.W\ Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2023.046607

ARTICLE Check for

updates

A Time Series Intrusion Detection Method Based on SSAE, TCN
and Bi-LSTM

Zhenxiang He , Xunxi Wang and Chunwei Li

School of Cyberspace Security, Gansu University of Political Science and Law, Lanzhou, 730000, China
*Corresponding Author: Zhenxiang He. Email: hzx6198@gsupl.edu.cn
Received: 08 October 2023 Accepted: 23 November 2023 Published: 30 January 2024

ABSTRACT

In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly.
Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with
most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection
accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL)
model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces
feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through
a Temporal Convolutional Network (TCN) and Bidirectional Long Short-term Memory Network (Bi-LSTM). By
meticulously adjusting time steps, we underscore the significance of temporal data in bolstering detection accuracy.
On the UNSW-NBI15 dataset, our model achieved an F1-score of 99.49%, Accuracy of 99.43%, Precision of 99.38%,
Recall of 99.60%, and an inference time of 4.24 s. For the CICDS2017 dataset, we recorded an F1-score of 99.53%,
Accuracy of 99.62%, Precision of 99.27%, Recall of 99.79%, and an inference time of 5.72 s. These findings not only
confirm the STL model’s superior performance but also its operational efficiency, underpinning its significance in
real-world cybersecurity scenarios where rapid response is paramount. Our contribution represents a significant
advance in cybersecurity, proposing a model that excels in accuracy and adaptability to the dynamic nature of
network traffic, setting a new benchmark for intrusion detection systems.

KEYWORDS

Network intrusion detection; bidirectional long short-term memory network; time series; stacked sparse
autoencoder; temporal convolutional network; time steps

1 Introduction

The burgeoning use of the internet has corresponded with a marked rise in cyberattack incidents,
presenting profound risks to societies, nations, and individuals alike [1,2]. Recent data from the China
Internet Emergency Center’s 12th report of 2023 reveals a concerning trend: malicious software, back-
door website creations, and new security vulnerabilities are emerging at an alarming rate. Specifically,
between March 20th and March 26th, there was a 52.5% jump in the spread of malicious programs
from the previous interval. Backdoor website occurrences escalated by 76.2%, while the discovery of
new security vulnerabilities rose by 24.9%. Every week, thousands of cybersecurity incidents demand
intervention. These figures do not just spotlight the escalating cyber threat environment; they also

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.046607
https://www.techscience.com/doi/10.32604/cmc.2023.046607
mailto:hzx6198@gsupl.edu.cn

846 CMC, 2024, vol.78, no.1

emphasize the growing urgency for robust network intrusion detection solutions. Numerous challenges
have arisen within the emerging fields of cloud computing and the Internet of Things (IoT). Cloud
computing has evolved into a modern platform marked by high scalability and on-demand services,
where one of the most formidable challenges is maintaining the reliability of the network environment
[3,4]. Concurrently, the exponential increase in IoT devices has precipitated a similar surge in network
traffic. Even brief periods of network unavailability can have catastrophic consequences, underscoring
the critical need for robust network intrusion detection systems [5,6]. Network intrusion detection
empowers us to promptly identify and counteract potential security threats [7,8]. Yet, the vastness
and high dimensionality of network traffic data, combined with the continuous evolution of attack
techniques, question the efficacy and efficiency of conventional detection approaches [9,10]. Herein lies
the crux of our research: the STL model is engineered to directly address these challenges by integrating
time series analysis, thus enhancing the predictive power and responsiveness of IDS.

The digital landscape’s evolution has been paralleled by an escalation in the sophistication and
frequency of cyberattacks, necessitating advanced defenses in network security. Among the myriad
of protective strategies, Intrusion Detection Systems (IDS) stand as sentinels against unauthorized
access and malicious activities [1]. These systems not only monitor network traffic but also serve as
crucial components in an organization’s security architecture, ensuring the integrity and confidentiality
of data.

Despite the critical role of IDS, the incorporation of time series analysis in detecting intrusions
is often overlooked. Time series data—observations recorded sequentially over time—unlocks a
chronological perspective, allowing security systems to discern patterns and anomalies that sporadic
data points may obscure. However, the complexities of time series data and the analytical challenges
it presents have led to its underutilization in intrusion detection [12,13].

Acknowledging this lacuna, our research presents the STL hybrid model—a pioneering solution
that integrates time series analysis into the fabric of intrusion detection. By systematically charac-
terizing network data over time, the STL model aims to elevate detection efficacy, especially against
threats that manifest incrementally. Time series data, with its potential to unveil subtler, evolving attack
patterns, serves as a linchpin in this endeavor, enhancing the predictive capabilities of IDS and reducing
the incidence of false negatives.

To elucidate the novel methodology underpinning the STL model, we offer a precis of the hybrid
model’s components and their convergence to surmount the challenges of modern cyber threats:

e The Stacked Sparse Autoencoder (SSAE) forms the foundational layer, tasked with distilling
high-dimensional data to preserve salient features crucial for subsequent analysis.

e The Temporal Convolutional Network (TCN) and Bidirectional Long Short-Term Memory
Network (Bi-LSTM) synergize as the model’s core, adeptly sifting through the compressed data
to extract features with high temporal fidelity.

As we unfold the narrative of this paper, the subsequent sections are laid out as follows: Section 2
reviews the extant literature, shedding light on the current state of intrusion detection and the time
series gap therein. Section 3 delineates the deep learning models that constitute the STL model,
detailing their roles and interplay. Section 4 provides an in-depth account of the STL hybrid model’s
architecture and the experimental methodology we have adopted. Section 5 presents the datasets,
preprocessing steps, and rigorous experimental results that validate our model’s proficiency in time
series analysis. Finally, Section 6 offers a synthesis of our findings, openly discusses the limitations of

CMC, 2024, vol.78, no.1 847

our approach, and suggests directions for future research, emphasizing the broader implications of
our work for the field of network intrusion detection.

Through this paper, we aim to not only bridge the current research gap but to also provide a clear
roadmap for the integration of time series analysis in intrusion detection, demonstrating its criticality
for robust and predictive cybersecurity defenses.

2 Related Work
2.1 Deep Learning Method

Deep learning is a subset of machine learning. Unlike traditional machine learning techniques,
deep learning primarily aims to learn the inherent patterns within sample data. This approach not
only streamlines model construction and feature extraction but also exhibits heightened accuracy,
especially when handling large datasets. In recent times, as deep learning techniques have matured and
gained traction, a growing number of researchers are harnessing these methods for network intrusion
detection. Numerous systems have been crafted, integrating deep learning models like Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), Auto Encoders (AE), and Deep Belief
Networks (DBN). These systems have demonstrated remarkable efficacy in identifying large volumes
of anomalous data and emergent network threats [14].

CNN is inherently adept at recognizing local features of data, leading to an optimized network
structure that ensures both positional and shape invariance [|5]. Their capacity to perform feature
extraction and reduce data dimensionality has made them increasingly prevalent in the intrusion
detection field. This is largely due to their proficiency in capturing salient data feature representa-
tions. Wang et al. [16] proposed a one-dimensional CNN-based end-to-end detection classification
technique. This method can autonomously learn from raw input and discern nonlinear correlations
between output features. However, its reliance on one-dimensional data hampers effective local feature
extraction, yielding a detection rate that falls short of the benchmark. On another front, a Long Short-
Term Memory Network (LSTM) is a distinct subtype of recurrent neural networks. It possesses the
capability to retain input data and foresee outputs across varying periods, effectively circumventing
the gradient vanishing and exploding challenges inherent in RNNs. Consequently, LSTMs have
found extensive applications, notably in the realm of natural language processing [17]. Bi-LSTM
[18], an enhancement over the conventional LSTM, remedies the limitations of the latter by bridging
contextual information more effectively. In 2018, Bai et al. [19] introduced the TCN. This innovative
model integrates causal and dilated convolution and embeds residual connections between network
layers. Such an architecture facilitates the extraction of sequential features and simultaneously staves
off gradient-related issues. The ongoing refinement of deep learning algorithmic frameworks and their
ensuing success across diverse sectors underscore the burgeoning potential and bright future of deep
learning.

2.2 Intrusion Detection Method

Research on network intrusion detection can be traced back to the 1980s when Professor Anderson
[20] pioneered the notion of “intrusion detection.” Four decades hence, the principles underpinning
intrusion detection have evolved, found extensive applications, and are now integral components
of network security systems. A significant milestone was achieved in the 1990s when Debar and
associates [21] integrated neural networks into intrusion detection, heralding the era of leveraging
neural network models in this domain. Subsequently, Lin et al. [22] incorporated convolutional
neural networks into network intrusion detection. Utilizing a refined LeNet-5 model coupled with

848 CMC, 2024, vol.78, no.1

gradient descent optimization, backpropagation, and meticulous fine-tuning of learning rates, they
showcased commendable classification performance on the KDD99 dataset. In a further development,
Vinayakumar et al. [23] introduced an intrusion detection methodology based on an enhanced RNN.
This approach tackled the gradient explosion challenge and juxtaposed its efficacy against established
deep learning techniques in the realm of network intrusion detection, encompassing models like RNN
and LSTM. Experimental evaluations revealed that this advanced RNN held its ground, delivering
detection results on par with LSTM across datasets such as KDDCUP99, NSL-KDD, and UNSW-
NBIS.

