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ABSTRACT

Predictive Business Process Monitoring (PBPM) is a significant research area in Business Process Management
(BPM) aimed at accurately forecasting future behavioral events. At present, deep learning methods are widely
cited in PBPM research, but no method has been effective in fusing data information into the control flow for
multi-perspective process prediction. Therefore, this paper proposes a process prediction method based on the
hierarchical BERT and multi-perspective data fusion. Firstly, the first layer BERT network learns the correlations
between different category attribute data. Then, the attribute data is integrated into a weighted event-level feature
vector and input into the second layer BERT network to learn the impact and priority relationship of each event
on future predicted events. Next, the multi-head attention mechanism within the framework is visualized for
analysis, helping to understand the decision-making logic of the framework and providing visual predictions.
Finally, experimental results show that the predictive accuracy of the framework surpasses the current state-of-
the-art research methods and significantly enhances the predictive performance of BPM.
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1 Introduction

Business Process Management (BPM) is typically monitored by transaction information systems
that generate massive datasets called event logs [1–4]. Predictive business process monitoring (PBPM),
is a crucial research direction in business process management (BPM) [5,6]. Accurate prediction
of future behavioral events can provide significant support for downstream tasks in BPM, such as
conformance checking [7], event log repairs [8], and anomaly detection [9,10].

In PBPM, ensuring the prediction process originates from a global perspective is crucial to
enhance the quality and reduce biases or limitations in the predicted outcomes. For instance, by
analyzing data information and behavior from different perspectives within the process, a more
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comprehensive consideration of factors can be achieved, thereby improving the accuracy and cred-
ibility of predictions. However, the current field of PBPM research mostly focuses on analyzing
from a singular perspective. In recent research, Hinkka et al. [11] have proposed a new clustering
technique based on the RNN neural network model. In specific circumstances, by combining the
attribute data values of the original events, the prediction accuracy can be improved. In another work,
Everman et al. [12] also used the RNN network to predict the next event. The core of their method is
to construct RNN input by concatenating attribute data values and encoding in the embedding space
to improve the prediction accuracy of the process model. However, they only made process predictions
based on a single perspective of attribute data flow, neglecting the process behaviors and logical
relationships in the control flow perspective. Tax et al. [13] applied the LSTM network to business
process prediction. Their method can predict the next activity and the continuation of the running
case until its completion. With the emergence of the attention mechanism [14], researchers have found
that it can be applied in BPM with good results. Bukhsh et al. [15] used a Transformer model based
on an attention mechanism to predict the next activity in real event logs, which demonstrated good
performance. However, they only use control flow to represent the entire event log, neglecting other
important attribute values in the data flow. The above methods have their limitations: (i) Analyzing
process behavior solely from a single perspective (control flow or data flow) neglects the impact
of data information from other perspectives on predictive performance, thus failing to consider all
perspectives simultaneously. (ii) Employing RNN or LSTM neural networks poses significant issues
such as gradient explosion and lack of parallel processing capabilities.

Effective PBPM methods must be able to simultaneously and comprehensively examine all process
perspectives. Therefore, Guzzo et al. [16] and Pasquadibisceglie et al. [17] have employed a multi-
perspective approach based on deep learning(LSTM) in business processes, analyzing complex and
valuable information in event logs and conducting process behavior analysis from multiple perspec-
tives. However, their method simply concatenates attribute data values without deeply learning the
correlations between them. It cannot effectively integrate attribute data information into the control
flow for multi-perspective prediction. Moreover, RNN and LSTM neural networks do not provide
insight into the internal decision-making logic, making them typical black-box models. However,
their research still faces critical issues: (i) Lack of in-depth learning regarding the correlation between
attribute data and behavior. (ii) LSTM neural networks, being typical black-box models, lack the
ability to deeply understand internal decision logic, resulting in poor interpretability of the prediction
process.

To address the limitations of the aforementioned methods [11–17] in the PPBM domain, we
propose an approach based on hierarchical BERT and multi-perspective data fusion (Abbreviation:
HB-MPF framework) to overcome these unique challenges. The HB-MPF framework, unlike previous
methods, effectively integrates data flow and control flow through a unique hierarchical BERT
network, enabling a comprehensive multi-dimensional perspective analysis. Moreover, it resolves
the significant gradient explosion issues present in RNN and LSTM within neural networks. The
contributions of this paper are as follows:

1. We propose an HB-MPF framework that can effectively fuse data flow into control flow
analysis.

2. Experimental results from five real event logs show that the framework we proposed has sig-
nificantly enhanced the predictive performance of BPM, with prediction accuracy surpassing
the current state-of-the-art research methods.

3. We visualize the multi-head attention mechanism within the framework for analysis, helping
to understand the decision-making logic of the framework and providing visual predictions.
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4. Our research holds significant importance for the advancement of the PBPM field. The multi-
perspective behavioral analysis method based on the HB-MPF framework can offer new
insights into other domains within BPM.

The remainder of this paper is organized as follows: Related work is provided in Section 2.
Section 3 presents background knowledge. Section 4 elaborates on the design framework of the
proposed method. Section 5 presents the experiment and evaluation results. Section 6 concludes the
paper and discusses future research directions.

2 Related Work

Recently, data generated through process behavior analysis of event logs and monitoring and
predicting online business workflows has become a popular topic in the academic sphere. In the past,
traditional methods relied on hidden Markov models [18] or explicit process models [19] within state
transition systems. Although this approach yields satisfactory predictive results, it is only applicable to
concise and simple processes, with significantly reduced accuracy when handling lengthy and complex
workflows.

