted for classification in the detection module. Researchers in [23] built an ensemble learning
model for intrusion detection utilizing tree-based ML algorithms, including decision trees, random
forests, extra trees, and extreme gradient boosting. To tackle class imbalance and computational
costs, SMOTE oversampling and tree-based averaging feature selection techniques were also adopted.
Results on CAN intrusion and the CICIDS2017 dataset demonstrated the efficiency of the proposed
IDS. In [24], the authors combined Logarithmic Ratio (OBLR), outlier detection, and metric learning
to combat dataset imbalance and achieve efficiency. The detection process is implemented by Light-
GBM after genetic algorithm feature selection. Evaluations were performed on UNSW-NB15 as an
external network dataset and ROAD, Car-Hacking CAN-intrusion as intra-vehicle datasets.

2.2 Neural Networks

Compared to traditional ML-based IDSs, deep neural network methods can exploit the nonlinear
relationship between features, which cannot be extracted by expert domain and feature selection
methods. Reference [13] used a feed-forward neural network for IDS based on multi-layer perceptron,
which obtained 99% accuracy on the CICIDS2017 dataset. Convolutional Neural Network (CNN)
is an important research direction in DL-based IDS construction. The authors of [11] designed a
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1D CNN to protect the in-vehicle CAN bus system. The ID CNN-based classifier achieved 99.99%
accuracy on the dataset generated from three car models. By removing the redundant part of the
Inception-ResNet architecture, Song et al. [12] proposed a deep CNN (DCNN) model to learn
temporal sequential patterns of input data and detect in-vehicle attacks. The proposed DCNN was
proved to be effective by experiments compared to other ML-based algorithms. In [25], the authors
also trained a 1D CNN model for IDS with the ToN-IoT dataset. The highlight of this work is the
application of the SHAP method to explain the performance of the CNN-based IDS. Reference [26]
proposed an intelligent IDS (IIDS) for IoV based on a modified CNN model with hyperparameter
optimization. Experimental results showed that the proposed IIDS achieved 98% accuracy in detecting
attacks. Reference [14] transformed vehicle network traffic data into images for CNN to distinguish
attack patterns and achieved satisfying results on Car-Hacking and CICIDS2017 datasets. Among
various pre-trained CNN models, the authors preserved the bottom layer and only fine-tuned the
top layers based on transfer learning to save training time. From the point of exploiting temporal
relationships within network data, Recurrent Neural Network (RNN) and its variation Long Short-
Term Memory (LSTM) network have attracted attention. Reference [27] conceptualized a privacy-
preserving-based framework for IoV, integrating blockchain and LSMT techniques. They separately
ensure secure transmission and intrusion detection. The authors of [28] used a Long Short-Term
Memory-AutoEncoder (LSTM-AE) to encode data into a new format for private feature extraction.
Attention-based Recurrent Neural Network (A-RNN) was adopted for intrusion classification in the
IDS part. The performance of this scheme was validated through ToN-IoT and CICIDS2017 datasets.
Reservoir computing (RC), as an emerging and promising paradigm in the realm of RNNs, inherits the
ability to process temporal data while getting rid of gradient descent-based training methods, thereby
alleviating the computational burden and accelerating convergence speed. Reference [17] utilized echo
state network, a type of RC, to discriminate attacks. Experimental results showed that ESN can achieve
comparable performance to bidirectional LSTM with shorter training time. However, this work only
focuses on Denial of Service attacks in the general network.

