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ABSTRACT

In recent years, deep learning has been the mainstream technology for fingerprint liveness detection (FLD) tasks
because of its remarkable performance. However, recent studies have shown that these deep fake fingerprint
detection (DFFD) models are not resistant to attacks by adversarial examples, which are generated by the
introduction of subtle perturbations in the fingerprint image, allowing the model to make fake judgments. Most
of the existing adversarial example generation methods are based on gradient optimization, which is easy to fall
into local optimal, resulting in poor transferability of adversarial attacks. In addition, the perturbation added to the
blank area of the fingerprint image is easily perceived by the human eye, leading to poor visual quality. In response
to the above challenges, this paper proposes a novel adversarial attack method based on local adaptive gradient
variance for DFFD. The ridge texture area within the fingerprint image has been identified and designated as the
region for perturbation generation. Subsequently, the images are fed into the targeted white-box model, and the
gradient direction is optimized to compute gradient variance. Additionally, an adaptive parameter search method
is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,
aiming to maximize adversarial attack performance. Experimental results on two publicly available fingerprint
datasets show that our method achieves higher attack transferability and robustness than existing methods, and the
perturbation is harder to perceive.
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1 Introduction

Recently, biometric identification technologies such as fingerprint recognition [1], face recognition
[2], and iris recognition [3], etc., have seen extensive deployment in a wide range of real-world
applications. Fingerprint recognition, in particular, is favored due to its versatility, uniqueness and
convenience. However recent studies have shown that these systems are vulnerable to fraudulent
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attacks involving fake fingerprints, the proposed fingerprint liveness detection technology can solve
the above problems well, and its main task is to identify whether the fingerprint to be authenticated is
from a human or a forged imitation.

In recent years, the iterative updating and development of deep learning technology has provided
a whole new set of solutions for multiple types of tasks in the field of computer vision, such as image
classification [4], object recognition [5], semantic segmentation [6], natural language processing [7].
These solutions have already been introduced to real-world scenarios, such as face recognition [8] and
pedestrian detection [9], etc., and have obtained good feedback. Given the excellent performance of
deep learning in image classification, it has also been applied to fingerprint liveness detection tasks.
Notably, research on fingerprint liveness detection based on deep learning has garnered substantial
attention from both academia and industry, showcasing remarkable achievements in deep fake
fingerprint detection tasks [10], [11]. However, the latest research [12] has pointed out that in addition
to the problem of spoofing attacks by forged fingerprints, DFFD models also face the problem of
adversarial attacks. That is, by adding some fine perturbations to the fingerprint image, the constructed
adversarial example enables the model to make false classifications with a high degree of confidence.
The adversarial fingerprint is more destructive compared with the spoofing attack, and it is easier
for the DFFD model to make wrong predictions. This poses a major threat to the integrity and
security of the DFFD system. According to the level of knowledge, adversarial examples are generally
divided into two categories: white-box attack entails crafting adversarial examples using knowledge
of the target model’s internal structure and parameters. In contrast, a black-box attack is a method
for generating adversarial examples without access to the internal architecture or parameters of the
target model. Generally speaking, white-box attacks can design customized perturbations according
to the structure and parameters of the model, and achieve a high success rate of attack, but poor
transferability in the face of unknown models. In a real-world scenario, it is not realistic to discover
and know the parameters and structure of the target model in advance. It is more based on the
black box attack scenario, that is, the parameters and structure of the target model are not known
in advance, so studying and improving the transferability between different models is more in line
with the real scenario. In addition, adversarial attacks can be divided into targeted and untargeted
attacks depending on whether the model is incorrectly classified into a particular category. There has
been limited research in the realm of adversarial attacks on DFFD systems, despite the significant
threats they pose. To deal with adversarial attacks and improve the security of fingerprint recognition
systems, a novel adversarial example generation method based on local adaptive gradient variance is
proposed in this paper. The main contributions of this paper are as follows:

• To enhance the visual quality of the adversarial fingerprint without affecting the original attack
performance, Grad-CAM is used to visualize the attention area of the fingerprint image and as
the additional area of the subsequent perturbation, which is difficult to perceive by human eyes.