Artificial intelligence technology has achieved notable success in various domains, such as audio
recognition [20], semantic recognition [21], and AI algorithms based on immunity, among others
[22,23]. AI-based deep learning techniques have also been widely applied in process mining and the
field of PBPM. Rama-Manarriro et al. [24] provided a comprehensive literature review of methods
utilizing deep learning techniques to address predictive tasks. Both references [25] and [26] used
initial convolutional neural network models for event activity prediction, aiming to compare them
with recurrent neural networks (RNNs). Lin et al. [27] employed an RNN-based predictive model
to encode multiple attributes as additional information for events to predict the next event and its
associated attributes. They assessed the significance of each attribute about events by analyzing the
relative weights assigned to them. Jalayer et al. [28] incorporated a two-layer attention mechanism
on top of LSTM to elucidate the significance of different categorical attributes and each event.
Liu et al. investigated network enhancement algorithms [29–31], where in reference [30], a novel class
of hierarchical networks with scale-free and fractal structures was proposed. This hierarchical network
inspired our research. Camargo et al. [32] employed LSTM neural networks in conjunction with
novel preprocessing and post-processing techniques to predict multiple categorical attributes of the
subsequent event within a case, as well as the remaining event sequence.

Numerous tasks in natural language processing have demonstrated that the Transformer exhibits
superior feature extraction capabilities compared to LSTM. Bukhsh et al. [15] proposed a PBPM
method utilizing the Transformer network, which consists of multiple layers of encoders, decoders, and
self-attention mechanisms. These components are employed for feature vector extraction and learning
of enhanced correlations. Chen et al. [33] proposed a multi-task prediction approach for business
processes based on BERT and transfer learning. They leveraged the BERT model and integrated
transfer learning concepts, enabling rapid and effective application in tasks such as predicting the
next activity and forecasting case outcomes. Multi-perspective learning is a well-established domain
in machine learning that allows for a comprehensive exploration of feature diversity within each
perspective, free from the curse of dimensionality [34]. In references [35,36], they apply multi-
perspective techniques to BPM, enabling a more comprehensive analysis of process behaviors.



1230 CMC, 2024, vol.78, no.1

3 Background Knowledge
3.1 Definition

In this section, we will introduce some fundamental concepts [37] required for this paper, as
defined below:

Structure of Event Logs: Processes are composed of cases, and cases are comprised of events,
with each event uniquely associated with a single case. Events within cases are denoted by traces, the
sequence of (unique) events. Events possess attributes, with common attribute labels encompassing
activities, timestamps, cases, and resources.

Definition 1: (Events and Attributes): Events are associated with activities in the business process.
An event E is represented by attributes: a, c, and t. Here, a ∈ A represents the activity attribute
associated with the executing event, c ∈ N represents the case attribute, and t ∈ N represents the
timestamp attribute of the event.

Definition 2: (Case, Trace, Event Log): A case, denoted as c, symbolizes an execution of a process
model. Each event within an event log necessitates a corresponding case. Cases, akin to events, bear
attributes. A case c is represented by the tuple c = n, σ , where n ∈ N+ signifies the attribute identifier
of the case. Every case is endowed with a distinctive mandatory attribute-the trace σ .

A trace is a finite sequence of events denoted as σ = E1, E2, . . . , E|σ |, where each event occurs only
once, i.e., for ∀ 1 ≤ i < j ≤ |σ |.

An event log Table 1 constitutes a collection L of cases c, where each event occurs at most once
within the entire log. In other words, for any c1, c2 ∈ L, it holds that c1 �= c2.

Definition 3: (Prefix Trace): A prefix trace σ n is the subsequence of the first n events starting
from the beginning event of trace σ . In other words, σ n = E1, E2, . . . , En (1 ≤ n ≤ |σ |). Therefore, a
trace represents a complete case, including the start and end events, while a prefix trace represents an
ongoing case that corresponds to a case.

Definition 4: (Next Event Activity Prediction): This entails the combination of preceding trace
sequences from the event log. For instance, predicting “Event3” necessitates the prior trace “Event1”,
or “Event2”. Consequently, a preprocessing step is applied to the event log. A minimal prefix trace
length, denoted as Lσ (Lσ : >= 2), is set, and values of all traces less than Lσ are disregarded. The
optimal value for Lσ is determined through experimentation, as excessively large Lσ values could lead
to a reduction in the sample size of the training dataset. Refer to Table 2 for specific details (Table 1
encompasses distinct attribute categories within each Event entry).

Table 1: Event log BPIC2017

Event Case: ID Activity Action Resource Selected Credit score Offered amount

E1 1365106765 O_Create Offer Created User_17 TRUE 1028 6900
E2 1365106765 O_Created State change User_17 TRUE 1028 6900
E3 1365106765 O_Sent State change User_17 TRUE 1028 6900
E4 1365106765 O_Returned State change User_116 TRUE 1028 6900
E5 1365106765 O_Accepted State change User_95 TRUE 1028 6900
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Table 2: Event log an example of pre-processed prefix traces in BPIC2017

Case: ID Prefix traces Activity for the next event

1047899891 Event1, Event2 Event3: Sent (online only)
1047899891 Event1, Event2, Event3 Event4: Returned
1047899891 Event1, Event2, Event3, Event4 Event5: Accepted

3.2 Deep Neural Network

The Transformer model [14], proposed by A. Vaswani et al., is a sequence-to-sequence model
based on the self-attention mechanism. It has achieved remarkable success in machine translation
tasks and stands as a significant milestone in the field of Natural Language Processing (NLP). The core
idea of the Transformer is to completely abandon traditional recursive and convolutional operations
and instead establish associations between different positions in a sequence through the self-attention
mechanism. The self-attention mechanism is the cornerstone of the Transformer model. In the encoder,
self-attention allows each word at a given position to interact with words at other positions within the
sequence.