Fernandez et al. [24] empirically compared machine learning and deep learning-based intrusion
detection methodologies. Their findings underscored the superior classification efficacy of deep
learning over traditional machine learning in the context of network intrusion detection. In another
study, Radford et al. [25] utilized a Bi-LSTM-driven intrusion detection technique to classify datasets,
reporting impressive detection outcomes. Thirimanne et al. [26] fashioned a real-time intrusion
detection system that analyzed both inbound and outbound network data. By employing a DNN
model for classifying the KDDCUP99 dataset, they achieved a striking 96% accuracy. Pooja et al. [27]
harnessed a Bi-LSTM model to bifurcate the KDDCUP99 dataset, registering remarkable accuracy.
Thilagam et al. [28], by fusing CNN and LSTM, embarked on multi-classifying datasets across
varied attack spectrums, including botnets, resulting in enhanced classification precision compared
to other established techniques. Wang et al. [29] integrated a self-attention mechanism into a Bi-
LSTM framework, enhancing feature significance computation and thereby optimizing classification
performance. Sinha et al. [30] proposed a detection model melding both CNN and Bi-LSTM, enabling
the model to learn the spatial and temporal characteristics of data. Trials on the NSL-KDD and
UNSW-NBI5 datasets affirmed its superior performance over traditional machine learning and other
contemporary deep learning models. Lastly, Xu et al. [31] crafted an intrusion detection model
based on the Stacked Sparse Autoencoder (SSAE). Their approach involved using SSAE for data
dimensionality reduction before channeling the condensed data into a softmax classifier. They further
augmented the model based on SSAE, not only bolstering its intrusion detection prowess but also
diminishing the rate of false alarms.

Xu et al. [32] incorporated the Logarithmic Autoencoder (LogAE) to emphasize essential data
attributes, leveraging the Extreme Gradient Boosting (XGBoost) for dataset categorization. Their
performance on the UNSW-NBI15 dataset outshined several contemporary methods. Imran et al. [33
designed an intrusion detection system, amalgamating predictive and learning facets. With the learning
segment anchored in Automated Machine Learning (AutoML) and the predictive portion hinging
on the Kalman filter, evaluations on the UNSW-NBI15 and CICIDS2017 datasets confirmed the
augmented accuracy of this amalgamated model. Wang et al. [34] presented RUIDS, a sturdy unsuper-
vised intrusion detection paradigm, by embedding a masked context reconstruction module within a
transformer-centric self-supervised learning architecture. Trials on the UNSW-NB15 dataset validated
its enhanced robustness without compromising the algorithm’s efficiency. Lopez-Martin et al. [35]
modernized the conventional Radial Basis Function (RBF) neural network, incorporating it into an
offline reinforcement learning algorithm, delivering superior outcomes on the CICIDS2017 dataset
in comparison to other models. Kim et al. [36] harnessed an LSTM-DNN framework on the
primary dataset to generate mislabeled data. Employing a Generative Adversarial Network (GAN)
on the retrained dataset facilitated real-time intrusion detection on the CICIDS2017 dataset without
resorting to session discontinuations or data collection delays, maintaining competitive performance
levels. Siddigi et al. [37] introduced an innovative framework that synergizes an advanced feature
selection mechanism with image augmentation techniques, targeting adept anomaly detection using

CMC, 2024, vol.78, no.1

849

deep learning classifiers. The superiority of this methodology on the CICIDS2017 dataset was evident
when juxtaposed against alternatives. Lastly, Deng et al. [38] proposed an avant-garde technique rooted
in the Flow Topology Graph Convolutional Network (FT-GCN) tailored for intrusion detection in
resource-constrained IoT networks. Benchmarking on the UNSW-NB15 dataset showcased the FT-
GCN'’s commendable efficiency against leading-edge models.

Table | presents a detailed comparative analysis of the existing research on intrusion detection

that we have reviewed, highlighting the unique advantages and identifying the specific challenges
encountered in each referenced study [39].

Table 1: Summary of related works

Ref. Method Advantages Challenges

[25] Bi-LSTM Identifies new malicious Impractical full dataset
behaviors without prior training for real-world use.
knowledge.

[26] DNN Integrates a real-time feature Bias towards normal data,
extractor for live monitoring. leading to false alarms.

[27] Bi-LSTM Outperforms other methods in ~ Untested for online,
literature. real-time attack detection.

[28] CNN-LSTM Effective combination of scalability to larger network
LSTM and CNN within an environments.

RC-NN framework.

[29] BiLSTM-Attention Develops three new May require redefinition of
self-attention functions tailored distance metrics for different
for this detection task. code smell types.

[30] CNN-BiLSTM The model integrates the Optimization for U2R and
spatial and temporal learning =~ Worms attack categories is
capabilities of CNNs and needed.

Bi-directional LSTMs.

[31] ISSDA ISSDA enhances decoding Requires enhanced
precision and overall detection high-dimensional data
performance. handling.

[32] LogAE-XGBoost Combines log learning and LogAE might misjudge
boosting for feature features without standard
classification. normalization.

[33] AutoML-KF Utilizes ensemble methods to ~ Needs to address scalability
enhance performance. and bandwidth handling for

growing internet
applications.

[34] RUIDS Resistant to anomaly Needs to address the
contamination with novel complexity of transformer
reconstruction module. models.

[35] RBFNN Suitable for unbalanced and Needs to develop new loss

noisy datasets typical in
network intrusion detection.

functions for the RBFNN
training.

(Continued)

850

CMC, 2024, vol.78, no.1

Table 1 (continued)

Ref. Method Advantages Challenges

[36] LSTM-DNN Enables real-time intrusion Must manage the trade-off
detection without waiting for between detection speed and
session completion. accuracy.

[37] GF-CNN Reduces feature set for low Needs to identify optimal
computational overhead while parameters for image
maintaining precision. transformation techniques

like the Gabor filter.

[38] FT-GCN Efficiently handles limited Requires optimization to

labeling through topological
structure conversion of traffic

improve traffic graph
construction for better

flows. correlation representation.

3 Methodology
3.1 Sparse Autoencoder

AE, a derivative of the feedforward neural network, comprises three layers: input, hidden, and
output [40]. Unlike feedforward networks, AE learns features in an unsupervised manner, training
iteratively and adjusting connection weights through gradient descent and the backpropagation
algorithm. The training objective is to preserve as much information as possible after the encoding
and decoding process while ensuring that the features represented in the hidden layer possess desirable
properties.

Aside from learning low-dimensional encoding, autoencoders can also learn high-dimensional
Sparse Autoencoder (SAE). Assuming the dimension M of the middle-hidden layer z is greater than
the dimension D of the input sample x, and making z as sparse as possible, this is known as a
sparse autoencoder. The advantage of the sparse autoencoder is its high interpretability, coupled
with implicit feature selection. During intrusion detection, a sparse encoder can be used to compress
high-dimensional traffic data, replacing the original data with newly acquired feature samples. While
preserving the original data’s information, this effective compression reduces feature dimensions,
enhancing model learning performance, cutting down computation, and boosting the intrusion
detection speed.

By imposing sparsity constraints on the hidden layer unit z in the autoencoder, the autoencoder
can learn some useful structures within the data. Given N training samples {x"}" , the objective
function of the sparse autoencoder is

N
!
L = E ”x(n) —x®
n=1

where Z = [z,---,z"] represents the encoding of all training samples, p(Z) is the sparsity
measurement function, and W represents the parameters in the autoencoder.

"o () + | W (1)

CMC, 2024, vol.78, no.1 851

Given N training samples, the average activation value of the jth neuron in the hidden layer is
1 N
=27)
n=1

p; can be approximately viewed as the probability of the activation of the jth neuron. If we want
p; to be close to a pre-defined value p*, for instance 0.05, the divergence between p; and p* can be
measured using the KL distance, that is

*

* ~ * /0* *
KL(p"|1p) = p"log — + (1 — p*) log ~ 3)
O 1—p
If p, = p*, then KL(p*||p;,) = 0. Therefore, the loss function of the sparse autoencoder is
h
Tsae (W) =D L(x,y) + B D KL(p*lI5) 4)

J=1

The stacked sparse autoencoder is closely related to the autoencoder, combining the stacked
encoder and the sparse encoder. The features extracted from the previous layer are input to the next
layer, deeply learning data features at different scales to obtain a high-level feature representation of
the input data.

3.2 Temporal Convolutional Network

The Temporal Convolutional Network offers a distinctive convolutional neural network design
that adapts one-dimensional convolution, making it adept at addressing time series challenges [41].
Fig. | depicts the comprehensive TCN architecture, encompassing causal convolution, dilated con-
volution, and residual connections, adeptly addressing multivariate time series extraction challenges.
Its application to time series forecasting has grown in recent times. Subsequent sections detail each
component’s specifics.

