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ABSTRACT

Knowledge graph can assist in improving recommendation performance and is widely applied in various person-
alized recommendation domains. However, existing knowledge-aware recommendation methods face challenges
such as weak user-item interaction supervisory signals and noise in the knowledge graph. To tackle these issues,
this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise
to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce
knowledge noise. Specifically, first, this paper adopts heterogeneous propagation and knowledge-aware attention
networks to obtain multi-order neighbor embedding of users and items, mining the high-order neighbor informa-
tion of users and items. Next, in the neighbor information, this paper introduces weak noise following a uniform
distribution to construct neighbor contrast views, effectively reducing the time overhead of view construction. This
paper then performs contrastive learning between neighbor views to promote the uniformity of view information,
adjusting the neighbor structure, and achieving the goal of reducing the knowledge noise in the knowledge
graph. Finally, this paper introduces multi-task learning to mitigate the problem of weak supervisory signals. To
validate the effectiveness of our method, experiments are conducted on the MovieLens-1M, MovieLens-20M, Book-
Crossing, and Last-FM datasets. The results show that compared to the best baselines, our method shows significant
improvements in AUC and F1.
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1 Introduction

Recommendation algorithms excel at extracting user-interest content from vast information
repositories, tailoring it to individualized preferences. Early incarnations of these algorithms were
largely anchored around collaborative filtering (CF) [1–3]. Such techniques are modeled based on
user-item interaction histories to prognosticate user inclinations. However, they often confronted
the twin challenges of sparse user-item interaction data and the cold start problem for nascent
users. To circumvent these issues, researchers introduced auxiliary information sources [4,5]. These
encompassed user profiles [6], item characteristics [7,8], social networks [9,10], and knowledge graphs
[11,12]. Notably, knowledge graphs, as supplemental data, adeptly capture inter-item structural and
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semantic nuances, amplifying recommendation accuracy and augmenting the explicability of the
recommendation outcomes.

Knowledge Graphs (KG) house a wealth of semantically interlinked knowledge, forging connec-
tions between entities and the users and items in recommendations. This is instrumental in unveiling
latent relationships between users and items within the KG, thereby alleviating data sparsity and
the cold start conundrum. In the current paradigm, knowledge graphs have ascended as a potent
supplementary resource in recommendation strategies, witnessing widespread adoption.

Depending on their application in recommendation methods, techniques leveraging knowledge
graphs can generally be categorized into those based on embeddings, path-centric approaches, and
propagation-based strategies. Among these, propagation-centric methodologies emerge as one of the
dominant paradigms, tapping into the structural and semantic assets of the knowledge graph. By
employing the Graph Convolution Network (GCN) [13], these methods aggregate information from
neighboring nodes and recursively propagate to uncover latent attributes and associations of users
and items within the knowledge graph. Notable implementations of this paradigm include models like
KGAT [14], KGIN [15], and CKAN [16]. While these propagation-based techniques exhibit prowess
in assimilating information from neighbor nodes to enhance representations of users and items,
consequently uplifting recommendation performance, they are not devoid of lingering challenges.

(1) Ignore the fact that there is a lot of noisy knowledge in KG. In the real world, KG contains a large
amount of erroneous and irrelevant information, which is often unrelated to the recommendation task.
Indiscriminately aggregating this knowledge can lead to suboptimal recommendation performance.
As illustrated in Fig. 1, items i1, i2, and i3 interact with user u1. Among them, i1 is associated with
relationships r1 and r2, while i2 and i3 are linked with relationships r2 and r3. We can infer that user u1

has preferences for a movie’s lead actors and genres, but relationship r1 acts as noise for user u1. In
real scenarios, KG usually contains a vast amount of noisy and redundant knowledge. Using GCN
to aggregate neighbor information amplifies the noise in KG, resulting in subpar recommendation
performance.

Figure 1: Example of movie recommendation scene

(2) Weak supervisory signals. Most knowledge-aware recommendation methods rely on user-item
interactions as the supervisory signal. However, in real-world scenarios, the interaction history between
users and items is extremely sparse. If we rely solely on the user-item interaction information as
the supervisory signal, it can lead to the problem of weak supervisory signals, thereby affecting the
recommendation results.
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To address the problems of knowledge noise in KG and weak supervisory signals, this paper
proposes a recommendation method called RMCEN (Recommendation Method for Contrastive
Enhancement of Neighborhood Information). Specifically, this method first combines the knowledge
graph and user-item interaction information through heterogeneous propagation to explicitly encode
the collaborative signal between users and items and generate multi-order neighbor information. Next,
this paper introduces a knowledge attention function to capture essential knowledge in neighbor
information, reducing knowledge noise in neighborhood information. Concurrently, it involves con-
structing contrast views of neighbor information and employs contrastive learning to further diminish
the knowledge noise contained in the neighbors. Finally, this paper adopts a multi-task strategy to
combine the recommendation task and contrastive learning to strengthen the supervisory signals.

In summary, the contributions of this paper are as follows:

• This paper employs subtle noise following a normal distribution to construct contrasting views,
reducing the time overhead of view creation. Through contrastive learning, it further diminishes
knowledge noise contained within neighboring information and enhances supervision.