• To improve the transferability in the gradient-based adversarial example generation method,
this paper proposes a local adaptive gradient variance attack method, which realizes the
gradient update direction controllable by computing gradient variance at each iteration.

• In this paper, an adaptive parameter search method is proposed to search the optimal hyper-
parameters by using the stochastic gradient ascent method, thus reducing manual intervention
and balancing the success rate of white-box attacks.

• In this paper, the performance evaluation is tested on two publicly available fingerprint datasets,
LiveDet2019 [13] and LiveDet2017 [14]. Experimental results indicate that the proposed method
can improve the transferability of adversarial examples between different DFFD models, and
obtain good visual quality.
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This paper is an extension of our previous conference paper [15]. Compared with the [15], this
paper extends and improves it. The main differences are summarized as follows: (1) We have improved
the introduction section, restated the research motivation, provided a more comprehensive introduc-
tion and solved the actual problems. (2) In Section 3, we constrain the region where perturbation is
added, and discuss and analyze the feasibility. (3) In Section 4, we demonstrate that the proposed
method can be combined with input transformations to improve the visual quality of adversarial
examples via extensive experimentation and interpretation.

The rest of this paper is structured as follows: Section 2 presents a review of related work. In
Section 3, we introduce the proposed method for generating adversarial examples. Section 4 provides
the experimental results. Finally, the conclusion and future work are given.

2 Related Work
2.1 Adversarial Examples

Szegedy et al. [16] first disclosed the flaws in image classification tasks: although deep learning
has achieved impressive performance in image classification, it faces a serious challenge, that is, adding
some subtle perturbations to the original image can cause the model to make incorrect predictions,
and the human visual system can hardly catch the anomaly. They also give a mathematical formula
for the calculation of perturbation, expressed in ρ, which induces the model to give a wrong judgment:

minimize |ρ|p s.t. y′ = f (x + ρ) , (1)

x + ρ ∈ [0, 1] , y′ �= y

In formulation (1), ρ is constrained by norm Lp, where x represents the original input image, y is
the ground-truth label associated with it, and y′ signifies the incorrect label.

To calculate the global optimal solution, Szegedy tried to transformed the adversarial attack into
a convex optimization problem, and presented a L-BFGS method [17]. After that, more and more
work has been proposed. Moosavi-Dezfooli et al. [18] designed an iterative method to calculate the
minimum perturbation for input images and added perturbations to guide the output image toward
the decision boundary of the classifier. Carlini et al. [19] presented a series of three attacks along with
a novel loss function designed to deceive target networks via defensive distillation.

Concurrently, the research landscape has seen the emergence of various black-box attack tech-
niques. Sarkar et al. [20] introduced the UPSET network, capable of generating adversarial examples
with universal perturbations applied to original images, effectively causing the model to misclassify
specific target classes. Bhagoji et al. [21] proposed a finite difference-based method (FD attack) rooted
in finite difference principles, wherein pixel data is adjusted to estimate the gradient direction approx-
imately, subsequently conducting iterative attacks based on this estimated gradient. Dong et al. [22]
introduced momentum into the iterative adversarial example generation process. Su et al. [23] designed
a single pixel attack using a differential evolution algorithm to explore extreme conditions by
modifying a single pixel in an image to trick the classifier. Furthermore, Fei et al. [12] conducted
pioneering research into the feasibility of adversarial examples within the context of DFFD networks.
A series of improved and optimized adversarial example generation methods have been proposed,
showing great potential in this field. In this paper, focusing on DFFD model, we focus on how to
improve the mobility and visual quality of the detection model.
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2.2 Gradient-Based Methods

In this section, our primary focus is on presenting gradient-based attacks aimed at enhancing the
transferability of adversarial attacks.