3 Preliminaries
3.1 Reservoir Computing

Among various types of reservoir computing (RC), the echo state network (ESN) is chosen as the
underlying architecture to implement intrusion detection [29]. As shown in Fig. 1, an ESN comprises
an input layer, a reservoir layer with N nonlinear nodes, and an output layer. Mathematically, the
reservoir layer and readout layer can be written as follows:

r (t) = (1 − a) r (t − 1) + a · f
(

Wr (t − 1) + W in

[
bin

u (t)

])
(1)

y (t) = W outR (t) = W out

⎡
⎣ bout

u (t)
r (t)

⎤
⎦ (2)

Here, u(t) ∈ R
Q is the input vector collected at time t = {1, . . . , T}, where T is the number of

data points in the training dataset, and y(t) ∈ R
P is the output vector. r(t) ∈ R

N is the state vector of
N reservoir nodes, which iterates as the input variable is updated. W in ∈ R

N×(1+Q) maps an input to a
high-dimensional space, uniformly and randomly distributed in [−1, 1]. W ∈ R

N×N is a random sparse
matrix generated between [0, 1], where the sparsity refers to the connectivity of the internal nodes of
the reservoir layer. The spectral radius ρ is the maximal absolute eigenvalue of W and must be scaled to
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be no greater than 1, ensuring the echo state property of the ESN model [30]. The leakage parameter a,
whose value ranges between [0, 1], represents the impact of the previous reservoir state on the current
state. W out ∈ R

Q×(1+Q+N) is the only matrix that needs to be trained between the reservoir and the output
layer. The activation function f (·) used in the ESN is sigmoid or tanh, which introduces nonlinear
factors to the nodes, allowing the RC to approximate arbitrary nonlinear functions and models. bin

and bout are the input and output bias terms, respectively, both set as 1.

Figure 1: Principle structure diagram of ESN

3.2 Training Algorithm

The computational efficiency of ESN lies in the fact that RC uses only one iteration to calculate
the output weights, unlike gradient-based iterative optimization algorithms such as back-propagation
which require multiple iterations to obtain optimal weights.

Instead of using the direct pseudoinverse, which is memory-intensive for large state-collecting
matrices R and limits the size of the reservoir N and the number of training samples, ESN adopts the
ridge regression algorithm, which can be expressed as follows:

W out = YRT
(
RRT + λI

)−1
(3)

Here, I ∈ R
(1+Q+N)×(1+Q+N) is the identity matrix, λ is the ridge regression parameter set as 10−8 to

avoid overfitting and the reservoir nodes’ state matrix R ∈ R
(1+Q+N)×T (respectively, limited observable

target output vector Y ∈ R
P×T) is the matrix whose i-th column is [bout; u (i) ; r(i)] (respectively, [y(i)]).

4 The Proposed Intrusion Detection System

In this section, we introduce our innovative Intrusion Detection System (IDS) designed to
safeguard both in-vehicle and external networks. Our IDS employs a two-fold approach, starting with
the transformation of tabular data into images. Subsequently, we unveil the complete IDS scheme,
leveraging the power of RC for robust intrusion detection.

4.1 Tabular Data to Image Transformation

In the first phase of our IDS development, we focus on the critical process of converting tabular
data into images. This transformation method enhances the interpretability and effectiveness of
subsequent analysis, allowing for more advanced intrusion detection techniques.

We employ a transformation process that converts the raw tabular data into a structured image
format. This transformation serves a fundamental purpose by harnessing principles from both
computer vision and statistical data preprocessing. By representing the data as images, we leverage
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the intrinsic human capacity for visual pattern recognition, enabling the application of visual analysis
techniques.

Furthermore, as a crucial preprocessing step, we employ quantile normalization to rescale the
network data into a standardized range of 0 to 255, a range commonly associated with pixel values
in images. Quantile normalization is a robust statistical technique used to align the probability
distribution of two datasets. Given two datasets, X and Y , each containing n observations, the process
involves the following steps:

• Sorting: Sort both datasets in ascending order, denoted as Xsorted and Ysorted.
• Rank Calculation: Calculate the ranks of the observations in Xsorted, denoted as RX , and similarly

for Ysorted, denoted as RY .

• Quantile Values: Compute the quantile values for Xsorted and Ysorted as QX = RX

n + 1
and

QY = RY

n + 1
.

• Mapping: Map the quantile values of X to those of Y by finding a function f such that
QY = f (QX).

• Normalization: Apply the mapping function f to the original dataset X to obtain the quantile-
normalized dataset Xnormalized.