BERT [38] is a Transformer-based pre-trained language model introduced by J. Devlin Compared
to traditional language models, BERT’s breakthrough lies in its adoption of a bidirectional pre-training
approach. Unlike conventional language models that only utilize context information from either the
left or right side, BERT incorporates both left and right context information, hence referred to as
“bidirectional”. As shown in Fig. 1. In specific tasks, the pre-trained BERT model can be employed
as a feature extractor or fine-tuned for downstream applications. Through fine-tuning, BERT can
adapt to various domain-specific tasks. In this paper, BERT is utilized as a feature extractor to encode
input event logs into vector representations, which are subsequently used for task-specific training and
prediction.

Figure 1: BERT
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4 Proposed HB-MPF Framework

This paper describes the advanced perspective of the HB-MFP framework, as shown in Fig. 2.
Firstly, using multi-attribute feature encoder technology, the features of the different category
attributes of each event in the event log are extracted for encoding. All these attributes are then
input into the dual-layer BERT model for semantic feature extraction of the event log, which aims to
capture the correlation between the attribute-data flow and the event-control flow. Finally, the main
focus of this paper can be divided into the following two aspects: 1. In comparison to existing advanced
research methodologies, this study aims to evaluate whether the HB-MPF framework enhances the
predictive performance of BPM. 2. This paper enhances the transparency of the black box model
through the utilization of the FPM framework, while also providing visualization of the internal
predictive process within the framework.

Figure 2: Presenting the HB-MPF framework based on a financial lending example

Compared to the limited consideration of a single perspective in existing methods, the framework
proposed in this paper preserves the integrity of event logs maximally and enables the analysis of data
information generated from process behavior from a global perspective, as detailed in Fig. 2. Fig. 2 is
a partial representation of the event log, with each event containing different categories of attributes
(Case: ID, Activity, Timestamp, Resource, Credit Score, Offered Amount, Accepted...and other
unlisted attributes). Each trace contains a sequence of events σ = {E1, E2, . . . , En} with continuous
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time series. Therefore, it is important to consider not only the control flow perspective represented by
the activity names but also the attribute-data stream perspective in the events, such as the high or low
credit score and the size of the offered amount, which can affect whether the loan application process
is accepted or rejected. The following sections will provide a detailed description of each technical
module in the design framework and its respective function.

4.1 Multi-Attribute Feature Encoder

The event logs are pre-processed and converted into a data set in XES data file format. The dataset
is then divided into two parts: 80% is used as a BERT model in the pre-training professional field for
the prediction tasks, and the remaining 20% is used as a test validation set.

Input Layer: Extract features from different categorical attributes (e.g., Table 1) in the event log
as inputs to the framework, X = {att1, att2, . . . , attn}. These attributes include Case ID; Activity;
timestamp; Resource; Credit Score; Selected; Offered Amount, etc.

Multi-Attribute Feature Encoder: The extracted features from different categorical attributes in
the events are input to this layer. Additionally, for computational convenience, the length of the input
vectors must be kept consistent. Since the number of attribute categories varies across different event
logs, the calculation should consider the maximum number of possible values and use it as the input
vector length. Padding is used for a smaller number of attribute categories to make them have the same
length. Therefore, the calculation method for the length of the input vector is as follows: lens (each
attribute’s input vector) = max ({count (unique (attn))}).

Fig. 3 illustrates the specific encoding approach used in the multi-attribute feature encoder.

Figure 3: Multi-attribute feature encoder

Token Embeddings: Each attribute is transformed into a fixed-dimensional vector. In the BERT
model of the pre-training professional field, each attribute is converted into a 128-dimensional vector
representation (the optimal value is determined through training).

Segment Embeddings: They allow BERT to handle classification tasks that involve different events
in the inputs. These tasks include determining whether two events in a trace are similar. In the event
log trace, two events are simply concatenated and fed into the model.

Position Embeddings: Position embeddings enable the BERT model to capture the positional
information vector of each input attribute, allowing it to learn the attribute-data information of the
input event flow. The final encoding layer synthesizes the representations as follows.
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These representations will be element-wise summed to obtain a composite vector Ai of size (1, n,
128), where 1 represents the batch size, n represents the number of input attributes, and 128 represents
the vector dimension. Similarly, X′ = { A1, A2, . . . , An}, where each Ai represents the corresponding
attribute embedding vector, and denotes the output of the attribute feature encoder. Subsequently, the
embedded attribute Ai is input into the next layer.

4.2 Semantic Feature Extraction for Event Logs Based on Two-Layer BERT

The first layer BERT model learns attributes—the weight allocation of attributes of different
categories in events from the attribute-data flow perspective to interpret which attributes or data
account for a larger proportion. Therefore, we take the vectors Ai of different categorical attributes
from the output of the multi-attribute feature encoder as inputs and feed them into the first layer of
the BERT model for pre-training, as shown in Fig. 4, the attribute-data flow perspective.