2.2.1 Fast Gradient Sign Method (FGSM)

To solve the nonlinear and vulnerability problems of the model, Goodfellow et al. [24] first
proposed a FGSM, which realizes the generation of the adversarial example xadv by optimizing the
loss function and one-step update method, which is defined as follows:

xadv = x + ε · sign (∇xJ (x, y; θ)) (2)

here, xadv represents the adversarial example, x is the original image, ε is the perturbation size, sign(.)
denotes the sign function, and ∇xJ represents the gradient derived from the loss function J(.). While
FGSM performs attack rapidly, it exhibits a moderate success rate in adversarial attacks.

2.2.2 Iterative Fast Gradient Sign Method (I-FGSM)

In contrast to FGSM, which relies on a single iteration, Kurakin et al. proposed I-FGSM [25]
conducts multiple iterations during adversarial example generation, employing a smaller step size α

for each iteration, as expressed by:

xadv
t+1 = xadv

t + α · sign
(
∇xadv

t
J

(
xadv

t , y; θ
))

(3)

where xadv
t signifies the adversarial example at the t-th iteration, with t = 0 implying xadv

t = x, I-FGSM
perform a better attack performance compared to FGSM but incurs higher computational costs.

2.2.3 Momentum Iterative Fast Gradient Sign Method (MI-FGSM)

To enhance the update stability and avoid local maximum, MI-FGSM [22] is proposed to extend
I-FGSM, that is, the momentum of previous iterations was included in gradient calculation to boost
the transferability of adversarial examples, which is expressed as:

gt+1 = μ · gt +
∇xadv

t
J

(
xadv

t , y; θ
)

||∇xadv
t

J
(
xadv

t , y; θ
) ||1

, (4)

xadv
t+1 = xadv

t + α · sign (gt+1) ,

where gt is the gradient at the t-th iteration, and the attenuation factor μ accumulates gradients from
previous iterations.

2.2.4 Nesterov Iterative Fast Gradient Sign Method (NI-FGSM)

NI-FGSM [26] introduces a Nesterov momentum, during the gradient update, predicts the
gradient direction of the next iteration. NI-FGSM substitutes xadv

t in Eq. (4) with xadv
t + α · μ · gt.

2.2.5 Variance Tuning Momentum-Based Iterative Method (VMI-FGSM)

VMI-FGSM [27] calculates the gradient of the neighborhood data points during the update to
optimize the gradient update direction in the next iteration. It can be expressed as:

gt+1 = μ · gt +
∇xadv

t
J

(
xadv

t , y; θ
) + vt

||∇xadv
t

J
(
xadv

t , y; θ
) + vt||1

(5)
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where vt+1 = 1
n

∑N

i=1 ∇xi J (xi, y; θ) − ∇xJ (x, y; θ), xi = xadv
t + ri, and ri is randomly selected in the

neighborhood. Essentially, vt captures the difference between the current gradient and the average
gradient of its neighborhood during the t-th iteration. This method further enhances the transferability
of the gradient-based adversarial attacks.

2.2.6 Transformation Robust Attack (TRA)

TRA [12] stands as the pioneering adversarial attack method in the realm of DFFD, and it
confirms the feasibility of adversarial attacks on DFFD.

2.3 Input Transformations

This section introduces various input transformations to enhance the attack transferability.

2.3.1 Diverse Input Method (DIM)

DIM [28] implements stochastic alterations involving resizing and padding on input data using
a fixed probability. Subsequently, the modified images are directed through the classifier to calculate
gradients, thereby enhancing the potential for transferability.

2.3.2 Translation-Invariant Method (TIM)

TIM [29] employs a set of images to compute gradients, proving particularly effective, especially
when confronting black-box models equipped with defensive mechanisms. To mitigate gradient
calculations, Dong et al. introduce slight positional shifts to the images, followed by an approximation
of gradient computation through convolving gradients from unaltered images with a kernel matrix.