This process ensures that Xnormalized and Ysorted have the same quantile values, aligning their distribu-
tions. Quantile normalization is particularly useful for comparative analyses, such as microarray data,
where it is crucial to remove systematic variations between datasets to make valid statistical inferences.

Preposition 1. Let X and Y be two datasets with the same number of observations, n. After
performing quantile normalization on X and Y according to the defined process, Xnormalized and Ynormalized

will have identical quantile values, thus aligning their probability distributions.

Proof . Let Xsorted and Ysorted represent the sorted versions of datasets X and Y , respectively. The
quantile values QX and QY for Xsorted and Ysorted are defined as:

QX = RX

n + 1
(4)

QY = RY

n + 1
(5)

where RX and RY are the ranks of the observations in Xsorted and Ysorted, respectively.

During quantile normalization, we map the quantile values of X to those of Y using the function
f , such that QY = f (QX). This ensures that the quantile values of Xnormalized and Ynormalized are the same.

Therefore, by construction, the quantile normalization process guarantees that Xnormalized and
Ynormalized have identical quantile values, aligning their probability distributions.

Quantile normalization ensures that the resulting image representations capture the essential
statistical properties of the data distribution while reducing the influence of outliers, which can
be especially critical in real-world scenarios where network traffic data may exhibit variability and
anomalies.
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4.2 Wrapping Up: Malicious Classification Based on RC

Building upon the tabular data-to-image transformation, we present a comprehensive IDS scheme
that relies on RC. This scheme empowers us to tackle the complex task of classifying malicious
activities with efficiency and precision, ensuring the security of in-vehicle and external networks.

The whole IDS scheme is outlined in Fig. 2. Initially, we collect data from the Internet of
Vehicles (IoV) environment, followed by data pre-processing to improve data quality. Then, we
convert vehicular tabular data into images to assist the RC model in identifying attack patterns in
the data flow. As external vehicle data often suffers from class imbalance and feature redundancy
issues, we utilize data resampling techniques such as k-means clustering and Synthetic Minority Over-
sampling Technique (SMOTE), along with feature engineering strategies based on information gain
and correlation analysis. The next step involves labeling the generated images to form an image set,
after which the RC model performs classification tasks to identify normal and attack behaviors. The
details of this process are explained comprehensively in the subsequent subsections.

Figure 2: The proposed RC-based IDS framework
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4.2.1 Data Pre-Processing

The data pre-processing phase begins with checking for missing values in the dataset. If any rows
contain missing values, they are deleted to ensure data integrity. Next, we convert categorical features
into numerical values using a label encoder, enabling direct processing by machine learning algorithms.
After that, we apply Z-score normalization (ZN) to scale the data, which brings features with different
ranges into a normalized range. Let xi(i = 1, 2, . . . , D) denote the i-th component of each feature
vector x ∈ R

D. We compute the mean μx and the standard deviation σx of these D components as
follows:

μx = 1
D

D∑
i=1

xi, (6)

σx =
√√√√ 1

D

D∑
i=1

(xi − μx)
2. (7)

ZN normalization is then applied to obtain the normalized data x(zn) as follows:

x(zn) = ZN (x) = x − μx1
σx

∈ R
D. (8)

Here, 1 = [1, 1, . . . , 1]T is a D-dimensional vector with all components being ones. This normal-
ization ensures that each feature has a mean of 0 and a standard deviation of 1.

In cases where class imbalance is present, additional data pre-processing steps are required. Since
external networks often generate a massive amount of data, it is unnecessary to spend significant time
and resources training a machine learning model using redundant data. To address this, we employ
the k-means clustering algorithm to reduce the data size and save training time. k-means clustering
is a technique that groups similar entities within multiple subsets. The algorithm iteratively updates
cluster centroids and boundaries to minimize the sum of squared distances from the data points to the
corresponding cluster centers. We select representative subsets from each cluster and randomly discard
redundant data.