BERT consists of multiple transformer encoder layers, each equipped with multi-head attention
mechanisms. These attention mechanisms enable BERT to learn attribute data from different per-
spectives and automatically assign proportional weights to each attribute. By stacking multiple layers,
BERT can learn and discover hidden correlations between attributes at deeper levels. Each attribute
vector Ai is passed through three distinct linear layers, denoted as AQ, AK, and AV, resulting in three
separate vectors: attribute query Q, attribute key K, and attribute value V, with dimensions dQ, dK, and
dV, respectively. The scaled dot-product attention block calculates the dot product between K and Q,
divides each key by a

√
dk, and applies a softmax function to obtain the attention scores as weight

values. The specific formula is as follows [14]:

Attention(Q, K, V) = softmax

(
QkT

√
dk

)
V (1)

In the training process, backpropagation and gradient calculation are necessary. Setting attention
scores to zero would impede effective gradient propagation. Therefore, attention scores are assigned
an extremely small value instead of zero. Dividing by

√
dk ensures stable computation and propagation

of gradients. BERT employs multi-head attention, enabling simultaneous focus on information from
different representation subspaces at various positions.

Multi-Head(Q, K, V) = Concat(head1, . . . , headn)W
O (2)

where headi = Attention(QWi
Q, KWi

K, VWi
V
) (3)

In the above equation, the parameter matrices for projection are denoted as Wi
Q ∈ Rdmoedl×dk ,

Wi
K ∈ Rdmoedl×dk , Wi

V ∈ Rdmoedl×dv and WO ∈ Rdmoedl×hdv . Here, dmodel represents the input dimension of the
model, and dk represents the query dimension. The dimension of the parameter matrix WO is dmoedl×hdv ,
where hdv represents the product of the number of attention heads and the dimension of values. The
headn correspond to the number of attention heads. WO is utilized to perform linear transformations on
the output of multi-head attention, resulting in the final model output. It is important to note that Wi

and WO are typically learnable parameters that are updated and optimized through backpropagation
during the model training process. BERT Masked Attribute Modeling (MAM) mechanism allows it to
learn the importance of different categorical attributes for an event. The masking operation [MASK]
with the token is performed as follows: M = {A1, A2, . . . , An}.
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Figure 4: Deep neural network-based two-layer BERT, a multi-perspective framework for fusing data
flow and control flow
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Randomly, 15% of tokens (attributes) in an event are replaced with the following criteria:

1. 80% chance of being replaced with [MASK].

2. 10% chance of being replaced with any other token.

3. 10% chance of remaining unchanged. The model is then trained to predict and restore the
masked or replaced parts. During loss calculation, only the masked or replaced parts in step 1 are
considered, while the remaining parts do not contribute to the loss calculation. Thus, any output for
the unaffected parts does not impact the loss.

This mechanism indeed forces the model to encode the sequence of attributes by considering their
context (other different categorical attributes) rather than relying heavily on the current attribute alone.
It enables the model to perform ‘corrections’ based on the context information. Finally, the learned
representations of the different categorical attributes Ai

′ = {A1
′, A2

′, . . . , An
′} are output to the next

layer.

Fine-tuning + Self-Attention Mechanism: Fine-tuning BERT only requires modifications to
downstream tasks (self-attention mechanism). Therefore, after training and learning in the first layer
of the BERT model, the learned representations of different categorical attributes Ai

′ are used as
inputs. These inputs are then passed into the self-attention mechanism layer, where feature selection
is performed. This layer pays more attention to attributes with higher allocation weights and weights
their importance accordingly. It is important to note that this paper does not interfere with determining
the allocation weights for each attribute. Therefore, this process is entirely automated. Self-attention
formula (4)

Attention(Q, K, V) = softmax

(
QkT

√
dk

)
V (4)

After the first layer of the BERT model analyzes and learns from the attribute data of complex
process behaviors, it generates an event vector Ei. Similarly, other event vectors in the trace are also
obtained in this way, σ = {E1, E2, . . . , En}, and this vector serves as the feature vectors of the respective
events, which are then inputted into the next layer.

The second layer of the BERT model, in the Event-Control Flow Perspective, learns the impor-
tance and correlations between different events in predicting future events when multiple consecutive
events occur. It aims to explain the impact and priority relationship of each event in predicting future
events. This perspective is illustrated in Fig. 4, the Event-Control Flow Perspective. The event vector
Ei, which is the output of the previous layer of the BERT model after training and fine-tuning, is used
as the input for this layer. Similarly, event vectors for all other events in the trace are created, σ =
{E1, E2, . . . , En}. The event vector Ei contains the feature information of all categorical attributes, and
the timestamp attribute records the temporal sequence of events. All the contextual event vectors Ei are
input into the second layer of BERT in parallel. Similar to the first layer of BERT, the Masked Even
Modeling(MEM) mechanism masks 15% of the events in complete trace, M = {E1, E2, . . . , En}. After
pre-training, the BERT model can automatically learn the priority sequence, concurrency, asynchrony,
and cyclic logical relationships among events in the trace. For example, when multiple consecutive
events occur, the second layer of the BERT model learns the correlations between different events
in predicting future events and automatically assigns different weights to each event in the trace.
These weights reflect the importance of different events and explain the impact of different events
on predicting future events.
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4.3 (Decoder) Fine-Tuning Layer + Predicting the Activity of the Next Event

The final output layer takes the output from the second layer of BERT and passes it to the next
activity prediction module. The next event prediction module consists of a global average pooling layer,
a dropout layer, and a softmax layer.

En+1(activity) = Softmax (M, WE) (5)

The highest-probability activity is chosen as the final output, representing the activity of the next
event in the trace. The weight matrix WE corresponds to the events within the trace.

The proposed dual-layer BERT model employs an event-control flow architecture, with attribute-
data flow serving as the carrier. The event flow contains rich multi-attribute data feature information,
enabling a multi-perspective analysis that integrates both control flow and data flow. The final output
is the prediction of the En+1(activity), represented by its activity name, rather than predicting all
attributes of the event. This approach significantly reduces training time, enabling a more efficient
and accurate implementation of process monitoring and prediction tasks.