• A knowledge-aware attention mechanism is devised by this study, effectively capturing high-
order semantic information in the knowledge graph, thereby mitigating knowledge noise.

• Extensive experiments on three real-world datasets are conducted. The experimental results
demonstrate that our model outperforms the baseline models in click-through rate (CTR) and
Top-K recommendations, proving the stability of our model.

2 Relation Work

This work involves two different fields: recommendation methods based on knowledge graphs and
graph contrastive learning.

2.1 Recommendation Method Based on Knowledge Graph

Knowledge graph-based recommendation approaches predominantly employ the information
propagation and aggregation mechanisms of Graph Neural Networks (GNN). By recursively encoding
the information of higher-order entities into user and item representations, they emulate the dissem-
ination of user interests. For instance, methodologies such as RippleNet [17], AKUPM [18], and
CIEPA [19] leverage the links (relations) within the knowledge graph to propagate users’ historical
clicked items, thereby exploring users’ latent interests. This not only enriches user representations but
also enhances recommendation performance. Both KGCN [20] and KGNN-LS [21] utilize Graph
Convolutional Networks (GCN) within the knowledge graph to refine item representations, thereby
reducing the noise from extraneous knowledge. Such techniques focus solely on enhancing the latent
features of users or items through the knowledge graph, without concurrently bolstering both user and
item representations. Consequently, Ying et al. [8] introduced the KGAT model, which, by constructing
a collaborative knowledge graph, employs both GCN and TransR to capture structural information
in the knowledge graph, enhancing both user and item representations. Moreover, Wang et al. [16]
presented the CKAN model that balances both the collaborative information of users-items and
associations in the knowledge graph. This minimizes the noise introduced by integrating user nodes
into the collaborative knowledge graph and underscores the significance of collaborative signals in
user and item representations. Building on CKAN, Xu et al. [22] incorporated attention aggregators
to discern the significance among different neighbors, enriching the embeddings of users and items.
Additionally, Qian et al. [23] proposed the RKAC model to diminish irrelevant knowledge, filtering
out redundant knowledge from item attributes.
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In summation, extant knowledge graph-based recommendation methodologies largely compute
the weights between head entities and relations among neighbors, signifying the importance of tail
entities. However, they do not treat the knowledge (triplets) holistically, which could result in a
potential loss of semantic information.

2.2 Contrastive Learning on Graph

Contrastive learning (CL) [24,25] has garnered widespread attention in the fields of Computer
Vision (CV) and Natural Language Processing (NLP). It effectively enhances embedding quality by
minimizing mutual information between positive pairs. As a quintessential self-supervised learning
technique, contrastive learning obviates the need for manual annotations and can unearth intrinsic
data features to augment downstream tasks. Merging the strengths of Graph Neural Networks (GNN)
and CL, researchers have devised numerous graph contrastive learning methods for recommendations,
effectively alleviating data sparsity issues and amplifying supervisory signals to better model user
interests. For instance, SGL [26] employs node dropping, edge dropping, and random walks to produce
multiview representations of a node, maximizing consistency between disparate views of the same
node. SimGCL [27], through empirical investigations, discerned the minimal contribution of data
augmentation to SGL, proposing the introduction of noise into each embedding layer to generate
positive instances, thereby circumventing the manual construction of contrastive instances. XSimGCL
[28], building upon SimGCL, discards ineffectual graph augmentations and employs a straightforward
noise-based embedding enhancement to create contrasting views.

In summary, existing graph contrastive learning for knowledge-graph-based recommendations
predominantly adopts view construction to create positive pairs, potentially leading to the omission
of crucial structural information, and adversely impacting the model. Moreover, view construction
is time-consuming. Consequently, this paper introduces subtle noise adhering to feature uniformity
into the original neighbor embeddings to construct neighbor views, reducing the loss of structural
information and time spent on view construction. Simultaneously, by harnessing the self-supervised
information from contrastive learning and the supervised information from the recommendation task,
this study collectively strengthens the representations of both users and items.

3 Primary Formulation

This paper begins by introducing some relevant symbols and then defines the KG recommendation
problem.

User-Item Graph: In the recommendation context, this paper assumes there are M users and
N items. The set of users and items are represented as U = {u1, u2, ..., uM} and V = {v1, v2, ..., vN}
respectively. If a user interacts with an item, then yuv = 1. Otherwise, yuv = 0 indicates no interaction.

Knowledge Graph: KG is a heterogeneous network comprised of entities and relationships, which
can serve as auxiliary information to enrich the features of users and items in the recommendation
system. The formal representation of a knowledge graph is G = {(h, r, t) |h, t ∈ ε,r ∈ R} where each
triplet (h, r, t) denotes a relation r between head entity h and tail entity t, ε is the set of entities, and
R is the set of relationships. For example, the triplet (“Hurricane”, director, Jizhou Xu) describes
the fact that Jizhou Xu directed the TV drama “Hurricane”. In many recommendation scenarios,
an item v ε V corresponds to an entity e ∈ ε. Thus, this paper establishes an item-entity alignment
A = {(v, e) |v ∈ V, e ∈ ε }, where (v, e) indicates the alignment of item v with entity e in KG. Through the
alignment between items and KG entities, KG provides supplementary information for the interaction
data between users and items.
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Problem Formulation: Given the user-item interaction data and KG G, the task of knowledge-
aware recommendation is to predict the probability of a user interacting with items he/she has not
interacted with before. Specifically, our objective is to learn a prediction function ŷuv = F (u, v |�, G),
where ŷuv represents the predicted probability, and � denotes the model parameters of function F.