2.3.3 Scale-Invariant Method (SIM)

SIM [26] introduces the concept of scale-invariant property and computes gradients across an
array of images scaled by a factor of 1/2i relative to the input image, enhancing the adaptability of
generated adversarial examples, where i is treated as a hyper-parameter.

It’s important to emphasize that different input transformation methods, namely DIM, TIM, and
SIM, can be seamlessly incorporated into gradient-based attack methodologies, that is, the Composite
Transformation Method (CTM) can improve mobility more effectively. In this study, the proposed
method seeks to enhance the transferability of gradient-based attacks (e.g., MI-FGSM, VMI-FGSM).
It can be synergistically employed alongside diverse input transformations to further bolster the
transferability of the attack.

3 Proposed Method

VMI-FGSM establishes gradient variance as the distinction between the average gradient in the
vicinity neighborhood and the gradient from the previous iteration. We believe that simply combining
the difference between the previous iteration and the current iteration gradient is not enough to
solve the transferability problem of adversarial examples. Consequently, this paper designs a novel
attack approach based on local adaptive gradient variance under lower perturbation levels, adversarial
examples generated using our method demonstrate enhanced attack performance and increased
transferability against unknown DFFD models. Fig. 1 provides visual insights into the effects of
various attacks on both live and counterfeit fingerprints.
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Figure 1: When the perturbation size of ε is 0.06 and the attack target model is Inception-v3, compared
with MI-FGSM and VMI-FGSM, the adversarial examples of the proposed method is better

3.1 Adversarial Fingerprint Area Location

The generation of adversarial examples involves adding subtle perturbations to the original image,
typically constrained by specific norms like L0 or L∞. The requirement of these interference generation
is that the human visual system cannot be observed without successfully attacking the task model. To
delve into the underlying principles of adversarial fingerprints, we employ the Grad-CAM to highlight
sensitive regions that influence DFFD classification.

As illustrated in Fig. 2, the layers of the VGG-16 model concentrate on discerning the texture of
the original fingerprint within the image. When dealing with an adversarial fingerprint generated using
the I-FGSM method, we observe that the introduced perturbations not only avoid diverting neural
network attention to irrelevant areas but also focus on the fingerprint texture region. Consequently,
our research uses YOLO-v5 [30] to restrict the addition of perturbations for adversarial fingerprints
exclusively to the interior of the fingerprint texture region. This strategy not only improves the image
quality without affecting the performance of the original task, but also makes the perturbations
imperceptible to humans.

Algorithm 1: Local Adaptive Gradient Variance Attack
Input: A classifier f with parameter θ , loss function J, a raw image x, and the corresponding label
y. The magnitude of perturbation ε, decay factor μ, total iteration number T , number of sampled
examples N, the variance factor λ and the neighborhood bound b.
Output: An adversarial example xadv

α = ε/T
for t = 0 to T − 1 do

Get the gradient g̃t+1 by
g̃t+1 = ∇xadv

t
J

(
xadv

t , y; θ
)

Update g̃t+1 by

gt+1 = μ · gt + g̃t+1 + λ · vt

||g̃t+1 + λ · vt||1

Update vt+1 by
(Continued)
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Algorithm 1 (continued)

vt+1 =
(

1
N

∑N

i=1 ∇xi J (xi, y; θ) − ∇xJ (x, y; θ)

)2

Update xadv
t+1 by gradient

xadv
t+1 = xadv

t + α · sign (gt+1)

end for
xadv = xadv

T

return xadv

Figure 2: The Grad-CAM visualization of VGG-16 classifies a clean fingerprint image and an FGSM
generated adversarial fingerprint, layer1 to layer3 represents the layer from shallow to deep

3.2 Gradient Variance

Given a clean image x, a corresponding label y, a classifier f parameterized by θ , and a loss
function J. Additionally, we consider an example x′ sampled from the neighborhood, along with a
neighborhood bound ε ′ for that region, and define the gradient variance as follows:

v (x) =
(

E‖x′−x‖p<ε′
[∇x′J (x′, y; θ) − ∇xJ (x, y; θ)]