Input for next residual block

output tensor
BDe
output tensor 'Y T,
Dropout (1¥1'cm; l (k. d=2"@-1))
Causal Conv Relu T
Weight Norm R
|) | | | Dilated Cansal Conv]
Residual block
[T T[T Donowt (k, d=2)
Relu
\%h_/ Weight Norm
[Dilated Causal Conv Residual block
1+(k-1)xd 3 (k, d=1)
input tensor output from previous residual block input tensor

Figure 1: The complete structure of the temporal convolutional network

852 CMC, 2024, vol.78, no.1

e Causal Convolution: Causal convolution has strict temporal constraints, using only the infor-
mation from prior moments to predict the value at a specific moment. This convolution operation
ensures that the TCN does not miss historical information like the CNN, thus influencing the final
classification. The architecture of causal convolution is shown in Fig. 1. From Fig. 1, it can be seen
that if the input time series is = [x;, X5, - - - , X7], X € R" and the filter is F = [, f2, - - - , fr], the output
of x, after causal convolution is the following equation:

Y(T)= (X %) (T) =D F@)-xr, (5)

e Dilated Convolution: Essentially, as the network depth increases, each layer’s receptive field, or
the number of steps it can read, expands. This operation ensures that the size of each hidden layer is
consistent with the input time step length. From Fig. 1, the output of x; after dilated convolution with
a dilated factor is the following equation:

Y(T) = (X,) (T) = D FQ) - X7, (6)

where d is the dilated factor, & is the filter size, and T — d - i accounts for the direction of the past.

e Residual Connections: The role of residual connections is to address the gradient vanishing
problem that may occur when the network layers are too deep [42].

3.3 Long Short-Term Memory Network

LSTM is a specialized form of RNN, characterized as a Gated Recurrent Neural Network (Gated
RNN). Traditional RNNs grapple with persistent dependency challenges, which LSTMs adeptly
address with their gating mechanism. This makes LSTMs aptly equipped to handle extended time
series datasets.

The core strength of an LSTM resides in its memory cell, which seamlessly integrates across the
entire network. This design ensures minimal data loss, promoting consistent information relay during
prolonged sequences. Furthermore, LSTMs leverage input, forget, and output gates to maintain
gradient flow and control: the forget gate evaluates data to discard from the cell state, the input gate
integrates new information into the cell state, while the output gate determines the conclusive output.
A visual representation of the LSTM’s recurrent architecture can be observed in Fig. 2.

Figure 2: Recurrent unit structure of LSTM network

CMC, 2024, vol.78, no.1 853

A Bi-LSTM is structured with dual recurrent neural network layers that share the same input but
propagate information in opposite directions. Its predictions incorporate both past and future inputs.
Given that the foremost layer processes data in a forward temporal sequence while the latter operates
in reverse, the hidden states at a given time ¢ are denoted as 4" for the forward sequence and A for
the reverse. This relationship can be mathematically expressed as follows:

WY = (UKD, + Wx, + b®) (7)
W = (U2, + WOx, + b®))

ho=h" P h? ©)

Fig. 3 displays the bidirectional recurrent neural network unfolded over time. The working
principle of LSTM typically runs from front to back according to the time sequence, learning the
internal features of the data, and obtaining the final result through the classifier. In this paper, we use
Bi-LSTM, which runs both forward and backward in time sequence. The final output is determined by
the internal features of the classifier from two unidirectional LSTMs. The advantage of this approach
is that it allows the algorithm to better learn the internal features of the data, improving classification
accuracy.

Backward 2 17}
Layer

Forward [4 (17
Layer

> h;ﬁl] L] ?:21

nput [T W [

Figure 3: Bi-LSTM neural network structure expanded by time

4 Proposed Model
4.1 STL Model

We introduce a hybrid model, STL, tailored for the characteristics of time series data features, as
depicted in Fig. 4. This model is structured into five distinct layers: the input layer, the SSAE layer, the
TCN network layer, the Bi-LSTM network layer, and the output layer.

The input layer, being the first, inputs pre-processed data. Following this, the SSAE layer utilizes
greedy layer-wise pre-training to pinpoint the optimal number of stacked layers suitable for the dataset.
This model, once determined, is retained to handle the pre-processed data. The SSAE’s primary
function is feature reduction, ensuring the preservation of crucial data features. The SSAE achieves a
concise representation of the original data features and, with the integration of sparsity constraints,
diminishes noise, computational strain, and potential overfitting. Moreover, it not only maintains the
integrity of reduced dimensions but also showcases its prowess in feature extraction. The processed
data from the SSAE layer then becomes the input for the subsequent temporal model. The steps for
SSAE feature dimensionality reduction are as follows Algorithm 1.

854 CMC, 2024, vol.78, no.1

Algorithm 1: SSAE for Feature Dimensionality Reduction

nxd

Input: Training data X € R
Output: Trained SSAE model, Encoded data, Classifier model
Initialization: n: number of samples, d: number of features, p: sparsity parameter, o: weight of
regularization
Step 1: Define SSAE structure:
for each layer / € {1, 2, 3}
Encoder: Dropout layer — Dense layer with ReLU activation and sparsity regularizer.
Decoder: Dense layer with ReLU activation and sparsity regularizer.
Step 2: Define Sparse regularizer:
Regularization term for each neuron’s activation a:
R(a) = a(plogﬁ + (1 —p)log ! '0)
a l1—a

Step 3: Pre-training phase:
for each layer / € {1, 2, 3}
If/ =1: Input < X
Else Input <—Output of encoder / — 1
Train autoencoder / to minimize the mean squared error (MSE) between the input and
the reconstructed output, incorporating the regularization term R(a).
Save weights if validation loss improves.
Step 4: Initialize SSAE encoder with pre-trained weights.
Step 5: Define classification model:
Attach additional dense and LSTM layers to the SSAE encoder.
Output layer with sigmoid activation function for binary classification.
Step 6: Compile and train the classifier:
Attach additional dense and LSTM layers to the SSAE encoder.
Output layer with sigmoid activation function for binary classification.
Step 7: Evaluate the classifier:
Predict class labels for training and testing data.
Compute accuracy and false alarm rate (FAR) for both sets.
Step 8: Save the trained classifier model and encoded data.

L Pl
|

OO OEO®

Input SSAE TCN Bi-LSTM Output

Figure 4: STL model framework

CMC, 2024, vol.78, no.1 855

Transitioning to the third layer, we have the TCN network layer. TCN is a neural network archi-
tecture specifically designed for sequence data processing. It is characterized by its rapid convergence
and superior feature extraction capabilities. This is achieved by multiple stacks of causal convolutional
layers, extending the convolution’s receptive field, which underscores TCN’s proficiency in addressing
time series issues. The fourth layer: Bi-LSTM network layer. The output of the TCN network layer
serves as the input for the Bi-LSTM network layer, capturing the sequential relationships of the input.
The Bi-LSTM network layer captures preceding and succeeding information of the input sequence
through forward and backward loop processing. It fully learns the intrinsic patterns within the data
and obtains future predictions, effectively revealing latent relationships between data. By combining
TCN and Bi-LSTM, this hybrid model can fully utilize TCN’s long-term memory capabilities and Bi-
LSTM’s bidirectional sequence-capturing abilities. This combination offers enhanced performance on
complex sequences. Lastly, the fifth layer is the output layer. This layer bridges the Bi-LSTM’s output
to the classifier via two fully connected layers, which then executes the binary classification imperative
for intrusion detection. The steps for TCN-BiLSTM for Sequential Data Processing are as follows
Algorithm 2.

Algorithm 2: TCN-BiLSTM for Sequential Data Processing
Input: Sequence X of shape (time_steps, features)
Output: Trained model for sequence classification
Initialization: Set time_steps, features
Step 1: Define Model Architecture:
Input layer with shape (time_steps, features)
TCN layer with causal and dilated convolutions
Bidirectional LSTM layers
Step 2: TCN Layer
for each layer / with dilation d, filter W, input x, do
for each time step ¢ do

1] <—ReLU(z W[K]-x[t—d-k])

k=0

end for

Step 3: Bidirectional LSTM

for ecach time step 7 do

Compute h;'arward’ hfa('kwnrd

h, < concatenate (™, k)

i, =0 Wyx,+b;+ Wyh_ +by)

fi =o (for + by + Wigh, . + bhf)

g = tan (I/Vigxr + big + Whghr—l + bhg)

0, =0 (I/Vioxt + biu + I/Vlzohl—l + bhu)

¢ :ﬁ'cz—l"'iz'gt

h, =o,-tanh(c,)

where o is the sigmoid activation function, tan /4 is the hyperbolic tangent function, W and b
are the weights and biases of the respective gates, ¢, and /4, are the cell state and hidden state at time ¢.