4 Methodology

Our proposed RMCEN aims to reduce noise in KG and enhance the supervisory signal through
contrastive learning, thereby improving the representation learning of users and items. Fig. 2 illustrates
the workflow of RMCEN, which mainly consists of the following components:

Figure 2: Illustration of our proposed RMCEN framework

Heterogeneous Propagation: By integrating the user-item graph with KG, this paper demonstrates
the connection of user-item interaction information with KG, enabling the acquisition of different
levels of neighbor information sets. These sets are generated through the propagation of users and
items within KG.

Knowledge-Aware Attention Network: This is used to calculate the weights of knowledge (triplets)
in each layer of neighbors, achieving a fine-grained encoding of neighbor information.

Contrastive Learning of Neighbors Module: Purposeful introduction of noise obeying a uniform
distribution is performed on the set of neighbor embeddings to generate an augmented set of neighbor
embeddings, while contrast learning is employed to learn common features between views to induce
consistency of mutual information between views, thus reducing the amount of noise in the neighbor
embeddings.

Prediction and Learning Module: This module aggregates the embeddings of each neighbor to get
the final representations of users and items. Combined with recommendation tasks and self-supervised
learning tasks, it predicts user preferences for items.
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4.1 Heterogeneous Propagation

Heterogeneous propagation consists of two parts: collaborative propagation and knowledge
propagation. Collaborative propagation constructs the initial entity sets for users and items based
on user-item interactions, encoding collaborative signals. On the other hand, knowledge propagation
builds upon these initial entity sets, delving into the connections between users and items within the
knowledge graph, and propagating neighbor knowledge associations. This method recursively expands
the representations of users and items, as shown in Fig. 2a.

4.1.1 Collaborative Propagation

Collaborative propagation extracts key collaborative signals from user-item interaction data
and explicitly encodes these signals into representations for users and items. Specifically, user-item
interaction data can reflect a user’s partial preferences and a user’s representation can be manifested
through related items. That is, the initial entity set for user u, denoted as ξ

0
u, is defined as follows:

ξ
0
u = {e |(v, e) ∈ A and v ∈ {v |yuv = 1}} (1)

where A represents the item-entity alignment set, and yuv = 1 indicates the data where the user interacts
with the item.

At the same time, considering the scenario where one item can be interacted with by multiple users,
we adopt an “item-user-item” propagation strategy to include user-item interaction information in the
initial entity set of the item, enriching the item’s representation. The propagation process of “item-user-
item” is shown in Fig. 3. Specifically, item i1 interacts with users u1 and u2. User u1 participates in the
interactions with both items i1 and i2. Therefore, the collaborative propagation set for item i1 is {i1, i2,
i4}, meaning the item builds potential item-item relationships through the user as a bridge to obtain
the item’s initial entity set.

Figure 3: Item-user-item communication process

The initial entity set for item v, denoted as ξ
0
v, is defined as follows:

ξ
0
v = {

e
∣∣(v, e) ∈ A and v ∈ {

v
∣∣yuvu = 1

}}
(2)

where yuv = 1 indicates the association between different items of the same user. The collaborative
signal of the user-item is explicitly included in the item-item view.
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4.1.2 Knowledge Propagation

Knowledge propagation aims to obtain multi-hop neighbor sets of users and items from KG,
simulating the latent interests of users and items as they propagate through KG. Specifically, This
paper utilizes the initial entity sets of users and items (ξ 0

u and ξ
0
v) as seeds. It propagates multiple hops

along the relationships in KG to obtain associated entities, subsequently constructing multi-hop entity
sets for user u and item v. The entity set ξ

l
o generated from the l-th hop propagation of users and items

in KG is defined as:

ξ
l
o = {

t
∣∣(h, r, t) ∈ G and h ∈ ξ

l−1
o

}
, l = 1, 2, . . . , L (3)

where o is a unified placeholder for either user u or item v. G represents the knowledge graph, and
(h, r, t) represents a triplet in the knowledge graph. ξ

l
o expresses the retrieval of associated tail entities

t in the KG with ξ
l−1
o as the head entity for the l-th hop.

To capture structural and semantic information from KG, we take the associated entities ξ
l
o

generated from knowledge propagation as the head entity set and retrieves each triplet as the neighbor
set for users and items. For the neighbor set S l

o of the l-th hop for users or items, when the head entity
set is defined as ξ

l
o, we search for corresponding relationships and tail entities in the KG’s triplets to

form user and item neighbor sets. The l-th hop neighbor set S l
o is defined as follows:

S l
o = {

(h, r, t)
∣∣(h, r, t) ∈ G and h ∈ ξ

l−1
o

}
, l = 1, 2, . . . , L (4)

where S l
o consists of the triplet sets formed with entity set ξ

l−1
o as the head entity.