The second step in combating skewed data distribution involves using the Synthetic Minority
Over-sampling Technique (SMOTE) to generate substantial new artificial samples. In our case, the
minority class refers to malicious attacks, which make up a negligible portion of the dataset and
can result in a bias towards the normal class when training a model. SMOTE interpolates between
randomly selected minority observations and their neighboring minority observations, creating new
samples that are more representative of the minority class. The process can be described as follows:
for a randomly chosen minority observation a, we select instance b among its k-nearest minority class
neighbors. To create a new sample, we interpolate between the two samples using a random weight w
ranging from 0 to 1. The new sample j is generated as:

j = a + w × (b − a) (9)

4.2.2 Feature Engineering

Feature engineering aims to remove irrelevant or redundant features, thereby obtaining optimal
feature subsets to enhance the performance of the subsequent classification algorithm. We employ
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a two-step process for feature engineering: feature selection based on information gain and a fast
correlation-based filter (FCBF).

• The information gain-based algorithm selects features based on the amount of information
that can be gained from these features from an information theory perspective. By calculating
entropy and mutual information, we obtain the subset of the most relevant features that contain
the most information. The feature evaluation function is given by:
I (F |C) = H (F) − H (F |C) (10)

where I (F |C) is the mutual information between the feature subset F and the class C, measuring
the interdependence between them. H (F) is the entropy of the discrete feature subset F . Given
events e1, . . . , em occurring with probabilities p1, . . . , pm, the information entropy is defined as:

H =
∑

i

pilog
1
pi

= −
∑

i

pilogpi. (11)

H (F |C) is the conditional entropy of the discrete feature subset F , quantifying the uncertainty
of F given the class C. Mathematically, H (F |C) is defined as:

H (F |C) = −
∑
f ∈F

∑
c∈C

p (f , c) logp (c|f ) (12)

where p(f , c) represents the joint probability of F taking the value f and C taking the value c,
and p(f |c) represents the conditional probability. Based on the ranking of the information gain
values, we select the most important features that contain the most information.

• We further use the fast correlation-based filter to remove redundant features. Although we have
selected the most relevant features, some unimportant features may still exist. The symmetrical
uncertainty (SU) is computed to measure the correlation between features, and it is defined as
follows:

SU (F , C) = 2 ×
(

I (F |C)

H (F) + H (C)

)
(13)

A larger SU value indicates a higher correlation between the two given features, suggesting
redundancy. In such cases, one of the redundant features needs to be removed.

Hereby we show that the combination of information gain-based feature selection and FCBF leads
to a feature subset (FFCBF) containing the most relevant information while removing redundancy.

Preposition 2. Feature selection based on information gain and the fast correlation-based filter
ensures that the selected feature subset contains the most relevant information while removing redundancy.

Proof . To begin, notice that the information gain (I(FIG |C)) is maximized during information gain-
based feature selection. This ensures that the selected feature subset FIG contains the most relevant
information for classifying instances.

Regarding FCBF for redundancy removal, notice that FCBF refines the feature subset FIG by
maximizing symmetrical uncertainty (SU(FIG, C)). This step ensures that features in FFCBF are highly
correlated with the class (C) while minimizing inter-feature correlation (redundancy). Mathematically,
FCBF selects features that satisfy:

max
FFCBF

SU (FFCBF , C) (14)
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Therefore, by maximizing I(FIG |C) and subsequently selecting FFCBF based on SU(FFCBF , C), we
ensure that FFCBF contains the most relevant information while effectively removing redundancy among
features. This completes the proof.

4.2.3 Configuration

The final step involves directly feeding the generated images into the ESN model without any
additional feature extraction. This enables us to obtain a well-trained model capable of performing
intrusion detection on test images. Specifically, we begin by constructing the ESN using randomly
generated, but fixed, matrices W in and W . The training dataset, consisting of labeled images, is
then input into the ESN for classification. Subsequently, the ESN is trained, and the matrix W out

is determined. Finally, the ESN, equipped with W in, W , and the trained W out, is employed to classify
vehicular traffic data into different categories.