5 Experiment Evaluation

In this section, we will outline the experimental setup used to evaluate the effectiveness of our
approach. The experiments were conducted on five datasets, all derived from publicly available real
event logs from the 4TU Research Data Center. Subsequently, we will discuss the results of the
experimental activities, to provide answers to the following research questions.

RQ1: How does the HB-MPF framework fuse perspectives from multiple dimensions, and what
is its performance in predicting the next event’s activity?

RQ2: In BPM, how does the framework perform visualized predictions?

The remaining sections of this chapter are as follows: Section 5.1 provides an overview of the
datasets and experimental configuration used in the methodology. Section 5.2 presents the visual pre-
diction of HB-MPF framework fusion from multiple perspectives Section 5.3 presents the evaluation
results of the experiments and discusses the impact of crucial parameters on prediction accuracy.
Lastly, Section 5.4 summarizes the experimental findings and addresses the research questions about
the HB-MPF framework.

5.1 Data Set

The experimental evaluation of the methodology in this paper is drawn from five different real-
world datasets published by 4 tu. Research Data, each representing a different domain. Table 3
provides reference specifications for these datasets.

Help Desk1: This data set pertains to ticket management processes in an Italian software
company’s helpdesk. It consists of a concise case and a limited number of activities.

BPIC20122: This data set focuses on the application process for personal loans or overdrafts within
a global finance institution managed by a Dutch financial institution. Specifically, this study utilizes
the BPI2012WComplete variant, which includes traces of subprocess W while retaining the completed
events.

1https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
2https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f


1238 CMC, 2024, vol.78, no.1

Receipt3: Derived from the CoSeLoG project executed under the NWO project number
638.001.211, this data set investigates the (differences) similarities between several processes in
different cities in the Netherlands. The logs capture the execution records of the receipt phase in a
building permit application process conducted by an anonymous municipal authority.

BPIC20174: This data set encompasses the loan application process of a Dutch financial institu-
tion. It includes all applications received through an online system in 2016, along with subsequent
activities until February 01, 2017, at 15:11.

BPIC20205 Payment Requests: This dataset comprises events related to payment requests that are
unrelated to travel. Events were collected for two departments in 2017 and for the entire university in
2018. The process involves various licenses and declarations (domestic and international declarations,
advance travel expenses, and payment requests).

Table 3: Reference specifications for event logs

Events Activities Traces Attributes

Help desk 21348 14 4580 8
BPIC2012 262200 24 13087 5
Receipt 8577 27 1434 8
BPIC2017 193849 8 42995 8
BPIC2020 36796 19 6886 8

5.1.1 Experimental Configuration Environment and Pre-Processing

The HB-MPF method was implemented in Python 3.8 for this study. Table 4 presents the
hyperparameter configuration used in the experiments, while Table 3 displays the hyperparameter
configuration for other research methods. To predict the next event activity, it is necessary to consider
the prefix traces occurring in the event log. For instance, predicting Event3 requires the prefix traces
Event1 and Event2, and predicting Event4 requires Event1, Event2, and Event3. Therefore, the event
log is preprocessed by setting a minimum prefix length, denoted as L (L:>=2). All traces with a length
smaller than L are disregarded. The optimal value for L is determined through experimentation.
Setting L too high may result in a reduction of samples in the training dataset. Further details can
be found in Table 1 (Each event in Table 1 contains attributes of different categories).

5.2 Visualization Analysis from the Perspective of Attribute-Data Flow

Illustrating with the event log BPIC2017 (Fig. 2), which pertains to the loan application process of
a Dutch financial institution, this study exemplifies how enterprises forecast loan application processes
for distinct clients. The objective is to predict the final approval outcome of loan applications from
various clients, thus mitigating resource wastage and identifying bias.

3https://data.4tu.nl/articles/dataset/Receipt_phase_of_an_environmental_permit_application_process_WABO_CoSeLoG_project/12709127/2
4https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
5https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886/1

https://data.4tu.nl/articles/dataset/Receipt_phase_of_an_environmental_permit_application_process_WABO_CoSeLoG_project/12709127/2
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886/1
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Table 4: Hyperparameter configuration

Hyperparameter Values

Epochs 100
Batch_size 1
Learning_rate 0.000001
BERT1_input_len 8
BERT2_input_len 5
Hidden_size 128
Embedding_size 128
Forward_hidden_size 128
Q-K_d 128
V_d 128
Block_nums 1
Dropout 0.1

Building upon the research of [39,40], this study employs the multi-head attention mechanism of
BERT to present the interplay of data information and visualize the internal operational processes
of the model. Firstly, an analysis from the perspective of attribute-data flow is conducted. Events are
compositions of attributes. Diverse categories of attribute data are inputed into the framework for
training, whereby the self-attention mechanism intuitively focuses on which attributes-data elements
carry the most substantial impact on prediction outcomes (refer to Fig. 3). Then, computation of
feature weight values (determined through attention scoring) elucidates the significance of distinct
attribute categories and the interrelationships between them. Thirdly, the visualization of internal
operations from the perspective of attribute data flow is shown in Fig. 5. Subsequently, the event
streams E1, E2, and E3 are further transformed into vectors composed of attributes from different
categories for comparison.