Knowledge propagation establishes a connection between user-item interaction data and the
knowledge graph. The neighbor sets

{
S1

o, S2
o, · · · , SL

o

}
serve to mine the structural and semantic

information from KG, thereby enhancing the feature representation of both users and items.

4.2 Knowledge-Aware Attention Network

To explore the importance of neighbor sets
{
S1

o, S2
o, · · · , SL

o

}
in the representation of users and

items, we fully consider the varying preferences of the tail entities under different relational links for
both users and items. A knowledge-aware attention network is proposed, designed to calculates the
attention weight of each triplet in the neighbor set, revealing the variability in the expression meanings
of different triplets, effectively encoding the knowledge in each neighbor, as shown in Fig. 2b.

For the m-th triplet (hm, rm, tm) in S l
o, the knowledge-aware attention weight ρ (hm, rm, tm) is

computed as:

c0 = LeakReLU
(
W0

(
em

h

∥∥em
r

∥∥em
t

) + d0

)
(5)

ρ (hm, rm, tm) = σ (W2LeakRuLU (W1c0 + d1)) (6)

where ρ(hm, rm, tm) is used to gauge the significance of each triplet in the neighbors, thereby capturing
knowledge associations more effectively. LeakReLU is a non-linear activation function that prevents
gradient vanishing. σ represents the sigmoid activation function, and || is the concatenation operation.
Additionally, a softmax function is used to normalize the coefficients am of the entire triplet, as follows:

ρ (hm, rm, tm) = exp (ρ (hm, rm, tm))∑
((hm′ ,rm′ ,tm′ )∈Sl

o
exp (ρ(hm′ , rm′ , tm′))

(7)

where S l
o designates the l-th layer neighbors of the user or item. Finally, the embedding of the neighbor

S l
o can be represented as:
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eSl
o
=

∑Sl
o

m=1
ρ (hm, rm, tm) tm (8)

where eSl
o

is the embedding of the neighbor S l
o.

The neighbor sets
{
S1

o, S2
o, · · · , SL

o

}
, after the knowledge-aware attention calculation, acquire

embeddings that can be represented as
{
eS1

o
, eS2

o
, · · · , eSL

o

}
. Because the knowledge-aware attention

network only focuses on fine-grained knowledge (triplets) to reduce knowledge noise and neglects
the noise contained in the structure of the neighbors, we introduce contrastive learning to address the
imbalance in the structure of the neighbors, thereby enhancing their embedding.

4.3 Contrastive Learning of Neighbor Information

Contrastive learning is a self-supervised learning task that does not rely on labeled data from
supervised learning but focuses on the intrinsic features of the data. Based on two key factors identified
in the application of contrastive learning in the CV (Computer Vision) and NLP (Natural Language
Processing) domains: feature alignment and feature uniformity constraints. Therefore, we introduce
minor noise that conforms to feature uniformity into the original neighbor embeddings to construct
neighbor views, as shown in Fig. 2c. At the same time, a contrastive loss function is used between
neighbor views to adjust the neighbor structure, thereby reducing noise in the item neighbors.

4.3.1 Neighbor View Construction

For the neighbor embedding set of the project
{
eS1

v
, eS2

v
, · · · , eSL

v

}
, we introduce noise following a

uniform distribution to simulate the uniformity of the features. For the i-th hop neighbor embedding
of item eSi

v
, its enhanced neighbor embedding e′

Si
v

is as follows:

e′
Si

v
= eSi

v
+ Δnoise (9)

where Δnoise is the added noise vector, and ‖Δnoise‖ = ε is a small constant (ε < 0.3). To restrict Δnoise to
points on a hyper-sphere with a radius equivalent to ε, the equation is:

Δnoise = I � sign
(
eSi

v

)
, I ∈ Rd ∼ U (0, 1) (10)

The e′
Si

v
constructed through noise Δnoise retains most of the original features and introduces some

variations. Additionally, the same approach is used for the neighbor embedding set of the users.

Compared to using dropout in neighbor embeddings which results in a loss of some features, we
introduce minute noise to construct the neighbor view. This enhanced neighbor view follows feature
uniformity and does not lose any features. Furthermore, our constructed enhanced neighbor view,
when compared to neighbor views built through structural perturbation, incurs no additional time
overhead in view construction.

4.3.2 Contrastive Loss Function

To maximize the mutual information between neighbor views, we employ InfoNCE [23] as
the contrastive loss function, aiming to reduce the knowledge noise in neighbor information and
enhance the representations of users and items. Specifically, for the original neighbor embedding
set of the item

{
eS1

v
, . . . eSk

v
, . . . , eSL

v

}
, through neighbor view construction, it can be represented as

{e′
S1

v
, . . . , e′

Sk
v
, . . . , e′

SL
v
}. Embeddings of neighbors of the same order are considered positive pairs (i.e.,

eSk
v

and e′
Sk

v
), while embeddings of neighbors of different orders are viewed as negative pairs (i.e., eSk

v
and
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e′
S

j �=k
v

). Through contrasting between positive and negative pairs, a self-supervisory signal is generated to

mitigate the issue of weak supervisory signals. We adopt the InfoNCE [29] function as the contrastive
loss function for the contrastive learning task:

LInfoNCE = −
∑

k∈L
log

exp
(

e′
Sk

v
· eSk

v
/τ

)

∑
k∈L exp

(
e′

Sk
v
· eSk

v
/τ

) (11)

where s (, ) denotes the cosine similarity, and τ is the temperature parameter, regulating the uniform
distribution of samples. Introducing additional supervisory information through InfoNCE encour-
ages the item neighbor embeddings to spread uniformly across the latent space, facilitating better
distinction during predictions. The same processing method is applied to users.