)2

. (6)

We establish ε ′ = ε · b, where ε denotes the perturbation size, and b functions as the bound of
the neighborhood. Due to the discontinuous nature of the input, calculating E‖x−x‖p<ε′ [∇x′J (x′, y; θ)]
directly is not feasible. Consequently, we approximate this value by sampling N data points from the
neighborhood of x to compute v(x):

vt+1 = (
1
N

∑N

i=1 ∇xi J (xi, y; θ) − ∇xJ (x, y; θ)
)2

(7)

Here, xi represents an example sampled from distribution U [−(b · ε)d, (b · ε)d]. During the t-th
iteration, we employ the gradient variance obtained from the preceding (t − 1)-th iteration to modify
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the gradient’s update direction. In addition, we add a factor λ to control impact of gradient variance
on transferability.

Algorithm 2: Parameter Adaptive Searching
Input: A classifier f with parameter θ , dataset of fingerprints {(x1, y1) , (x2, y2) , . . . , (xn, yn)}, pertur-
bation size ε, decay factor μ, parameters θ adv, number of iteration T , the loss function J ′(θ adv) and
learning rate lr.
Output: Parameters θ̃ adv

lr = 0.1, g0 = 0
for i ≤ n do

Get adversarial example xadv
i by Algo. 1

Get the gradient gi by
gi = ∇xadv

i
J ′ (xadv

i , yi; θ adv
)

Update θi by
θ adv

i+1 = θ adv
i + lr · gi

Update xadv
t+1 by gradient

xadv
t+1 = xadv

t + α · sign (gt+1)

end for
θ̃ adv = θ adv

n

return θ̃ adv

3.3 Adaptive Parameter Selection

Optimizing the parameters in the above methods manually can be resource-intensive and suscepti-
ble to subjective biases. Hence, we have devised an adaptive parameter optimization method rooted in
gradient descent. When provided with an adversarial example denoted as xadv, the model’s prediction
y = f (xadv), and loss function L = J(xadv, y). In this approach, we replace N, b, and λ from Algorithm
1 with θ adv. With an original image, a learning rate lr, and the corresponding adversarial example
xadv = g(x; θ adv), the loss function can be expressed as L = J ′(x, y; θ adv). The gradient ∇θadvJ ′ can be
derived from J ′(.), facilitating the parameter update process:

θ adv
t+1 = θ adv

t + lr · ∇θadvJi

(
θ adv, xadv

i , yadv
i

)
(8)

Notably, our primary aim here is to increase the loss, effectively constituting a gradient ascent
procedure. Given the need to generate corresponding adversarial examples in each iteration of the
gradient update, we opt for a stochastic gradient ascent approach to manage computational costs.
The parameter search process is concisely outlined in Algorithm 2.

4 Experiments

In this section, a set of experiments is carried out using the LiveDet2019 and LiveDet2017
datasets to assess the effectiveness of the method. Initially, we delineate the specific experimental
configurations and subsequently compare our success rate in performing attacks with other methods
across various settings. It is important to emphasize that FLD constitutes a binary classification task.
In the case of non-targeted attack on N categorized datasets, the model is tasked with classifying
images into the remaining N-1 classes. In contrast, within the context of the binary classification task,
images are categorized exclusively as either genuine or counterfeit. This inherent difference results
in an appreciably lower success rate for binary classification attacks compared to their multi-class
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counterparts. Empirical findings also demonstrate that our method can enhance the transferability of
adversarial attacks while improving visual effects compared to alternative methods.

4.1 Experimental Setup

4.1.1 Dataset

In terms of data distribution and image quality, the dataset originates from the Liveness Detection
Competitions of 2019 and 2017 (LiveDet2019 and LiveDet2017). These datasets consist of fingerprint
images gathered by different sensors such as Digital Persona, Orcathus Sensors, and Green Bit.
Each sensor’s image collection comprises both genuine fingerprint images and counterfeit fingerprints
crafted from a variety of materials such as Ecoflex, Latex and Gelatine.