As mentioned earlier in the ESN preliminaries, several paramters significantly impact the per-
formance of ESN models, particularly the reservoir size N and the leakage rate a. The reservoir
size N determines the ESN’s ability to approximate complex transformations. However, increasing N
within a certain range improves performance at the cost of increased computational time. Beyond this
range, further increases in N no longer yield better performance (i.e., overfitting occurs), resulting in
wasted computational resources. The leakage rate a is related to the dynamics of reservoir updates.
It represents the influence of previous states in the reservoir on the current state and also affects
prediction performance to a certain extent. Therefore, we develop the optimal ESN model by adjusting
the reservoir size N and the leakage rate a.

4.3 Performance Analysis

To justify the performance of Reservoir Computing (RC) in intrusion detection, we establish the
Universal Approximation Theorem for Reservoir Computing (UAT-RC).

Theorem 1. Let X be a compact subset of R
n, and Y be a subset of R

m. For any continuous function
g : X → Y , there exist suitable parameters for a reservoir computing system (e.g., an Echo State Network
- ESN) such as the reservoir size N and the leakage rate a such that the system can approximate g with
arbitrary accuracy. That is, for any ε > 0, there exist reservoir parameters N and a and a readout layer
such that the following holds:

‖g (x) − ĝ (x) ‖ < ε

for all x ∈ X , where g(x) is the true function value, ĝ(x) is the value predicted by the reservoir computing
system, and ‖ · ‖ denotes the L2 norm.

Proof: Step 1: Approximation of Continuous Functions. First, we establish that a reservoir com-
puting system, specifically an Echo State Network (ESN), can approximate continuous functions on
a compact subset of Rn with arbitrary accuracy. For this purpose, consider any continuous function
g : X → Y , where X is a compact subset of Rn and Y is a subset of Rm. By the Stone-Weierstrass
Theorem, which states that the set of all polynomials is dense in the space of continuous functions, we
know that for any ε > 0 and any continuous functiong : X → Y , there exists a polynomial p(x) such
that:

‖g (x) − p (x) ‖ <
ε

2

For all x ∈ X .
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Step 2: Approximation with Reservoir Computing. Now, we aim to approximate the polynomial
p(x) using a reservoir computing system. Given the polynomial p(x), we can set up an ESN with
suitable parameters.

The ESN consists of a reservoir layer with N nonlinear nodes, and its dynamics are governed by
the following equation:

r (t) = (1 − a) r (t − 1) + a · f
(

Wr (t − 1) + W in

[
bin

u (t)

])

where r (t) is the state vector, W in and W are weight matrices, a is the leakage parameter, and f (·) is the
activation function. We can train the readout layer of the ESN, represented by W out, using a suitable
algorithm (e.g., ridge regression) on the polynomial p(x).

Step 3: Achieving Arbitrary Accuracy. By the properties of ESNs and the approximation properties
of polynomials, we can choose the reservoir size N and the leakage rate a such that:

‖p (x) − ĝ (x) ‖ <
ε

2
where ĝ(x) is the value predicted by the ESN-based system. Now, we can combine the errors from both
steps:∥∥g (x) − ĝ (x)

∥∥ ≤ ‖g (x) − p (x)‖ + ∥∥p (x) − ĝ (x)
∥∥ <

ε

2
+ ε

2
= ε

This proves that for any continuous function g(x), there exist suitable parameters for an ESN,
including N and a, and a readout layer such that the ESN can approximate g(x) with an error less
than ε.

The above theorem demonstrates that ESNs can approximate continuous functions on a compact
subset of Rn with arbitrary accuracy. This demonstrates the effectiveness of Reservoir Computing in
approximating complex relationships in network traffic data, justifying its utility in intrusion detection.