4.4 Prediction and Learning

To delve into the personalized preferences of users, we use the dot product to compute the scores of
users for items, as shown in Fig. 2d. Furthermore, we employ a multi-task learning strategy to jointly
address recommendation tasks and self-supervised learning tasks, thereby optimizing the model.

4.4.1 Model Prediction

Considering that the initial entity sets of users and items (ξ 0
u and ξ

0
v) contain collaborative

information, their collaborative embeddings are represented as eS0
u

and eS0
v
. To retain all the informa-

tion maximally, we concatenate the neighbor embedding set
{
eS1

o
, eS2

o
, . . . , eSL

o

}
with the collaborative

embeddings to obtain the final embeddings of users and items. The equation is as follows:

eo = eS0
o
||eS1

o
|| . . . ||eSL

o
(12)

where o is a unified placeholder that represents the features of users u and items v. Furthermore,
considering that the enhanced neighbor views of users and items have weak noise added, we directly
use the enhanced neighbor embedding set {e′

S1
o
, e′

S2
o
, . . . , e′

SL
o
} for the recommendation task. The final

representations of users and items are denoted as e∗
u and e∗

v , respectively. The equation is:

e∗
u = e

′
u + eu (13)

e
′
u = e

′
S1

u
||e′

S2
u
|| . . . ||e′

SL
u

(14)

e∗
v = e

′
v + ev (15)

e
′
v = e

′
S1

v
||e′

S2
v
|| . . . ||e′

SL
v

(16)

Based on the final user representation e∗
u and item representation e∗

v , the user preference function
ŷ (u, v) is:

ŷ (u, v) = e∗T

v e∗
v (17)

4.4.2 Multi-Task Learning

We frame our primary objective as a supervised learning-based recommendation task while
incorporating contrastive learning based on self-supervised learning as an auxiliary task. By adopting
a joint learning approach, we introduce self-supervised signals into the recommendation model to
augment the supervisory signal.
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For recommendation tasks, we employ the Bayesian Personalized Ranking (BPR) loss function,
as follows:

LBPR =
∑

(u,i,j)∈O
−lnσ (ŷui − ŷuj) (18)

where O = {(u, i, j)|(u, i) ∈ o+, (u, i) ∈ o−} is the trainable dataset, user-item interactions are denoted
as o+, non-interactions between the user and the item are denoted as o−, and the data ratio of o+ to o−

is set to 1:1. σ represents the sigmoid function.

For the recommendation task, we employ joint learning, combining both supervised and self-
supervised signals to collectively optimize the model. The final loss function for this model is
formulated as follows:

L = LBPR + λ1LInfoNCE + λ2 ‖�‖2
2 (19)

where Θ denotes the set of model parameters, and ‖�‖2
2 is the L2 norm with λ2 as its parameter.

4.4.3 Complexity Analysis

The training time cost for the RMCEN model predominantly stems from heterogeneous propa-
gation and contrastive learning. Specifically, the computational complexity of heterogeneous propa-
gation is (|GK|d), where L, |GK|, and d represent the number of layers, the number of triplets in the
KG, and the embedding size, respectively. In contrast, the computational complexity for contrastive
learning is (|BU + BI |d), where BU and BI respectively denote the number of user and item triplets
in a batch. Consequently, the overall computational complexity of the RMCEN model is (|GK|d +
|BU + BI |d).

Based on the aforementioned analysis and under equivalent experimental settings, the RMCEN
model exhibits a complexity comparable to most knowledge graph-based recommendation methods
in the comparison, including KGCN, KGAT, COAT, and CKAN. Meanwhile, its complexity is
significantly lower than that of the KGIN model in the comparative set.

5 Experiments

We evaluated the proposed RMCEN on three real-world public datasets, namely MovieLen-1M
(movie recommendation scenario), Book-Crossing (book recommendation scenario), and Last.FM
(music recommendation scenario), to answer the following questions:

RQ1: How does the RMCEN model perform in comparison to other recommendation methods
in the recommendation task?

RQ2: Are the various components of the RMCEN model effective?

RQ3: How do different hyperparameter settings affect the results?

5.1 Datasets Description

To assess the effectiveness of our method, we conducted experiments on the Movielen-1M, Book-
Crossing, and Last.FM datasets. Detailed information about these datasets is shown in Table 1.

• MovieLens-1M is one of the widely used datasets for movie recommendations. It includes
ratings of movies, metadata about the movies (such as genres and release years), and descriptive
data about users (including age, gender, and occupation).

• MovieLens-20M is a benchmark dataset widely employed in the realm of film recommenda-
tions. It encompasses approximately 20 million explicit user ratings, spanning from 1 to 5.
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• Last.FM is a popular recommendation dataset extracted from an online music provider. It
contains records of tracks that many users have listened to, along with metadata about the
listeners and the music.