Since the different quality of fingerprint images collected by different sensors, we have made the
deliberate choice to exclusively utilize images gathered by the Digital Persona sensor for the dataset.
Additionally, to maintain a balance in the quantities of counterfeit and live fingerprints, our dataset
includes only counterfeit fingerprints derived from the initial three materials: Ecoflex, Gelatine, and
Latex. This selection aims to ensure a more even distribution of features extracted during the training
of our network model, thereby enhancing the model’s classification accuracy. Every image in our
dataset has undergone resizing to align with the input size required by our model, transforming the
original 252 × 324 dimensions to 224 × 224. This meticulously curated dataset serves as the training
data for our network model. In the context of testing adversarial attacks, 1000 images that can be
reliably classified are selected to test the attack performance.

4.1.2 Metrics

In this paper, the performance of adversarial examples is evaluated from two aspects: (1) Trans-
ferability, as the ability to deceive the black-box model is essential for effective adversarial attacks.
(2) Image quality, that is, the size of the introduced perturbation, we use the Peak Signal-to-Noise
Ratio (PSNR) value as the evaluation metric.

4.1.3 Baselines

We have chosen gradient-based iterative adversarial attacks commonly employed in the field as our
baseline, specifically, I-FGSM, MI-FGSM, and VMI-FGSM. It is worth noting that VMI-FGSM has
been empirically demonstrated to exhibit superior transferability compared to other attack methods.

4.1.4 Models Choice

In the performance test, five classic networks, specifically, Inception-v3, Inception-v1, Inception-
resnet-v2, VGG-16 and Mobilenet-v1, are selected to analyze the performance of different schemes.
In addition, we combined two adversarial training models, namely Inception-v3adv, Inception-resnet-
v2adv, to evaluate the robustness of adversarial attacks.

4.1.5 Hyper-Parameters Setting

In the experimental setup, we still use the relevant parameters in our previous work [15], where the
magnitude of the perturbation is set to ε = 0.16. The pixel values range within [0, 1], iteration number
T = 10, and factor μ = 1.0. For our method, we establish neighborhood bound b = 1.5 and factor
λ = 1.5. Notably, we have observed that the attack success rate tends to stabilize when the number
of samples reaches 10, prompting us to set N = 10 for our experiments. Furthermore, we introduce
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variations in ε, within different attack methods to conduct a comparative analysis. Specifically, we
adjust ε to take on values of 0.03, 0.06, 0.09, 0.12, and 0.16, respectively, enabling us to assess the
performance of our method alongside other techniques under varying perturbation levels.

4.2 Experimental Results

4.2.1 Transferability

First, the attack success rates of different network models I-FGSM, MI-FGSM, VMI-FGSM
and ours are evaluated using LiveDet2019 and LiveDet2017 datasets at a fixed perturbation size,
and the outcomes are summarized in Tables 1 and 2. The rows represent the attacked model, and
adversarial examples are generated based on models in columns. Each neural network is trained using
the designated dataset. Notably, the results in the table indicate that our proposed method consistently
achieves a superior attack success rate when pitted against unknown models. Furthermore, it sustains
its attack performance when confronted with the white-box model.

Table 1: Attack success rate on different models on LiveDet2019

Model Attack Inc-v3 Inc-v1 IncRes-v2 VGG-16 Mobilenet

Inc-v3

I-FGSM 92.9% 22.3% 7.4% 3.4% 43.9%
MI-FGSM 97.2% 39.4% 19.1% 6.9% 45.3%
VMI-FGSM 97.4% 40.8% 27.7% 8.7% 52.5%
Ours 96.1% 47.3% 29.2% 11.7% 46.8%

Inc-v1

I-FGSM 15.2% 99.3% 13.7% 8.4% 42.1%
MI-FGSM 37.5% 99.1% 35.1% 19.6% 50.4%
VMI-FGSM 53.7% 99.2% 59.7% 30.7% 70.4%
Ours 58.4% 99.2% 60.9% 36.5% 71.7%