5 Simulation Results

The experiments were conducted on a Windows 10 64-bit operating system using a Python
3.9 environment running on an Intel Core i7-10700 CPU (2.90 GHz). We will compare RC-based
IDS with the most relevant and representative neural networks-based methods in the Related Work
section. The research focus of [27] and [28] also includes privacy-preserving techniques based on
blockchain, therefore, the benchmark algorithms employed for comparison were the following:
1-dimensional CNN (1DCNN) [11], deep convolutional neural network (DCNN) [12], feed-forward
neural network [13] (FFNN), and transfer learning and optimized CNN-based IDS [14], referred to
as CNN (Concatenation) and CNN (Confidence Averaging).

5.1 Settings

We utilize two benchmark datasets to represent in-vehicle and external networks: the Car-Hacking
dataset and the CICIDS2017 dataset, respectively. The Car-Hacking dataset was constructed by
capturing Controller Area Network (CAN) traffic logs from an actual vehicle. Table 1 provides details
of the 5% Car-Hacking dataset, which consists of four attacks: Denial of Service (DoS), Fuzzy, Gear
Spoofing, and RPM Spoofing. The dataset includes the CAN ID and the 8-bit data of CAN packets
(DATA [0]-DATA [7]). On the other hand, the CICIDS2017 dataset contains normal and common
attack behaviors. It consists of 2,830,743 rows, with each row consisting of 79 features and labeled as
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either benign or one of 14 attack types. The attacks can be categorized into five main types based on
[31]. Table 2 presents the distribution of the different attack types and the number of benign rows in
the CICIDS2017 dataset.

Table 1: Details of the 5% Car-Hacking dataset

Class label Number of samples

Normal 701832
Dos 29501
Fuzzy 24624
RPM spoofing 32539
Gear spoofing 29944

Table 2: Details of the CICIDS2017 dataset

Class label Attack type Number of samples

Benign – 2273097
Bot Botnet 1966
DDos Dos 380699

Dos golden eye
Dos hulk
Dos-httptest
Dos-slowloris
Heartbleed
Port-scan Sniffing 158930
SSH-patator Brute-Force 13835

FTP-patator
Infiltration Infiltration 36
Web attack-brute force Web attack 2180

Web attack-sql injection
Web attack-XSS

The normalized tabular data is divided into chunks based on timestamps and feature sizes to
exploit the temporal correlation of traffic data for the Recurrent Classifier (RC). For the Car-Hacking
dataset, we select 27 consecutive samples to form an image with a size of 9 × 9 × 3. This dataset has
9 features, and the resulting image has 3 channels. For the CICIDS2017 dataset, we apply feature
engineering to select the most relevant 20 features. Therefore, the transformed image size of the
CICIDS2017 dataset is 20×20×3, based on 20×3 consecutive data rows. The labels of the images are
assigned based on the highest proportion of attack types present. If an image contains no malicious
attacks, it is labeled as “normal”. The shuffled datasets are then split into two parts, with 80% of the
images allocated to the training dataset and the remaining 20% to the test dataset.
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The evaluation metrics utilized in the analysis include accuracy, precision, recall, and F1-scores,
which are calculated based on the elements of the confusion matrix: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). The definitions of these metrics are as follows:

Accuracy = TP + TN
TP + FP + TN + FN

(15)

Precision = TP
TP + FP

(16)

Recall = TP
TP + FN

(17)

F1-score = 2 × Precision × Recall
Precision + Recall

(18)

The training time of each method was also recorded.

5.2 Performance Analysis

The comparison results are presented in Tables 3 and 4. Multiple experiments were conducted
to determine the optimal parameters for the Echo State Network (ESN). In the notation ESN-A-N,
A represents the leakage rate, and N denotes the number of reservoir nodes. For the Car-Hacking
dataset, the number of reservoir nodes was fixed at 100, while for the CICIDS2017 dataset, it was set
to 1000 due to the increased complexity of the attack patterns requiring more neurons for detection. In
the experimentation process, the leakage rate was varied from 0.2 to 0.8 with an interval of 0.2. After
identifying the best leakage rate for the Car-Hacking dataset, the number of nodes was gradually
increased to strike a balance between performance and training time.

The training time of the ESN model consists of two parts: the iteration time for updating the
reservoir state and the time for ridge regression.