Figure 5: Attribute-data flow perspective for internal operations visualization
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In Tables 5–7, noticeable variations can be observed in the self-attention score weights for
different attribute categories in events E1, E2, and E3. This is because different attributes are focused
on in different events to determine which attributes-data have a higher degree of influence. The
utilization of multi-layer, multi-head attention enables the learning of associations between attributes
and data from multiple perspectives. By executing multiple self-attention mechanisms in parallel, the
model simultaneously focuses on different perspectives of the input sequence, capturing the semantic
information of the input event logs from various angles, thus enhancing the model’s representational
capacity. Furthermore, as each attention head can specialize in different segments, the multi-head
attention mechanism excels at handling long-range dependencies within the input sequence. Finally,
the outputs from these diverse attention heads are concatenated along the feature dimension and
subjected to another linear transformation to obtain the final output.

Table 5: Self-attention scores for different categorical attributes in E1

E1 Case ID Action Resource Activity Selected Credit score Offered amount Time
Case ID 0.1292 0.1202 0.0788 0.1389 0.1798 0.2035 0.1345 0.1261
Action 0.2205 0.1299 0.1429 0.0971 0.1223 0 0.1304 0.1266
Resource 0.1358 0.1182 0.1353 0.1158 0 0.1512 0.1733 0.1805
Activity 0.0847 0.1861 0.1658 0.083 0.0904 0.1203 0.2212 0.1596
Selected 0.1405 0.1239 0.1716 0.1444 0.1369 0.1519 0.1408 0.1011
Credit score 0.105 0.3037 0 0.1091 0.1299 0.099 0.1306 0.1707
Offered amount 0.1388 0.1784 0.1861 0.049 0.1148 0.1248 0 0.1777
Timestamp 0.1224 0.2398 0.1470 0.0606 0.1144 0.1234 0.1170 0.1864

Table 6: Self-attention scores for different categorical attributes in E2

E2 Case ID Action Resource Activity Selected Credit score Offered amount Time
Case ID 0.1064 0.0917 0.0918 0.1455 0.1666 0.2297 0.1548 0
Action 0.2632 0.1005 0.1012 0.1185 0.1364 0.1678 0.0876 0.136
Resource 0.1113 0.0868 0.1511 0.1298 0.1059 0.1669 0.1365 0.2229
Activity 0.1562 0.1076 0.1213 0.0844 0.076 0.2558 0.1729 0.1369
Selected 0.1535 0.1604 0.0000 0.1118 0.1321 0.1393 0.1556 0.0905
Credit score 0.0904 0.2025 0.0501 0.1692 0.1471 0.1046 0.1192 0.2281
Offered amount 0.0979 0.0913 0.1181 0.0000 0.088 0.1132 0.1572 0.3563
Timestamp 0.1557 0.1123 0.0000 0.1564 0.0795 0.1075 0.1351 0.1810

The BERT model outputs these attribute data, which are subsequently subjected to weighted
through a neural network layer utilizing a self-attention mechanism module. This process yields the
proportional weight relationships among different attributes within events, as depicted in Fig. 6,
enabling the identification of attributes with higher weight proportions and greater impact. In Fig. 6,
it can be observed that the attention weights for the Credit Score attribute are 0.168, for Resource
are 0.1566, and for Activity are 0.1511. This indicates that these three attributes have received more
attention within the events and carry greater weight in influencing future events. Conversely, attributes
with smaller attention weights receive less focus. These attention weights are automatically obtained
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through training as optimal weights. This further confirms the effectiveness of the HB-MPF model,
as the Credit Score significantly affects the success of loan applications, and Activity represents the
sequence of activities in loan applications, which directly impacts subsequent events. The attributes-
data within the event stream directly influence future events, thereby indirectly affecting the outcome
of the process. Therefore, it is crucial to analyze events from both the control-flow perspective and the
attribute-data perspective, as this enables a more comprehensive understanding of complex event logs
and results in more accurate predictions.

Table 7: Self-attention scores for different categorical attributes in E3

E3 Case ID Action Resource Activity Selected Credit score Offered amount Time
Case ID 0.1209 0.1226 0.1326 0.1369 0.1492 0.2092 0.1362 0.1035
Action 0 0.0975 0 0.1254 0.1289 0.1817 0 0.1603
Resource 0.1318 0.1599 0.1924 0.1078 0.0615 0.1348 0.1484 0.1743
Activity 0.1606 0.1178 0.1257 0.0978 0.1072 0.166 0.1484 0.1876
Selected 0.1216 0.1952 0.1245 0.1181 0.1503 0.1476 0.1261 0.1277
Credit score 0.0951 0.2585 0.1294 0.0885 0.0000 0.098 0 0.2178
Offered amount 0.1200 0.0000 0.1543 0.0647 0.1174 0.124 0.1188 0.3191
Timestamp 0.1187 0.1282 0.1447 0.1061 0.1322 0.14 0.1176 0.2232

Figure 6: The relationship between the weight of different categories of attributes in the event

5.3 Visualization Prediction from the Perspective of Event-Control Flow

Using the data flow as a basis, further analysis of the event-control flow is conducted. The
HB-MPF framework captures how the event flow information interacts between different traces. By
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employing the visualization of multi-layer, multi-head self-attention in the second layer of BERT,
six key pattern perspectives are presented, for example, Figs. 7–12. These patterns further elucidate
the internal workings of the HB-MPF framework. They aid in understanding how the framework
extracts semantic features from event logs, conducts behavioral analysis from different perspectives,
and achieves higher prediction accuracy.