• Book-Crossing is a book rating dataset that contains ratings of books as well as descriptions of
the readers and the books.

Table 1: Data set statistics

MovieLens-1M MovieLens-20M Book-Crossing Last.FM

user 6,036 138159 17,860 1,872
item 2,445 16954 14,967 3,846
interaction 753,772 13501622 139,746 42,346
sparsity 5.11% 0.576% 0.05% 0.59%
entity 182,011 102569 77,903 9,366
relation 12 32 25 60
triplet 1,241,996 499474 1,515,00 15,518

5.2 Parameter Settings

For each dataset, we divided the data into training, validation, and test sets in a 6:2:2 ratio.
The Adam optimizer was employed for model optimization, with the batch size set to 2048. Xavier
initialization was used for initializing the model parameters. Other important hyperparameter settings
are outlined in Table 2.

Table 2: Parameter settings in the data set

Parameter settings MovieLens-1M MovieLens-20M Book-Crossing Last.FM

Dimensions (D) 64 64 64 64
Number of layers (H) 1 1 2 2
Number of neighbors 64 64 64 64
Control parameters λ1 10−7 10−7 10−5 10−4
Learning rate λ2 0.004 0.004 0.004 0.004
Temperature parameter (τ ) 0.15 0.15 0.15 0.15
Noise parameters (ε) 0.1 0.1 0.1 0.1

5.3 Baselines

• BPRMF [30]: This is a Collaborative Filtering (CF) based model that employs matrix factor-
ization and Bayesian Personalized Ranking to predict user preferences.

• PER [31]: This is a path-based recommendation method. It considers KG as a heterogeneous
network and extracts meta-paths and meta-graphs containing different types of relationships
to embed users and items.

• CKE [32]: This is a classical embedding-based recommendation model that uses TransR to learn
knowledge in KG, enriching the representation of all items.
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• RippleNet [17]: This method simulates the ripple propagation mechanism to propagate user
preferences along the relationships in KG, enhancing user modeling.

• KGCN [20]: This method integrates Knowledge Graphs and Graph Convolutional Networks
(GCNs). By traversing each node’s neighbors in KG, it computes the GCN-based neighbor
information to learn both the structural and semantic information in KG, capturing users’ latent
interests.

• KGAT [14]: This method combines user-item graphs with knowledge graphs as a collaborative
knowledge graph and employs attention-based neighborhood aggregation mechanisms to
generate representations for users and items.

• COAT [33]: This method uses both Graph Convolutional Networks and Knowledge Graph
Attention Networks to model user-item graphs and KG separately, encoding collaborative
signals and capturing fine-grained semantic information in KG.

• LKGR [34]: This method employs different information propagation strategies in hyperbolic
space to encode both the interaction information between users and items and the heteroge-
neous information in KG.

• KGIN [15]: This method explores the intentions behind user-item interactions and model
relationships in KG within the context of user intentions to achieve improved model capabilities
and explainability.

• CG-KGR [35]: This method encodes collaborative information between users and items
through a co-guidance mechanism and uses it to guide the encoding of knowledge in KG.

• KGIC [36]: This method introduces multi-level interactive contrastive learning, mining features
from both local and non-local graphs of users and items, to alleviate data sparsity and
knowledge redundancy.

5.4 Performance Comparison (RQ1)

5.4.1 Performance Comparison in CTR Prediction Task

Table 3 presents the AUC and F1 scores of RMCEN and all baseline models in the task of
Click-Through Rate (CTR) prediction. Based on the performance analysis, we make the following
observations:

• Our proposed RMCEN model achieves the best performance across all three datasets. Specif-
ically, on the MovieLens-1M, Book-Crossing, and Last.FM datasets, RMCEN outperforms
the best baseline (highlighted with an underline) in terms of AUC by 0.28%, 1.31%, and 1.33%,
respectively. This validates the effectiveness of RMCEN. We attribute these improvements to
the neighbor contrastive learning implemented in RMCEN.

• The performance improvements in RMCEN are more noticeable on the Book-Crossing and
Last.FM datasets compared to the MovieLens-1M dataset. This is because Book-Crossing
and Last.FM are sparser than MovieLens-1M, suggesting that the introduction of Knowledge
Graphs (KGs) enriches the latent representations of users and items in sparse datasets with
additional features.

• In two distinct datasets, MovieLens-1M and MovieLens-20M, our proposed RMCEN exhibits
a noticeable performance enhancement on the MovieLens-1M dataset compared to the
MovieLens-20M dataset. This discrepancy in performance arises due to the dense user-item
interactions present in the MovieLens-20M dataset, where the introduction of a knowledge
graph does not significantly improve the recommendation performance.
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• RippleNet focuses only on propagating user preferences in KG and lacks rich item information.
Similarly, KGCN and KGCN-LS aggregate neighbor information to enrich item embeddings
but neglect the user representation. Our RMCEN model takes into account heterogeneous
propagation to obtain neighbors for both users and items in KG, thereby enriching both user
and item representations.