(Continued)

856 CMC, 2024, vol.78, no.1

Algorithm 2 (continued)
Step 4: Model Compilation and Training

Compile model with optimizer, loss, metrics

Fit model on training data with TCN and BiLSTM layers
Step 5: Model Evaluation

Predict on test data using trained model

Evaluate with accuracy, precision, recall, F1-score

Fig. 4 illustrates the network structure and the arrangement of the three models within it, which
is primarily determined by two critical factors.

Sequential Transfer Learning employs a structured approach: initially, SSAE reduces dimension-
ality and filters noise from the data, establishing a foundation for feature extraction. This is followed
by the TCN layer, which is adept at capturing local temporal features within the sequence. Finally, the
Bi-LSTM layers integrate the previously processed data, considering both past and future contexts, to
construct a comprehensive global representation of the sequence.

Layer Complementarity is central to our architecture, with each layer designed to augment the
capabilities of the others. The SSAE is the foundation, creating a compact representation of the
original data. Building on this, the TCN expands the analysis into the temporal domain, utilizing
the reduced feature space to examine temporal scope more effectively. Finally, the Bi-LSTM layer
weaves these refined features into a cohesive timeline, capturing the complex dynamics by considering
both past and future information in the sequence.

4.2 Model Experiment Process

The workflow of our hybrid model is depicted in Fig. 5. Initially, we load the original data for
both training and testing from the dataset. Upon preprocessing, this data is bifurcated into distinct
training and testing sets. Subsequently, 30% of these sets are randomly chosen to determine the optimal
SSAE model. With each added SAE layer during the training phase, the best-performing iteration
is autonomously stored. After adding a layer of SAE for training, the best-performing model is
automatically saved, and the final optimal model is used in the STL hybrid model. Following this,
the training set is introduced into the pre-constructed STL model for further training. After obtaining
the predicted values, compare them with the original data labels separated during data preprocessing.
Finally, this trained model is applied to the testing set, and its efficacy is gauged using specified
evaluation metrics.

In the experiments, a time series generator is used to test the detection performance at different
time steps, with its function and significance as follows:

e The Time Series Generator is essential for preparing sequential data for deep learning models. It
transforms the data into a compatible format by segmenting input sequences into fixed-length
samples determined by the time_steps parameter, thereby allowing the model to identify and
learn from patterns within these temporal segments.

e Additionally, the generator plays a pivotal role in batch preparation during training, organizing
the data into manageable units of batch_size samples each. This batching is vital for the efficient
training of deep learning models, particularly when working with extensive datasets.

e In time series analysis, capturing temporal dependencies is paramount. The Time Series
Generator is designed to maintain the chronological sequence of the data, providing the model
with the context needed to learn from temporal relationships across time steps.

CMC, 2024, vol.78, no.1 857

e Finally, the generator is integrated into the training workflow, supplying the model with
consistent batches of input sequences alongside their corresponding labels for each training
epoch, thereby streamlining the learning process.

Intrusion Detection Dataset

Data
preprocessing

Train Set Test Set

\ 4
SSAE Layer-by-
layer Greedy Pre-

training
. STL
" Model
—
Classifier
Loss
Y 'y Test Label
Predictive Value
|—C‘ompane—> Train Label Evaluation
Index

Figure 5: Experimental flow chart

5 Experiment Design and Comparative Analysis
5.1 Dataset

The experimental setup for this study is as follows: Intel(R) Xeon(R) CPU E5-2695 v3, 12 GB
RAM, 50 GB NVMe, and a GeForce RTX 4070 Graphics Card. We use Python 3.8 and TensorFlow
2.11.0. The experiment uses the UNSW-NB15 and CICDS2017 datasets for intrusion detection.

The UNSW-NBI5 dataset was proposed in 2015 by a research group from the Australian Security
Center. This dataset is generated by simulating real network environments, making it more relevant
to current network traffic [43]. The dataset is composed of 175,341 entries in its training segment and
82,332 in its testing counterpart. It encompasses nine distinct attack classifications: Generic, Exploit,
Fuzzers, Denial of Service (DoS), Reconnaissance, Analysis, Backdoor, Shellcode, and Worms. From
the dataset’s 49 features, they can be categorized into 5 traffic attributes, 13 foundational attributes, 8
content attributes, 9 temporal attributes, 12 overarching attributes, and 2 label attributes. A detailed
breakdown of the data count and distribution across the nine attack categories is depicted in Table 2.

858 CMC, 2024, vol.78, no.1

Table 2: Various types of data in the UNSW-NBI15 data set and their quantity distribution

Attack type Train set Test set
Quantity Proportion/% Quantity Proportion/%
Normal 56000 31.94 37000 44.94
Generic 40000 22.81 18871 22.92
Exploit 33393 19.04 11132 13.52
Fuzzers 18184 10.37 6062 7.36
DoS 12264 6.99 4089 4.97
Reconnaissance 10491 5.98 3496 4.25
Analysis 2000 1.14 677 0.82
Backdoor 1746 1.00 583 0.71
Shellcode 1133 0.65 378 0.46
Worms 130 0.07 44 0.05
Total 175341 100.00 82332 100.00

CICIDS2017is a reliable dataset proposed by Sharafaldin and others. It includes normal behaviors
and 14 typical types of intrusion network data flows [44]. Conforming to real network scenarios,
the dataset uses script files to simulate the normal behaviors of users in real scenarios. Additionally,
during an attack, the mixture of normal user traffic data can better simulate real network intrusion
scenarios. CICIDS2017 has a rich variety of attack samples. Compared to other open-source network
intrusion detection datasets, it reflects well the current level of network attack techniques. Moreover, its
network data feature information is abundant. The CICIDS2017 is a renowned dataset acknowledged
by experts within the intrusion detection domain.

This dataset’s data collection spanned five days, beginning at 9 a.m. on Monday, July 03, 2017,
and concluding at 5 p.m. on July 07. The initial day, July 03, witnessed only regular network activities
without any intrusions. The subsequent days recorded distinct attack patterns. Specifically, July 04
observed FTP-Patator and SSH-Patator brute force attacks alongside usual activities. July 05 was
characterized by Denial of Service attacks with instances from Golden Eye, Hulk, Slow Http Test, Slow
Loris, and Heartbleed. The next day, July 06, documented Web attacks such as XSS, SQL injection,
Brute Force, and penetration assaults. Lastly, July 07 registered botnet invasions, port scanning, and
Distributed Denial of Service attacks, notably DDoS LOIT. The attacks interspersed with regular
activities simulated real-life network intrusions effectively. Details of the attacks and their quantities
can be found in Table 3.

Table 3: Various types of data in the CICDS2017 data set and their quantity distribution

Attack type Quantity
Normal 2271318
DDoS 128025
Port Scan 158804
Bot 1956

(Continued)

CMC, 2024, vol.78, no.1 859

Table 3 (continued)

Attack type Quantity
Infiltratior 36
Brute Force 1507
Sql Injection 21
XSS 652
FTP-Patator 7935
SSH-Patator 5897
Golden Eye 10293
Hulk 230124
Slow Http Test 5499
Slow Loris 5796
Heart Bleed 11

5.2 Data Preprocessing
The UNSW-NBIS5 dataset comprises both numerical and categorical features. As deep learning

models necessitate numerical inputs, we transform the categorical attributes—“proto”, “service”,
and “state”—into numerical counterparts via one-hot encoding. Specifically, the “proto” feature
encompasses 133 unique symbolic values, “service” holds 13, and “state” includes 11. Consequently,
post-transformation, the feature dimensionality escalates from 42 to 196. The dataset contains
data of different dimensions that can be discrete or continuous, and they have a significant range
difference, which makes values across different dimensions incomparable. To mitigate the impact of
this significant range difference on model computations, the Min-Max normalization method is used
to map the data samples into the [0,1] range. The preprocessed data is then fed into a stacked sparse
autoencoder for dimensionality reduction.

The CICDS2017 dataset contains collected traffic data and does not have pre-divided training and
test sets. Firstly, the data is cleaned, missing values are filled in, and erroneous content is corrected,
converting “NaN” and “Infinite” values either to zero or replacing them with the average value.
Subsequently, five irrelevant columns, such as IP addresses and timestamps, are removed from the
dataset. Labels of 0 and 1 are then assigned to normal and attack traffic, respectively. Lastly, the data
is transformed using one-hot encoding and Min-Max normalization, mapping all values into the [0,1]
range. Min-Max normalization is represented by Eq. (13). The data preprocessing workflow is shown
in Fig. 6.

X — min

v (10)

max — min

Figure 6: Data preprocessing flow chart

860 CMC, 2024, vol.78, no.1

5.3 Evaluation Indicator

The performance of the proposed intrusion detection model is assessed using a comprehensive set
of evaluation metrics specifically chosen for their relevance in the context of security analytics. These
include Accuracy, Precision, Recall, F1-score, and the False Alarm Rate (FAR), each providing unique
insights into the model’s detection capabilities [45].

Accuracy (Eq. (11)): Measures the proportion of both True Positives (TP) and True Negatives
(TN) among all tested samples, giving a straightforward indication of overall correctness.
TP+ TN

Accuracy = (11)
TP+ FP+ TN + FN

Precision (Eq. (12)): Evaluates the reliability of the model’s positive predictions, highlighting its
ability to minimize False Positives (FP), which is critical in preventing unnecessary responses to non-
threats.