Figure 7: Pattern 1: attend to the preceding event. Left: attention of all event streams in the trace.
Right: attention weight of the selected event (accepted)

Figure 8: Pattern 2: attend to the succeeding event. Left: attention of all event streams in the trace.
Right: attention weight of the selected event (refused)
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Figure 9: Pattern 3: attend to events in the prefix trace. Left: attention of all event streams in the trace.
Right: attention weight of the selected events (accepted)

Figure 10: Pattern 4: attend to identical (including activities in other traces) or correlated events. Left:
attention to all event streams in the trace. Right: attention weights of selected events (refused)

Taking the event log BPIC 2017 as an example, to interpret the internal workings of the framework,
this study replaces the entire event representation with the activity names within the events (note
that each event contains attributes from different categories). Events with temporal sequences such
as O-Create Offer, O-Created, O-Sent, O-Returned, O-Accepted, or O-Refused are represented as
Create, Created, Sent, Returned, Accepted, and Refused, respectively. In the following Figs. 7–12 [41],
the color transparency of the connecting lines between events represents the magnitude of attention
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weights (higher transparency corresponds to lower attention weights), and different colors are used to
indicate attention interaction connections between different layers.

Figure 11: Pattern 5: attend other events capable of predicting the current event. Left: attention of all
event streams in the trace. Right: attention weights of selected events (refused)

Figure 12: Pattern 6: attention separator. Left: attention of all event streams in the trace. Right:
attention weight of the selected events (accepted)

Pattern 1 (Fig. 7): Attend the previous event. In this pattern, each position primarily attends to the
preceding event (token) in the sequence. For example, in the 5th head of the 3rd layer in the diagram,
the attention is mostly focused on “Returned,” which is the next event in the sequence. The left side
of the diagram displays the attention for all event flows, while the right side shows the attention for a
specific event.
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Pattern 2 (Fig. 8): Attend the next event. In this pattern perspective, each position primarily
attends to the next event in the sequence. For instance, in the 0th head of the 2nd layer in the diagram,
most of the attention is directed towards “accepted,” which is the next event in the trace.

Pattern 3 (Fig. 9): Attend to events in the prefix trace. This pattern, represented by the 11th head
in the 6th layer, exhibits attention from “returned” primarily focusing on events in the prefix trace,
enabling analysis and learning from previously occurred events.

Pattern 4 (Fig. 10): Attend to the same (including identical event activities in other traces) or
related events. This pattern perspective, illustrated by the 11th head in the 1st layer, does not exhibit
a prominent concentration of attention like some other patterns. Attention is dispersed across many
different events. This pattern could be particularly useful for tasks involving the prediction of the next
event activity (as part of the BERT pre-training task) as it helps identify relationships between different
traces.

Pattern 5 (Fig. 11): Attend other events that can predict the current event. This pattern perspective,
represented by the 9th head in the 4th layer, seems to pay more attention to other relevant events that
can predict the current event. For example, events such as “created” and “sent” in the prefix trace could
be used to predict the “returned” event.

Pattern 6 (Fig. 12): Attend to separators. In this pattern perspective, most of the attention for
events is focused on the separator tokens ([CLS] or [SEP]), as depicted by the 2nd head in the 9th
layer. This might be a way for the model to propagate the event flow state of a trace to individual
events.

In the preceding text, we elucidated how the attention mechanisms of BERT manifest various
patterns. For instance, one attention head predominantly focuses on the subsequent event within
the sequence, while another attends to the preceding event. In both scenarios, BERT learns the
intricate behavioral processes within the event log. We visually represented 6 distinct patterns of the
internal attention structure in BERT, which aid in comprehending how multi-head attention captures
correlations amid process behaviors. These patterns can embody a multitude of diverse relationships,
such as sequence, recursion, concurrency, conflict, and other types of associations.

5.4 Ablation Experiment

To assess the HB-MPF capability in predicting the subsequent event activity in event logs, this
study employed the accuracy metric. Thus, upon completion of the training phase, selected traces
from the test set were provided to the model one by one, and the model’s predictions of the next event
activity were compared to those of other state-of-the-art methods. The accuracy formula is as follows:

accuracy = number of correct predictions
total number

(6)

The ablation experiments were analyzed for the HB-MPF framework, where the baseline criteria
for this experiment were set as follows: the number of attribute categories was fixed at 3 (representing
the fundamental activities, cases, and timestamps within the event log), and the minimum prefix length
was set to 1.

Attribute data analysis involved comparing the number of distinct attribute categories present in
the event log (parameter A). To ensure the integrity of the event log and the uniqueness of attribute-
data values, duplicate attribute-data entries were eliminated. The BPIC2012 dataset comprised 5
distinct attribute categories, BPIC2017 had 8 attribute categories, BPIC2020 featured 7 distinct
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attribute categories, and both the Help Desk and Receipt datasets consisted of 7 and 8 attribute
categories, respectively.

As shown on the left in Fig. 13, the predictive performance was lowest when the number of
attributes was 3. This can be attributed to the limited information provided by the key attribute
data. However, as the number of attributes increased in the dataset, the prediction accuracy also
improved, highlighting the criticality of preserving the integrity of attribute data within the event
log. Nevertheless, including all attributes from the event log as inputs increased the computational
complexity within the framework and introduced more noise, resulting in decreased prediction
accuracy.

Figure 13: Left figure: effect of the number of attributes of different categories on prediction accuracy
(data flow perspective parameter A). Right figure: effect of setting the minimum length of prefix traces
on prediction accuracy (control flow perspective parameter C)

Event-control flow analysis involved setting the minimum length of events in the input prefix
traces (parameter C) to 1 (Event1), 2 (Event1, Event2), and 3 (Event1, Event2, Event3), respectively.