• Methods like KGAT, CKAN, COAT, KGIN, CG-KGR, etc., aim to enrich both user and item
embeddings through KGs, but their focus is on the design of propagation and aggregation
strategies, without considering the large amount of noise present in KGs. Our RMCEN uses
contrastive learning to minimize the noise contained in the neighbors of users and items,
thus reducing the noise in the aggregated data. Compared to KGIC, which builds multi-level
interaction views for contrastive learning at the cost of high time complexity, our proposed
RMCEN model adds only weak noise to construct enhanced neighbor embeddings, thus
reducing the time complexity involved in building neighbor views for users and items.

Table 3: Parameter settings in the data set

Method
MovieLens-1M MovieLens-20M Book-Crossing Last.FM

AUC F1 AUC F1 AUC F1 AUC F1

BPRMF 0.8920 0.7921 0.9574 0.9128 0.6583 0.6117 0.7563 0.7010
PER 0.7124 0.6670 0.8325 0.8025 0.6048 0.5726 0.6414 0.6033
CKE 0.9065 0.8024 0.9236 0.8739 0.6749 0.6234 0.7471 0.6740
RippleNet 0.9102 0.8463 0.9673 0.9266 0.7263 0.6472 0.7938 0.7025
KGCN 0.9001 0.8261 0.9767 0.9302 0.6922 0.6336 0.8031 0.7107
KGNN-LS 0.9140 0.8410 0.9785 0.9322 0.6890 0.6334 0.8042 0.7283
KGAT 0.9102 0.8404 0.9813 0.9249 0.7194 0.6544 0.8054 0.7224
CKAN 0.9170 0.8494 0.9717 0.9230 0.7453 0.6667 0.8463 0.7715
COAT 0.9122 0.8367 0.9784 0.9313 0.7407 0.6611 0.8215 0.7499
LKGR 0.9178 0.8419 0.9784 0.9332 0.6793 0.6296 0.7963 0.7219
KGIN 0.9190 0.8441 0.9820 0.9335 0.7273 0.6614 0.8463 0.7602
CG-KGR 0.9110 0.8359 0.9783 0.9306 0.7498 0.6689 0.8336 0.7433
KGIC 0.9252 0.8510 0.9763 0.9312 0.7652 0.6754 0.8466 0.7753
RMCEN (our) 0.9280 0.8650 0.9831 0.9340 0.7743 0.6885 0.8599 0.7817

5.4.2 Performance Comparison for Top-K Recommendation Task

For the Top-K recommendation task, Fig. 4 shows the Recall@K on the MovieLen-1M, Book-
Crossing, and Last.FM datasets, where K is set to [5,10,20,50,100].

From Fig. 4, it is evident that our method performs best overall across the three datasets.
Compared with the best models on Last.FM, Book-Crossing and MovieLens-1M, our method
shows significant improvement. In Figs. 2a and 2c, the Recall@K values have significantly increased,
indicating that the introduction of contrastive learning can differentiate between hard-to-distinguish
samples among item neighbors, thereby reducing knowledge noise. In Fig. 2b, our method is close to
CKAN, which may be because the corresponding knowledge graph in MovieLens-1M contains less
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noise, making the introduction of contrastive learning less effective in improving its recommendation
performance.
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Figure 4: Recall@K in three data sets

5.5 Ablation Study of RMCEN (RQ2)

To investigate the impact of heterogeneous propagation, knowledge-aware attention mecha-
nism, and contrastive learning on recommendation performance, we conduct the following ablation
experiments:

(1) RMCEN w/o CL: In this variant, the contrastive learning module is removed, retaining the
original neighbor information of users and items.

(2) RMCEN w/o att: This variant removes the knowledge-aware attention mechanism and replaces
it in Eq. (6).

(3) RMCEN w/o CL-I: This variant removes the item neighbor data augmentation module, retaining
only the contrastive learning for users.

(4) RMCEN w/o CL-U: This variant removes the user neighbor data augmentation module, retaining
only the contrastive learning for items.

(5) RMCEN w/o drop: This variant removes the neighbor view construction module and uses dropout
to randomly remove some neighbor features, constructing neighbors.

Table 4 shows the results of the four variants and RMCEN, and we make the following
observations:

• Removing the contrastive learning module (RMCEN w/o CL) in all three datasets results in a
decline in model performance. This indicates that contrastive learning plays a significant role
in our method. The introduction of contrastive learning can adaptively adjust the structure
of item neighbors, reducing the noise in the item neighbors and improving recommendation
performance.

• Disabling the knowledge-aware attention mechanism (RMCEN w/o att) in all three datasets
leads to a significant decline in model performance. This indicates that our proposed
knowledge-aware attention mechanism is effective at capturing important knowledge among
neighbors and minimizing the interference of irrelevant triples.

• Removing the item neighbor data augmentation module (RMCEN w/o CL-I) and deleting the
user neighbor data augmentation module (RMCEN w/o CL-U) on all three datasets results in
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a significant decline in recommendation performance. This suggests that applying contrastive
learning to both user and item neighbors is necessary.

• In all three datasets, using dropout technology to randomly remove some neighbor features
leads to a significant decline in recommendation performance. This is because the random
removal of some neighbor features might result in the loss of some crucial knowledge. This
validates that our introduction of weak noise following a normal distribution to enhance
neighbor embeddings can effectively mitigate the loss of knowledge.

In summary, all the modules or techniques we proposed are necessary; removing any part will lead
to a decrease in recommendation performance.