TP
Precision = ——— (12)
TP+ FP

Recall (Eq. (13)): Also known as the true positive rate, it assesses the model’s ability to correctly

identify all actual attacks, a key performance aspect in ensuring no threats go undetected.

TP
Recall = ———— (13)
TP+ FN

Fl-score (Eq. (14)): The harmonic means of Precision and Recall serves as a single metric that

balances both the false positives and false negatives, providing a holistic view of the model’s precision
and robustness in detection.

F1 — sorce — 2 % Préc.ision x Recall (14)
Precision + Recall

False Alarm Rate (FAR) (Eq. (15)): Indicates the likelihood of the model incorrectly labeling
normal traffic as malicious, which is crucial for maintaining user trust and operational efficiency.

FP

FAR = —
TN + FP

(15)

The selection of these metrics is grounded in the need to present a nuanced view of the model’s
performance, considering not only its effectiveness in identifying threats but also its precision and
operational efficiency. This balanced approach to evaluation is particularly important in intrusion
detection systems where the cost of misclassification can be high, both in terms of security breaches
(when attacks are missed) and disrupted legitimate activities (when normal actions are falsely flagged
as attacks).

5.4 Experimental Result

The model’s training was bifurcated into two phases. In the inaugural phase, a greedy layer-wise
pre-training approach was adopted to ascertain the optimal number of layers for the SSAE. Initially,
the structure of a single-layer sparse autoencoder was defined. Subsequently, layer-wise pre-training
was employed to train SSAE with varying layers. This was then followed by connecting it to a single-
layer LSTM network. The performance was tested with a time step length of 1, ultimately saving the
most optimal SSAE model. The test results are shown in Table 4. Based on the definition of the sparse

CMC, 2024, vol.78, no.1 861

autoencoder, it is evident that its performance is primarily determined by factors such as the number
of units, hidden layers, and sparsity constant.

Table 4: UNSW-NBI5 data set SSAE parameter selection

SSAE P Acc (train) Acc (test) FAR (train) FAR (test)
0.02 0.9468 0.8867 0.0851 0.2381
[64,32,32] 0.04 0.9441 0.8870 0.0780 0.2208
0.06 0.9438 0.8826 0.0810 0.2294
0.02 0.9348 0.8868 0.0602 0.1840
[64,64,32] 0.04 0.9362 0.8920 0.0572 0.1688
0.06 0.9447 0.8847 0.0785 0.2194
0.02 0.9403 0.9057 0.0620 0.1804
[128,64,32] 0.04 0.9457 0.8922 0.0775 0.2213
0.06 0.9458 0.0792 0.8844 0.2272
0.02 0.9364 0.8781 0.0810 0.2287
[128,32,32] 0.04 0.9489 0.8989 0.0524 0.1620
0.06 0.9387 0.8888 0.0635 0.1838

Analyzing the preprocessed 196-dimensional data from the UNSW-NB15 dataset, Table 4 reveals
that the SSAE [128,32,32] equipped with a sparsity constant p = 0.04, stands out with the pinnacle
of training and testing accuracies and the nadir of FAR, hence it was selected for data dimensionality
reduction. The CICDS2017 dataset lacks categorical features and after preprocessing, it only has 79-
dimensional data. If we continue with the layer design of UNSW-NB15, the data would first be elevated
from 79 dimensions to 128, making it sparser and unable to extract key features in subsequent stages.
Scrutinizing the figures in Table 5, the SSAE [64,32,32] with sparsity constant p = 0.04 emerges as
the frontrunner in accuracy and the benchmark for the lowest FAR. Consequently, empirical evidence
steered the parameter determinations for the SSAE across both datasets.

Table 5: CICDS2017 data set SSAE parameter selection

SSAE P Acc (train) Acc (test) FAR (train) FAR (test)
0.02 0.9860 0.9861 0.0097 0.0099

[128,64,32] 0.04 0.9809 0.9808 0.0167 0.0169
0.06 0.9823 0.9823 0.0173 0.0176
0.02 0.9837 0.9839 0.0139 0.0140

[128,32,32] 0.04 0.9840 0.9839 0.0125 0.0128
0.06 0.9826 0.9825 0.0151 0.0153

(Continued)

862 CMC, 2024, vol.78, no.1

Table 5 (continued)

SSAE P Acc (train) Acc (test) FAR (train) FAR (test)
0.02 0.9802 0.9803 0.0169 0.0170

[32,32,32] 0.04 0.9814 0.9813 0.0169 0.0171
0.06 0.9836 0.9837 0.0148 0.0148
0.02 0.9825 0.9825 0.0138 0.0140

[64,32,32] 0.04 0.9870 0.9871 0.0086 0.0087
0.06 0.9827 0.9823 0.0089 0.0088

In the subsequent phase, data processed by SSAE serves as the foundation for the time-series
model TCN-BiLSTM. Prolonged experimentation involving both TCN and Bi-LSTM yielded our
chosen TCN parameters as follows: nb_filters = 64, kernel_size = 2, nb_stacks = 1, and dilations =
[1, 2, 4, 8, 16]. For the Bi-LSTM, a neuron structure of [24,12] was adopted. To bolster the model’s
resilience and impede overfitting, a Dropout layer with a rate of 0.4 was integrated post the assembly
of TCN and Bi-LSTM networks.

Table 6 presents a comparative analysis of the effects of SSAE on the dimensionality reduction
for two datasets, specifically highlighting the results at time steps 2 and 4, where a notable increase
in the STL hybrid model’s performance is observed. The data from Table 5 demonstrates that, at
these specific time steps, the performance metrics for both datasets, post-application of SSAE for
dimensionality reduction, are significantly higher compared to those metrics without dimensionality
reduction. This finding leads to a clear conclusion: employing SSAE for data dimensionality reduction
effectively enhances the STL hybrid model’s performance.

Table 6: SSAE ablation experiment

Dataset SSAE Time steps Fl-sorce Accuracy Precision Recall
No 2 0.8956 0.8730 0.8218 0.9840

4 0.9565 0.9503 0.9220 0.9937

UNSW-NBIS Ves 2 0.9236 0.9110 0.8805 0.9711
4 0.9683 0.9642 0.9501 0.9871

No 2 0.9550 0.9489 0.9266 0.9851

CICDS2017 4 0.9645 0.9858 0.9518 0.9773
Yes 2 0.9764 0.9903 0.9565 0.9969

4 0.9913 0.9947 0.9875 0.9952

The Timeseries Generator was harnessed to simulate the repercussions of historical network
activities on intrusion detection. This was instrumental in corroborating the model’s adeptness with
time series data. An extensive time step might overlook quintessential events or patterns that transpire
momentarily. Conversely, an overly minute time step can saturate the data with noise, complicating the
model and possibly instigating overfitting. An analysis of Fig. 7 with the UNSW-NB15 dataset reveals

CMC, 2024, vol.78, no.1 863

an ascent in detection accuracy across four models as the time step amplifies. This ascent plateaus at
a time step of 12, with a subsequent time step of 16 manifesting a slight ebb in detection proficiency.
It underscores the optimality of our proposed hybrid model at a time step of 12, boasting metrics like
F1-score, Accuracy, Precision, and Recall at 99.49%, 99.43%, 99.38%, and 99.60%, respectively.

WTCN ®BiLSTM m TCN-BiLSTM © LSTM ETCN ®BilSTM B TCN-BilSTM

1 -

| 0.98 -

. 0.9 -
5094
| 2092 -
- 0.9
Zoss
1 [l«'-;n.ss
1 0.84
. 0.82
- 0.8

o . . .
1 2 4 8 12 16
:_steps.

time_steps

Testing F1-gorce
o o 2 o =] =]
g8 © B ® & B
Acc

o
7

(a) Comparison of F1-sorce with different time steps (b) Comparison of Accuracy with different time steps

ETCN = BILSTM BTCN-BILSTM = LSTM BTCN = BilSTM B TCN-BilSTM L5STM
1
0.995
0.95
g 0.9 - _ 0985 -
= T o0es
g g
. 0.85 1 o 0.975
o 8
£ a 0.97
® a
't
& 08 0.965
0.75
0.955
0.7 - T
1 2 8 12 16
time shq;s time_steps

(c) Comparison of Precision with different time steps (d) Comparison of Recall with different time steps

Figure 7: UNSW-NBI15 dataset experimental results

Fig. 8 showcases that, for the CICDS2017 dataset, our proposed hybrid model reaches its zenith of
performance at a time step of 8, delivering impressive F1-score, accuracy, precision, and recall values
of 99.53%, 99.62%, 99.27%, and 99.79%, respectively. This signifies the commendable generalization
abilities of the SSAE-TB hybrid model.