On the right side of Fig. 13, it is evident that when the minimum length of events in the input prefix
traces was set to 1, the predictive accuracy for all five real datasets was significantly lower compared to
when the event length was set to 2. This discrepancy arises from the insufficient information provided
by the data behaviors in the analysis of business process flows, resulting in lower prediction accuracy
compared to the latter scenario. Furthermore, when the minimum length of events in the prefix traces
was set to 3, the predictive accuracy reached its lowest point. This can be attributed to the limited
sample size, leading to underfitting during training.

Multi-perspective fusion analysis combined the analysis of the number of different attribute
categories in the data flow and the length of prefix traces in the control flow to determine the
optimal parameters A (I + U) and parameters C (2). The results presented in Fig. 14 demonstrate
the performance improvement achieved by these parameters in the HB-MPF framework, thereby
validating the effectiveness of the proposed multi-perspective fusion approach.

Finally, to demonstrate the HB-MPF framework’s ability to comprehensively analyze complex
process behaviors and achieve higher accuracy in predicting the next event activity, a comparison was
made between this study and existing state-of-the-art methods. Table 8 demonstrates that, compared to
a single control flow (or data flow) perspective, the HB-MPF-based approach exhibits higher accuracy
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in predicting the next event activity. This further highlights the effectiveness of multi-perspective fusion
behavior analysis, as opposed to solely considering a single perspective.

Figure 14: Effect of parameters A on prediction accuracy

Table 8: Comparison of the best prediction accuracy of the HB-MPF framework experimental results
with other current state-of-the-art methods

Method BPIC2020 Receipt BPIC2012CW BPIC2017 Help desk

Camargo et al., LSTM [32] 85.70% 84.10% 78.00% 81.70% 78.90%
Evermann et al., LSTM [12] 87.90% 81.20% 71.10% 85.70% 79.80%
Tax et al., LSTM [13] 85.50% 85.40% 76.40% 80.40% 71.20%
Pasquadibisceglie et al.,
LSTM [17]

89.40% 86.40% 84.20% 89.40% –

Bukhsh et al., Transformer
[15]

– – 78.48% – 85.63%

Chen et al., BERT [33] – – 78.60% – 76.40%
Rama-Maneiro et al.,
LSTM [24]

– – – 92.90% 84.40%

HB-MPF 89.75% 91.28% 85.13% 94.80% 92.03%

5.5 Discussion

The following summarizes the main experimental results of Sections 5.3 and 5.4 to provide a clear
answer to the research question defined at the beginning of this section.
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RQ1 How does the HB-MPF framework fuse multiple
dimensions of perspective?

What is the performance of predicting the next
event activity?

Answer 1. Comprehensive Framework Perspective: This
paper assigns attention weights to diverse
categorical attribute features within the data flow,
subsequently fusing them into the event control
flow for a holistic analysis.

The experimental outcomes from five genuine and
openly accessible datasets indicate, as shown in
Table 8, that the HB-MPF framework
outperforms state-of-the-art techniques in terms
of precision for predicting the next event’s
activities.

2. Multi-Dimensional Perspectives Through
Multi-Head Attention Mechanisms: This paper
investigates the multi-layered, multi-headed
attention patterns within the HB-MPF
framework. These patterns enable a more
comprehensive analysis of intricate process
behaviors.

RQ2 In BPM, how does the HB-MPF framework provide visualized predictions?

Answer 1. Visualization of Framework Structure: The HB-MPF framework is constituted by a multitude of
technological modules (Fig. 4), allowing for the visual representation of internal data propagation
within the framework through the interactions of each module.
2. Visualization of Prediction: We visualized the prediction process of multi-layer multi-head attention
patterns within the HB-MPF framework, which can help decision-makers understand the
decision-making logic and prediction rules within the framework (Figs. 7–12).

6 Conclusion and Future Work

This paper proposes a process prediction method based on the hierarchical BERT and multi-
perspective data fusion (Abbreviation: HB-MPF framework). This framework can fuse data flow with
control flow, providing a more comprehensive multi-dimensional analysis. The first layer BERT model
learns attributes—the weight allocation of attributes of different categories in events from the attribute-
data flow perspective to interpret which attributes or data account for a larger proportion. The second
layer BERT model learns events—when multiple continuous events occur, the importance degree and
precedence relation of different events on the prediction of future events from the event-control flow
perspective to interpret the importance degree and priority relationship of each event on predicting
future events. We visualized the prediction process of multi-layer multi-head attention patterns within
the HB-MPF framework, which can help decision-makers understand the decision-making logic and
prediction rules within the framework. Thus provides visual predictions of business processes.

Based on experimental analysis conducted on five real event logs, our proposed HB-MPF
framework demonstrates superior predictive performance compared to current single-perspective
methods, exhibiting higher prediction accuracy. Additionally, ablation experiments indicate that the
number of different attributes in data streams and the length of prefix traces in control flows have
an impact on predictive performance. This signifies that behavioral and data information from
various perspectives influences predictive performance. Consequently, the multi-perspective fusion
approach shows fewer limitations, higher comprehensiveness, and increased accuracy in comparison
to single-perspective methods. Our research has advanced the development of PBPM by addressing
the limitations associated with solely employing a single perspective for prediction. Simultaneously,
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it has brought new insights into other aspects of the BPM domain. For instance, offering a more
comprehensive multidimensional behavioral analysis, along with integrating the multi-head attention
mechanism for visual analytics, aids in addressing the issue of poor interpretability of deep learning
techniques in BPM applications.

In future work, the goal is to utilize HB-MPF as a model framework for analyzing process
behavior in event logs and apply it to other relevant tasks in business process management. For
example, multi-perspective event log repair, which involves restoring missing attributes in event log
traces, and multi-perspective anomaly detection for detecting abnormal behavior based on multiple
perspectives [42–44].
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