Table 4: Parameter settings in the data set

MovieLens-1M Book-Crossing Last.FM

AUC F1 AUC F1 AUC F1

RMCEN w/o CL 0.9250 0.8544 0.7481 0.6665 0.8447 0.7692
RMCEN w/o CL-U 0.9269 0.8553 0.7607 0.6792 0.8534 0.7765
RMCEN w/o CL-I 0.9274 0.8563 0.7648 0.6777 0.8549 0.7751
RMCEN w/o att 0.9188 0.8498 0.7422 0.6620 0.8427 0.7622
RMCEN w/o drop 0.9208 0.8510 0.7560 0.6675 0.8386 0.7636
RMCEN 0.9280 0.8650 0.7743 0.6885 0.8599 0.7817

5.6 Parameter Sensitivity Analysis (RQ3)

5.6.1 Size of Noise ε

To explore the optimal range of noise, this paper sets ε to [0, 0.05, 0.1, 0.15, 0.2], as shown in
Fig. 5.
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Figure 5: Effect of noise ε

In Fig. 5, our model achieves the best performance on the Last.FM, Book-Crossing, and
MovieLens-1M datasets when set to [0.1, 0.1, 0.15]. Without adding noise (ε = 0), we find that perfor-
mance drops significantly. When the noise is too large (ε = 0.2) or too small (ε = 0.05), performance
also declines. This validates that adding noise appropriately can make the data distribution more
uniform, which is beneficial for improving performance.
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5.6.2 Impact of Temperature τ

According to existing contrastive learning works [23], the temperature τ defined in Eq. (12) plays
a crucial role in contrastive learning. To study the impact of τ , we vary its value within the range {0.05,
0.1, 0.15, 0.2, 0.25}, as shown in Fig. 6.
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Figure 6: Effect of temperature τ

The results shown in Fig. 6 indicate that satisfactory recommendation performance can be
obtained when τ = 0.15. When the value of τ is too large, the recommendation performance is not
good, which is consistent with the conclusions of previous work [36]. This suggests that τ can regulate
the uniformity of the learned neighbor features in the embedding space.

5.6.3 Depth of the Propagation Layers

To investigate the impact of the model’s propagation depth, we vary it within the range L = {1,
2, 3} where L represents the number of propagation layers. Table 5 compares the performance on the
MovieLens-1M, Book-Crossing, and Last.FM datasets.

Table 5: The impact of the number of layers in the three data sets

Layers MovieLens-1M Book-Crossing Last.FM

AUC F1 AUC F1 AUC F1

L = 1 0.9280 0.8650 0.7684 0.6831 0.8492 0.7728
L = 2 0.9272 0.8571 0.7743 0.6885 0.8599 0.7817
L = 3 0.9256 0.8532 0.7638 0.6815 0.8561 0.7767

Table 5 shows that when L = 1, 2, 2, RMCEN performs best on the MovieLens-1M, Book-
Crossing, and Last.FM datasets. This suggests that aggregating neighbor information in the graph
at 1 or 2 layers is an appropriate distance, and stacking more layers further would lead to a decline in
recommendation performance. We believe there are two reasons for this result. First, increasing the
number of stacked layers will only introduce more noise. Second, the model structure of RMCEN is
complex, and an increase in the number of layers may lead to over-smoothing and overfitting.

5.6.4 Embedding Dimension

This paper varies D in [8, 16, 32, 64, 128] to analyze the impact of the embedding dimension on
the recommendation performance, as shown in Fig. 7.
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Figure 7: Impact of dimension D on recommendation performance

From Fig. 7, it can be seen that increasing dimension D can improve recommendation perfor-
mance, as a larger latent vector space can retain more rich information. However, if the dimension d
is too large, RMCEN will experience overfitting.

5.7 Sparse Analysis

In the original dataset, this paper randomly removed user-item interaction data at different
proportions of 10%, 30%, and 50% to simulate the impact of different levels of data sparsity on the
model’s performance, as shown in Fig. 8.
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Figure 8: Impact of different levels of sparsity

The experimental results from Fig. 8 indicate that the performance of our proposed RMCEN
remains relatively stable under varying degrees of data sparsity.

6 Conclusion

This paper explores the application of contrastive learning in knowledge graph-based recom-
mendation methods and proposes a recommendation method enhanced by neighboring information
contrast. In this method, a knowledge-aware attention mechanism is designed to learn the information
of triples in neighbors, which helps in reducing knowledge noise and strengthening the representation
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of users and items. Minor noise, following a normal distribution, is introduced into the neighboring
features to create a contrasting view. Through contrastive learning, the method aims to reduce knowl-
edge noise in neighboring features and strengthen the supervisory signal. The effectiveness of this
method is validated through extensive experiments on CTR prediction and Top-K recommendation
tasks.

Our method only considers the knowledge graph of the project and does not introduce the social
network of users. In future work, we plan to integrate KG and social networks for modeling, which
can better understand users and items and provide more personalized recommendations. Furthermore,
regarding the temperature parameter in contrastive learning, our method uses a manual setting, which
may not find the most suitable value. In subsequent research, it is considered to adjust the temperature
parameter automatically to find the most suitable value for specific data, which will help improve
recommendation performance.
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