Fig. 9 depicts a comparative line chart illustrating the training durations of the hybrid model on
two distinct datasets. This experiment was conducted using a batch size of 1024 over 250 epochs.
The chart clearly shows that dimensionality reduction via SSAE leads to decreased training times,
with simpler model combinations benefiting the most. The STL model, which integrates three deep
learning approaches, unsurprisingly necessitates longer training periods. Furthermore, utilizing data
that has not undergone SSAE’s dimensionality reduction in the hybrid model results in increased
durations for feature extraction and attack detection. Consequently, employing SSAE to reduce data
dimensionality before the training phase with the TCN and Bi-LSTM networks is both a logical and
practical approach.

864

CMC, 2024, vol.78, no.1

BTCN ™ BILSTM ® TCN-BILSTM © L5TM

us@d 'III
1 2 4 8 12
time_steps

“Testing F1-Borce
e e o =
& g 8 8 -

=
3

(a) Comparison of Fl-sorce with different time steps

WTCN ¥ BilSTM B TCN-BILSTM = LSTM

e
* Lad
L)

e
®
A

Tesling Accuracy
) e
& 8

=
&

0.94
1 2 4 8 12
time_steps

(b) Comparison of Accuracy with different time steps

BTCN ®BiLSTM ® TCN-BILSTM © LSTM

Testing Precision
) e e
g 8 B

o
]

ETCN ®BilSTM HETCN-BILSTM = LSTM

Testing Recall
P P P B
& 5 B 8

e
&

o
£
{

1 2 4 8 12
time_steps

(c) Comparison of Precision with different time steps

(d) Comparison of Recall with different time steps

Figure 8: CICDS2017 dataset experimental results

—+—5TL —=—SSAE-TCN —=—SSAE-BILSTM ——SSAE-LSTM -+—TCN-BiLSTM
1200

—=—8TL —+—SSAE-TCN ——SSAE-BiLSTM —SSAE-LSTM —+—TCN-BiLSTM
1600

1100 et -
1000
/7- 1200
900
800 - — 1000
700
200
600
600
500
400 T T T T T 400
1 2 4 8 12 16 1 2 4 8 12
Time Steps Time Steps
(a) UNSW-NBI5 dataset (b) CICDS2017 dataset

Figure 9: Training times comparison

CMC, 2024, vol.78, no.1 865

Fig. 10 presents a line graph that compares the inference times of a hybrid model utilizing two
different datasets. Consistent with the training phase, data that has been subjected to SSAE dimen-
sionality reduction before being processed by deep learning methods show a marked improvement
in detection results over non-reduced data. While the inference times for various hybrid models
post-SSAE reduction are comparable, the STL hybrid model distinguishes itself by achieving higher
accuracy and F1-scores at different temporal steps. In the context of network intrusion detection, the
precision of attack detection is paramount for enacting prompt countermeasures. Despite a marginal
difference in inference time—mere seconds compared to other models—the STL hybrid model’s
superior performance metrics solidify its advantage.

——S§TL ——SSAE-TCN ——SSAE-BLSTM —* SSAELSTM ——TCN-BILSTM ~#—STL —+— SSAE-TCN ——SSAE-BiL STM —— SSAE-LSTM —— TCN-BiL STM

6.5

o | e e
45 / 57 ____._____————"'

0L s 2

2.5

Time Steps Time Steps
(a) UNSW-NB15 dataset (b) CICDS2017 dataset

Figure 10: Inference times comparison

The performance of our SSAE-TB hybrid model was juxtaposed against prevailing advanced
models using the UNSW-NB15 and CICDS2017 datasets, as delineated in Tables 7 and 8. Key
metrics like F1-score, accuracy, precision, and recall were brought into consideration for comparison.
Analyzing Table 7 reveals that the STL model clinches the top spot for Fl-score and accuracy on
the UNSW-NBI15 dataset, with figures standing at 0.9949 and 0.9943, respectively. In the context of
the CICDS2017 dataset, while its accuracy trails slightly behind the LSTM-DNN method, the model
surpasses the other three evaluation criteria.

Table 7: Comparative experiment of the model on the UNSW-NB15 data set

Studies Year Method Fl-sorce Accuracy Precision Recall
Udas et al. [46] 2022 SPIDER 0.8612 0.8246 0.7630 0.9885
Zheng et al. [47] 2019 GCN-TC 0.9689 0.9697 0.9695 0.9687
Xu et al. [32] 2022 LogAE-XGBoost 0.9645 0.9511 0.9549 0.9645
Han et al. [48] 2022 IDHCS 0.9427 0.9451 0.8975 0.9927
Thakkar et al. [49] 2023 FST-DNN 0.9693 0.8903 0.9500 0.9895
Ozkan-Okay [50] 2023 FSACM 0.9713 0.9884 0.9727 0.9699
Kumaretal. [51] 2023 NBGOA 0.9696 0.9917 0.9523 0.9876
Imran et al. [33] 2021 AutoML-kalman filter 0.9876 0.9880 0.9876 0.9877
Wang et al. [34] 2023 RUIDS 0.9544 0.9262 0.9489 0.9601

(Continued)

866 CMC, 2024, vol.78, no.1

Table 7 (continued)

Studies Year Method Fl-sorce Accuracy Precision Recall
Deng et al. [38] 2022 FT-GCN 0.9865 0.9872 0.9866 0.9865
Proposed model 2023 STL 0.9949 0.9943 0.9938 0.9960

Table 8: Comparative experiment of the model on the CICDS2017 data set

Studies Year Method Fl-sorce Accuracy Precision Recall
Imran et al. [33] 2021 AutoML-kalman filter 0.9603 0.9702 0.9485 0.9724
Han et al. [48] 2022 IDHCS 0.9655 0.9655 0.9660 0.9650
Toldinas et al. [52] 2021 MDLIR 0.9848 0.9849 0.9849 0.9848
Liu et al. [53] 2019 FFT-CNN 0.9869 0.9870 0.9870 0.9869
Gu et al. [54] 2021 NB-SVM 0.9821 0.9892 0.9946 0.9700
Hammad et al. [55] 2021 T-SNERF 0.9890 0.9878 0.9890 0.9890
Yang et al. [50] 2021 MTH-IDS 0.9889 0.9889 0.9890 0.9886
Lopez- 2021 RBFNN 0.9946 0.9952 0.9935 0.9957
Martin et al. [35]

Kim et al. [36] 2022 LSTM-DNN 0.9896 0.9974 0.9896 0.9897
Siddigi et al. [37] 2022 Gabor filter-CNN 0.9877 0.9879 0.9880 0.9877
Proposed model 2023 STL 0.9953 0.9962 0.9927 0.9979

Table 9 details the training and inference times for a range of deep learning models, encompassing
studies from comparative experiments conducted on the two previously mentioned datasets. In prac-
tical scenarios of network intrusion detection, the detection system—once trained—operates in real-
time; thus, longer training times do not impede the system’s operational performance. Nevertheless, the
inference time is of paramount importance as it directly reflects the model’s ability to quickly identify
attacks, an essential feature for the timely detection and mitigation of potential network threats.

To validate the superiority of the STL model presented in this paper over the other studies
discussed, we conducted a comprehensive analysis using key performance indicators such as accuracy,
F1-score, and inference time.

e The STL model demonstrated remarkable results, achieving an accuracy of 99.43% and an
Fl-score of 99.49% on the UNSW-NBI15 dataset; and even higher scores of 99.62% and
99.53%, respectively, on the CICIDS2017 dataset. These figures not only exceed those of
many competing models but also underscore the STL model’s robustness in detecting network
intrusions.

e In addition, the STL model proved to be significantly faster, recording inference times of just
4.24 and 5.72 s. This performance is at least five times quicker than its counterparts, marking a
critical advantage in real-time threat detection scenarios.

CMC, 2024, vol.78, no.1 867

Table 9: Time comparison of different models

Studies Method Dataset Training time Inference time

Thakkar et al. [49] FST-DNN UNSW-NBI15 13913.5s *

Yang et al. [56] MTH-IDS CICDS2017 478.2s *

Xu et al. [32] LogAE-XGBoost UNSW-NBI15 1325 *

Kumaretal. [5]] NBGOA UNSW-NBI15 47 s 23s

Hnamte et al. [57] LSTM-AE CICDS2017 184s 53.66's

Hnamte et al. [58] DNN CICDS2017 33s 29.05 s
DCNN 40 s 29.36 s

Proposed model STL UNSW-NBIS5 869.23 s 424 s

CICDS2017 1031.75 s 5.72's

The combination of high detection rates and rapid inference underlines the STL model’s com-
petitive edge in the field of network intrusion detection. In conclusion, the STL model emerges as
an exceptional solution, providing high accuracy, superior Fl-scores, and swift inference times, and
thereby outperforming the models in comparative studies.

6 Conclusion

In this research, we have introduced the STL hybrid model, meticulously crafted to tackle the
complexity of network intrusion detection. OQur innovative approach bridges the gap in conventional
methods that often neglect the critical time-series dynamics, thus enhancing detection accuracy while
reducing false positives and negatives. Through the application of an SSAE for feature reduction
and a layered pre-training methodology, we have distilled an optimal configuration for our model.
A time series generator has further enriched the model to reflect the intricacies of real-world data
flow. The fusion of TCN and Bi-LSTM in our hybrid model stands as a testament to our commitment
to precision, with the TCN adeptly unraveling the multivariate time series data and the Bi-LSTM
refining the sequence processing. The subsequent experimental phase, marked by variations in time
step length, has solidified the prowess of our hybrid model in surmounting the challenges inherent to
time series data.