IncRes-v2

I-FGSM 20.8% 26.9% 97.8% 9.2% 41.9%
MI-FGSM 53.2% 60.3% 97.6% 23.8% 43.8%
VMI-FGSM 80.3% 87.2% 97.4% 39.7% 45.2%
Ours 82.1% 91.5% 97.6% 48.1% 49.9%

VGG-16

I-FGSM 11.1% 14.7% 8.3% 95.4% 35.4%
MI-FGSM 25.5% 33.7% 29.6% 95.1% 45.3%
VMI-FGSM 39.8% 48.1% 46.8% 95.6% 48.2%
Ours 45.4% 52.0% 45.9% 96.1% 48.8%

Mobilenet

I-FGSM 9.9% 4.5% 2.0% 3.1% 97.4%
MI-FGSM 22.4% 12.4% 5.7% 8.2% 97.6%
VMI-FGSM 30.1% 10.7% 3.3% 10.3% 97.2%
Ours 45.1% 25.3% 19.3% 17.5% 97.8%

Taking Table 1 as an example, in the context of a white-box attack, the attack success rate of
each method based on Inception-resnet-v2 exceeds 97%. For black-box attacks targeting Mobilenet
and Inception-v1, our proposed method attains success rates of 91.5% and 49.9%, respectively. In
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comparison, VMI yields success rates of 87.2% and 45.2% for these models. It is also observed that
when the architecture of the black-box model closely resembles that of the target model, the attack
exhibits higher success rates. This underscores the robust transferability of our approach across a
variety of models. When using the LiveDet2017 dataset, Table 2 presents similar results.

Table 2: Attack success rate on different models on LiveDet2017

Model Attack Inc-v3 Inc-v1 IncRes-v2 VGG-16 Mobilenet

Inc-v3

I-FGSM 95.8% 22.6% 12.8% 6.1% 43.8%
MI-FGSM 97.5% 38.4% 20.4% 9.6% 45.2%
VMI-FGSM 97.1% 45.0% 25.6% 13.5% 54.9%
Ours 96.2% 48.5% 27.5% 14.2% 56.0%

Inc-v1

I-FGSM 17.2% 97.3% 15.6% 10.2% 45.1%
MI-FGSM 35.4% 98.1% 33.1% 22.7% 53.9%
VMI-FGSM 47.7% 98.2% 55.8% 33.9% 68.4%
Ours 52.9% 98.2% 62.3% 35.2% 70.3%

IncRes-v2

I-FGSM 23.5% 27.5% 97.4% 8.8% 42.3%
MI-FGSM 55.4% 61.5% 97.6% 20.1% 44.2%
VMI-FGSM 75.6% 86.3% 97.4% 43.4% 46.8%
Ours 80.3% 91.0% 96.9% 46.1% 48.8%

VGG-16

I-FGSM 9.2% 12.0% 7.2% 94.4% 36.5%
MI-FGSM 20.6% 36.2% 23.1% 96.2% 45.2%
VMI-FGSM 33.8% 44.7% 42.7% 96.9% 45.9%
Ours 38.7% 48.9% 42.3% 96.7% 47.3%

Mobilenet

I-FGSM 8.1% 5.1% 3.5% 2.9% 97.2%
MI-FGSM 22.5% 13.6% 6.1% 7.9% 97.6%
VMI-FGSM 36.7% 15.8% 10.4% 11.2% 97.6%
Ours 41.8% 28.0% 15.4% 15.1% 97.7%

Additionally, we test the robustness of different methods by challenging three network models that
have undergone adversarial training, as depicted in Table 3. The experimental findings demonstrate
that our method exhibits greater robustness when faced with adversarially trained models.