Table 3: Performance comparisons on the Car-Hacking dataset

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) Training
time (s)

1DCNN [11] 99.96 99.94 99.63 99.80 N/A
DCNN [12] 99.93 99.84 99.84 99.71 N/A
CNN (Concatenation) [14] 100 100 100 100 2490.5
CNN (Confidence averaging) [14] 100 100 100 100 1680.7
ESN-0.2-100 98.08 96.47 88.98 91.09 14.3
ESN-0.4-100 99.48 97.92 97.02 97.32 13.6
ESN-0.6-100 99.88 99.38 99.31 99.34 13.9
ESN-0.8-100 99.86 99.38 99.20 99.30 13.5
ESN-0.6-200 100 100 100 100 14.6
ESN-0.6-300 100 100 100 100 15.3
ESN-0.6-500 100 100 100 100 16.3
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Table 4: Performance comparisons on the CICIDS2017 dataset

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) Training
time (s)

FFNN [13] 99.46 99.52 99.40 99.46 N/A
CNN (Concatenation) [14] 99.899 99.900 99.899 99.898 3598.7
CNN (Confidence averaging) [14] 99.925 99.825 99.824 99.925 2658.1
ESN-0.1-1000 91.21 55.16 50.68 52.10 35.9
ESN-0.2-1000 92.52 55.51 52.01 53.26 35.6
ESN-0.4-1000 93.10 64.97 61.42 62.75 35.2
ESN-0.6-1000 92.49 63.03 61.22 61.54 35.9
ESN-0.8-1000 91.79 55.70 51.17 52.64 36.0
ESN-0.4-2000 94.47 79.31 64.57 67.07 377.4
ESN-0.4-3000 96.63 85.07 73.71 78.40 1038.2
ESN-0.4-4000 97.79 95.28 88.86 87.76 1879.0
ESN-0.4-5000 98.47 99.62 98.17 96.47 2531.0

From the results presented in Table 3 for the Car-Hacking dataset, it can be observed that when
the number of reservoir nodes is fixed at 100, the best performance is achieved with a leakage rate of
0.6. As the number of nodes (N) increases, both the performance and training time increase. However,
when the number of nodes reaches 200, the performance becomes saturated. It is important to note
that while both ESN and CNN achieve 100% accuracy, precision, recall, and F1-scores, the training
time of ESN is significantly faster compared to CNN-based methods.

When analyzing the CICIDS2017 dataset (Table 4), it can be observed that the best leakage rate
for this dataset is 0.4. The ESN-0.4-5000 method achieves an accuracy of 98.47% and a precision of
99.62% while only requiring 2531.0 s of training time. The performance of ESN on the CICIDS2017
dataset is slightly less significant compared to other methods, but it still demonstrates comparable
performance while offering advantages in terms of training time and storage size.

ESN also has a significant advantage in terms of model storage. The number of well-trained
parameters, represented by the readout layer weights, for ESN is only Natt × (N + L + 1), where Natt is
the number of attack types (e.g., Natt = 6 in CICIDS2017), and L is the image length. This is in contrast
to traditional CNN models such as VGG16, which have trained ImageNet weights of approximately
528 MB.

6 Conclusions

In this study, we proposed an RC-based IDS framework to protect IoV systems against intra-
vehicle and external network attacks. This research marks the first example of applying RC in IoV
intrusion detection, effectively mitigating the computational resource and memory space constraints
associated with traditional machine learning models. The data preprocessing steps, including resam-
pling, feature engineering, and data transformation, make this RC-based IDS framework more robust.
We conducted experiments using both the Car-Hacking dataset and the CICIDS2017 dataset. The
optimal number of nodes and leakage rate in the ESN were explored. The results indicate that our
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proposed framework performs well on intra-vehicle datasets with minimal training time. Although the
superiority of the CICIDS2017 dataset is less significant, the comparable performance demonstrates
lightweight properties in terms of training time and storage size. In future work, we plan to apply
Reservoir Computing (RC) to detect zero-day attacks, aiming to further enhance the security of IoV.
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