Impact and Implications: The outcomes of our research have significant implications for the field
of intrusion detection. By successfully capturing the time-dependent nature of network traffic, our STL
model paves the way for more nuanced and responsive intrusion detection systems. It is not merely a
theoretical enhancement but a practical leap forward in safeguarding network infrastructures.

Challenges and Limitations: It is pertinent to acknowledge the challenges encountered during our
research. We grappled with computational constraints and the intricate nature of crafting a model that
could generalize across diverse network environments. Our model, while robust, may face limitations
in scenarios of extreme data volatility or in instances where attack patterns drastically deviate from
historical trends.

Future Directions: As we look to the horizon, we are compelled to delve into the untapped
potential of real-time data collection. Our ambition is to construct comprehensive datasets that will
allow for an in-depth examination of the variable impacts of time series on network intrusion detection.

868 CMC, 2024, vol.78, no.1

We seek to refine our model to achieve even greater speed and accuracy, thus contributing to the ever-
evolving landscape of cybersecurity.

Call to Action: We call upon the research community to build upon our findings, explore new
dimensions of time series analysis, and push the boundaries of what is possible in network intrusion
detection. The STL model is a stepping stone toward a future where digital fortifications are as
dynamic and intricate as the networks they protect.

Acknowledgement: The author thanks his family and colleague for their moral support.

Funding Statement: This work was supported in part by the Gansu Province Higher Education
Institutions Industrial Support Program: Security Situational Awareness with Artificial Intelligence
and Blockchain Technology. Project Number (2020C-29).

Author Contributions: For Conceptualization, Methodology, Validation, Writing, and Software, X.W.;
Conceptualization, C.L.; Supervision and Funding Acquisition, Z.H. All authors have read and agreed
to the published version of the manuscript.

Availability of Data and Materials: The data used in this study are not publicly available due to
ongoing research projects that utilize the same dataset. The data will be considered for release after
the completion of these projects.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] L. Ashiku and C. Dagli, “Network intrusion detection system using deep learning,” Procedia Computer
Science, vol. 185, pp. 239-247, 2021.

[2] J. Snehi, A. Bhandari and G. Singh, “Review of existing data sets for network intrusion detection
system,” Advances in Mathematics: Scientific Journal,vol. 9, pp. 3849-3854, 2020. https://doi.org/10.37418/
amsj.9.6.64

[3] J. Snehi, M. Snehi, A. Bhandari, V. Baggan and R. Ahuja, “Introspecting intrusion detection systems
in dealing with security concerns in cloud environment,” in 2021 10th Int. Conf. on System Modeling &
Advancement in Research Trends (SMART), Moradabad, India, IEEE, pp. 345-349, 2021.

[4] J. Snehi, A. Bhandari, V. Baggan, M. Snehi and H. Kaur, “AIDAAS: Incident handling and remediation
anomaly-based IDaaS for cloud service providers,” in 2021 10th Int. Conf. on System Modeling &
Advancement in Research Trends (SMART), Moradabad, India, pp. 356-360, 2021. https://doi.org/10.1109/
SMART52563.2021.9676296

[5] J Verma, A. Bhandari and G. Singh, “iNIDS: SWOT analysis and TOWS inferences of state-of-the-
art NIDS solutions for the development of intelligent network intrusion detection system,” Computer
Communications, vol. 195, pp. 227-247, 2022. https://doi.org/10.1016/j.comcom.2022.08.022

[6] J. Verma, A. Bhandari and G. Singh, “A meta-analysis of role of network intrusion detection systems in
confronting network attacks,” in 2021 8th Int. Conf. on Computing for Sustainable Global Development
(INDIACom), New Delhi, India, pp. 506-511, 2021.

[71 P Sun, P Liu, Q. Li, C. Liu, X. Lu et al, “DL-IDS: Extracting features using CNN-LSTM hybrid network
for intrusion detection system,” Security and Communication Networks, vol. 2020, pp. 1-11, 2020.

[8] J. Snehi, A. Bhandari, V. Baggan, M. Snehi and Ritu, “Diverse methods for signature based intrusion
detection schemes adopted,” International Journal of Recent Technology and Engineering, vol. 9, no. 2, pp.
44-49, 2020. https://doi.org/10.35940/1jrte.A2791.079220

https://doi.org/10.37418/amsj.9.6.64
https://doi.org/10.37418/amsj.9.6.64
https://doi.org/10.1109/SMART52563.2021.9676296
https://doi.org/10.1109/SMART52563.2021.9676296
https://doi.org/10.1016/j.comcom.2022.08.022
https://doi.org/10.35940/ijrte.A2791.079220

CMC, 2024, vol.78, no.1 869

9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

(21]

(22]

(23]

[24]

(25]
[26]

[27]

A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, “Survey of intrusion detection systems:
Techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, pp. 1-22, 2019.

J. Snehi, A. Bhandari, M. Snehi, U. Tandon and V. Baggan, “Global intrusion detection environments
and platform for anomaly-based intrusion detection systems,” in Proc. of Second Int. Conf. on Computing,
Communications, and Cyber-Security: IC4S 2020, Ghaziabad, India, Springer, pp. 817-831, 2021.

M. A. Siddiqi and N. Ghani, “Critical analysis on advanced persistent threats,” International Journal of
Computer Applications, vol. 141, no. 13, pp. 46-50, 2016.

E. M. Kornaropoulos, C. Papamanthou and R. Tamassia, “The state of the uniform: Attacks on encrypted
databases beyond the uniform query distribution,” in 2020 IEEE Symp. on Security and Privacy (SP), San
Francisco, California, USA, IEEE, pp. 1223-1240, 2020.

J. Verma, A. Bhandari and G. Singh, “Feature selection algorithm characterization for NIDS using machine
and deep learning,” in 2022 IEEE Int. IOT, Electronics and Mechatronics Conf. (IEMTRONICS), Toronto,
Canada, IEEE, pp. 1-7, 2022. https://doi.org/10.1109/IEMTRONICS55184.2022.9795709

D. Chamou, P. Toupas, E. Ketzaki, S. Papadopoulos, K. Giannoutakis et al., “Intrusion detection system
based on network traffic using deep neural networks,” in 2019 IEEE 24th Int. Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, IEEE, pp. 1-6,
2019. https://doi.org/10.1109/CAMAD.2019.8858475

F. Wen, S. Tao and L. Jie, “Overview of deep learning principles and applications,” Computer Science, vol.
45, pp. 11-15+40, 2018.

W. Wang, M. Zhu, J. Wang, X. Zeng and Z. Yang, “End-to-end encrypted traffic classification with one-
dimensional convolution neural networks,” in 2017 IEEE Int. Conf. on Intelligence and Security Informatics
(ISI), Beijing, China, IEEE, pp. 4348, 2017. https://doi.org/10.1109/IS1.2017.8004872

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J. Schmidhuber, “LSTM: A search space
odyssey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222-2232,
2017. https://doi.org/10.1109/TNNLS.2016.2582924

B. Plank, A. Segaard and Y. Goldberg, “Multilingual part-of-speech tagging with bidirectional long short-
term memory models and auxiliary loss,” arXiv preprint arXiv:1604.05529, 2016.

S. Bai, J. Z. Kolter and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling,” arXiv preprint arXiv:1803.01271, 2018.

J. P. Anderson, “Computer security threat monitoring and surveillance,” Technical Report, James P.
Anderson Company, 1980.

H. Debar, M. Becker and D. Siboni, “A neural network component for an intrusion detection system,”
in IEEE Symp. on Security and Privacy, Oakland, CA, USA, pp. 240-250, 1992. https://doi.org/10.1109/
[S1.2017.8004872

W. H. Lin, H. C. Lin, P. Wang, B. H. Wu and J. Y. Tsai, “Using convolutional neural networks to network
intrusion detection for cyber threats,” in 2018 IEEE Int. Conf. on Applied System Invention (1CASI), Chiba,
Japan, IEEE, pp. 1107-1110, 2018. https://doi.org/10.1109/1S1.2017.8004872

R. Vinayakumar, K. Soman and P. Poornachandran, “A comparative analysis of deep learning approaches
for network intrusion detection systems (N-IDSs): Deep learning for N-IDSs,” International Journal of
Digital Crime and Forensics (IJDCF), vol. 11, no. 3, pp. 65-89, 2019.

G. C. Fernandez and S. Xu, “A case study on using deep learning for network intrusion detection,” in
MILCOM 2019-2019 IEEE Military Communications Conf. (MILCOM), Norfolk, VA, USA, IEEE, pp.
1-6, 2019. https://doi.org/10.1109/1S1.2017.8004872

B. J. Radford, L. M. Apolonio, A. J. Trias and J. A. Simpson, “Network traffic anomaly detection using
recurrent neural networks,” arXiv preprint arXiv:1803.10769, 2018.

S. P. Thirimanne, L. Jayawardana, L. Yasakethu, P. Liyanaarachchi and C. Hewage, “Deep neural network
based real-time intrusion detection system,” SN Computer Science, vol. 3, no. 2, pp. 145, 2022.

T. Pooja and P. Shrinivasacharya, “Evaluating neural networks using bi-directional LSTM for network IDS
(intrusion detection systems) in cyber security,” Global Transitions Proceedings, vol. 2, no. 2, pp. 448454,
2021.

https://doi.org/10.1109/IEMTRONICS55184.2022.9795709
https://doi.org/10.1109/CAMAD.2019.8858475
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ISI.2017.8004872

870

(28]

[29]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[43]

[46]

CMC, 2024, vol.78, no.1

T. Thilagam and R. Aruna, “Intrusion detection for network based cloud computing by custom RC-NN
and optimization,” ICT Express, vol. 7, no. 4, pp. 512-520, 2021.

H. Wang, J. Liu, J. Kang, W. Yin, H. Sun et al., “Feature envy detection based on Bi-LSTM with self-
attention mechanism,” in 2020 IEEE Int. Conf. on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BD Cloud/Social Com/SustainCom), Exeter, UK, IEEE, pp. 448-457, 2020. https://doi.org/10.1109/
[S1.2017.8004872

J. Sinha and M. Manollas, “Efficient deep CNN-BiLSTM model for network intrusion detection,” in Proc.
of the 2020 3rd Int. Conf. on Artificial Intelligence and Pattern Recognition, Xiamen, China, pp. 448457,
2020. https://doi.org/10.1109/1S1.2017.8004872

G. Xu, L. Xiao, J. Ru and G. Yu, “Intrusion detection based on improved sparse denoising autoencoder,”
Journal of Computer Applications, vol. 39, pp. 769-773, 2019.

W. Xu and Y. Fan, “Intrusion detection systems based on logarithmic autoencoder and XGBoost,” Security
and Communication Networks, vol. 2022, pp. 9068724, 2022. https://doi.org/10.1155/2022/9068724

F. J. Imran and D. Kim, “An ensemble of prediction and learning mechanism for improving accuracy of
anomaly detection in network intrusion environments,” Sustainability, vol. 13, no. 18, pp. 10057, 2021.

W. Wang, S. Jian, Y. Tan, Q. Wu and C. Huang, “Robust unsupervised network intrusion detection with
self-supervised masked context reconstruction,” Computers & Security, vol. 128, pp. 103131, 2023. https:/
doi.org/10.1016/j.cose.2023.103131

M. Lopez-Martin, A. Sanchez-Esguevillas, J. I. Arribas and B. Carro, “Network intrusion detection based
on extended RBF neural network with offline reinforcement learning,” IEEE Access, vol. 9, pp. 153153~
153170, 2021. https://doi.org/10.1109/ACCESS.2021.3127689

T. Kim and W. Pak, “Early detection of network intrusions using a GAN-based one-class classifier,” IEEE
Access, vol. 10, pp. 119357-119367, 2022.

M. A. Siddiqi and W. Pak, “Tier-based optimization for synthesized network intrusion detection system,”
IEEE Access, vol. 10, pp. 108530-108544, 2022.

X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling et al., “Flow topology-based graph convolutional network for
intrusion detection in label-limited loT networks,” IEEE Transactions on Network and Service Management,
vol. 20, no. 1, pp. 684-696, 2022.

M. E. Karim, M. M. S. Maswood, S. Das and A. G. Alharbi, “BHyPreC: A novel Bi-LSTM based hybrid
recurrent neural network model to predict the CPU workload of cloud virtual machine,” IEEE Access, vol.
9, pp. 131476-131495, 2021. https://doi.org/10.1109/ACCESS.2021.3113714

Z. Chun, “Research and application of sparse deep models based on autoencoders,” Journal of Xidian
University, vol. 44, pp. 3642, 2017 (In Chinese). https://doi.org/10.3969/j.issn.1001-2400.2017.03.007

J. Tang and Y. R. Chien, “Research on wind power short-term forecasting method based on temporal
convolutional neural network and variational modal decomposition,” Sensors, vol. 22, no. 19, pp. 7414,
2022.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929-1958, 2014.

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set),” in 2015 Military Communications and Information Systems Conf.
(MilCIS), Canberra, Australia, IEEE, pp. 1-6, 2015. https://doi.org/10.1109/IS1.2017.8004872

I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, “Toward generating a new intrusion detection dataset
and intrusion traffic characterization,” ICISSp, vol. 1, pp. 108-116, 2018.

D. M. Powers, “Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and
correlation,” arXiv preprint arXiv:2010.16061, 2010.

P. B. Udas, M. E. Karim and K. S. Roy, “SPIDER: A shallow PCA based network intrusion detection sys-
tem with enhanced recurrent neural networks,” Journal of King Saud University-Computer and Information
Sciences, vol. 34, no. 10, pp. 10246-10272, 2022.

https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1155/2022/9068724
https://doi.org/10.1016/j.cose.2023.103131
https://doi.org/10.1016/j.cose.2023.103131
https://doi.org/10.1109/ACCESS.2021.3127689
https://doi.org/10.1109/ACCESS.2021.3113714
https://doi.org/10.3969/j.issn.1001-2400.2017.03.007
https://doi.org/10.1109/ISI.2017.8004872

CMC, 2024, vol.78, no.1 871

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]
[53]
[56]

[57)

(58]

J. Zheng and D. Li, “GCN-TC: Combining trace graph with statistical features for network traffic
classification,” in ICC 2019-2019 IEEE Int. Conf. on Communications (ICC), Shanghai, China, IEEE,
pp. 1-6, 2019. https://doi.org/10.1109/1S1.2017.8004872

H. Han, H. Kim and Y. Kim, “An efficient hyperparameter control method for a network intrusion
detection system based on proximal policy optimization,” Symmetry, vol. 14, no. 1, pp. 161, 2022.

A. Thakkar and R. Lohiya, “Fusion of statistical importance for feature selection in deep neural network-
based intrusion detection system,” Information Fusion, vol. 90, pp. 353-363, 2023. https://doi.org/10.1016/
J.inffus.2022.09.026

M. Ozkan-Okay, R. Samet, O. Aslan, S. Kosunalp, T. Iliev ez al., “A novel feature selection approach to
classify intrusion attacks in network communications,” Applied Sciences, vol. 13, no. 19, pp. 11067, 2023.
G. S. C. Kumar, R. K. Kumar, K. P. V. Kumar, N. R. Sai and M. Brahmaiah, “Deep residual convolutional
neural network: An efficient technique for intrusion detection system,” Expert Systems with Applications,
vol. 238, pp. 121912, 2023. https://doi.org/10.1109/ACCESS.2023.3266979

1. Toldinas, A. VencCkauskas, R. DamaseviCius, S. Grigalitinas, N. Morkevicius ef al., “A novel approach
for network intrusion detection using multistage deep learning image recognition,” Electronics, vol. 10, no.
15, pp. 1854, 2021.

W. Liu, X. Liu, X. Di and H. Qi, “A novel network intrusion detection algorithm based on fast fourier
transformation,” in 2019 Ist Int. Conf. on Industrial Artificial Intelligence (1A1), Shenyang, China, IEEE,
pp- 1-6, 2019. https://doi.org/10.1109/IS1.2017.8004872

J. Gu and S. Lu, “An effective intrusion detection approach using SVM with naive Bayes feature
embedding,” Computers & Security, vol. 103, pp. 102158, 2021.

M. Hammad, N. Hewahi and W. Elmedany, “T-SNERF: A novel high accuracy machine learning approach
for intrusion detection systems,” IET Information Security, vol. 15, no. 2, pp. 178-190, 2021.

L. Yang, A. Moubayed and A. Shami, “MTH-IDS: A multitiered hybrid intrusion detection system for
internet of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 616-632, 2021.

V. Hnamte, H. Nhung-Nguyen, J. Hussain and Y. Hwa-Kim, “A novel two-stage deep learning model
for network intrusion detection: LSTM-AE,” IEEE Access, vol. 11, pp. 37131-37141, 2023. https://doi.
org/10.1109/ACCESS.2023.3266979

V. Hnamte and J. Hussain, “Dependable intrusion detection system using deep convolutional neural
network: A novel framework and performance evaluation approach,” Telematics and Informatics Reports,
vol. 11, pp. 100077, 2023.

https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1016/j.inffus.2022.09.026
https://doi.org/10.1016/j.inffus.2022.09.026
https://doi.org/10.1109/ACCESS.2023.3266979
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ACCESS.2023.3266979
https://doi.org/10.1109/ACCESS.2023.3266979

	A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM
	1 Introduction
	2 Related Work
	3 Methodology
	4 Proposed Model
	5 Experiment Design and Comparative Analysis
	6 Conclusion
	References