To further investigate the transferability of adversarial examples under varying levels of perturba-
tion, we conducted experiments as presented in Table 4. Rows represent the attack methods employed,
while columns denote the perturbation sizes set at 0.03, 0.06, 0.09, 0.12, and 0.16, respectively, with
pixel values confined to [0, 1]. All attacks are conducted on Inception-v3, and the reported results
represent the average black-box attack success rates, consistent with those detailed in Tables 1 and 2.
In Fig. 3, we provide visualizations of a counterfeit fingerprint image and corresponding adversarial
examples with different perturbation magnitudes. Due to the limitation of the perturbation region, the
noise in the image is not obvious. As the perturbation increases, the black-box attack success rate will
be higher. For instance, at ε = 0.16, the proposed method achieves a remarkable 35.1% success rate in
attacks across various models, surpassing the performance of any other method.
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Table 3: Attack success rate on adversarially trained models

Model Attack Inc-v3adv Inc-Res adv

Inc-v3

I-FGSM 11.2% 2.4%
MI-FGSM 30.1% 9.5%
VMI-FGSM 43.8% 17.6%
Ours 46.9% 18.7%

Inc-v1

I-FGSM 1.9% 2.0%
MI-FGSM 7.3% 8.9%
VMI-FGSM 12.5% 13.1%
Ours 15.6% 17.1%

IncRes-v2

I-FGSM 3.6% 15.4%
MI-FGSM 10.2% 33.8%
VMI-FGSM 18.3% 45.1%
Ours 22.3% 47.5%

Table 4: Attack success rate on Inception-v3 with different perturbation sizes ε

Attack 0.03 0.06 0.09 0.12 0.16

I-FGSM 5.4% 7.1% 9.7% 13.2% 19.3%
MI-FGSM 6.2% 10.1% 13.5% 16.9% 27.7%
VMI-FGSM 8.9% 13.8% 17.6% 22.7% 32.4%
Ours 9.5% 14.5% 19.1% 24.5% 35.1%

Figure 3: Adversarial examples generated by Ours with different ε on Inception-v3

It is worth noting that although it may be difficult for human observers to detect alterations in the
image with the increase of perturbation, the model is more vulnerable to deception because its feature
perception is different from that of human beings.

4.2.2 Attack with Input Transformations

Input transformations, such as DIM, TIM, and SIM, can be seamlessly integrated with gradient-
based adversarial attacks to significantly bolster transferability. In this paper, these input trans-
formations have been incorporated into our method, resulting in a demonstrable enhancement of
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transferability. As detailed in Table 5, success rates exhibit further improvement across various models,
with our proposed method consistently outperforming the baseline. These findings provide additional
compelling evidence for the efficacy of our approach.

Table 5: Attack success rate of adversarial examples generated on different models enhanced by CTM

Model Attack Inc-v3 Inc-v1 IncRes-v2 VGG-16 Mobilenet

MI-CT-FGSM 96.8% 67.8% 53.2% 32.0% 61.4%
Inc-v3 VMI-CT-FGSM 97.4% 71.4% 55.5% 39.3% 72.5%

Ours-CT 95.8% 72.9% 58.4% 39.8% 67.8%

MI-CT-FGSM 67.2% 98.7% 73.0% 51.8% 57.4%
Inc-v1 VMI-CT-FGSM 53.7% 98.5% 68.7% 71.4% 75.8%

Ours-CT 57.1% 98.5% 69.5% 72.6% 76.2%

MI-CT-FGSM 83.7% 85.3% 97.7% 76.6% 58.0%
IncRes-v2 VMI-CT-FGSM 87.5% 87.2% 98.1% 75.7% 61.8%

Ours-CT 88.1% 92.3% 98.3% 77.0% 63.9%

MI-CT-FGSM 48.4% 53.1% 49.9% 96.2% 56.8%
VGG-16 VMI-CT-FGSM 52.7% 59.2% 52.3% 96.1% 61.9%

Ours-CT 55.4% 60.0% 53.2% 96.2% 59.8%

MI-CT-FGSM 39.1% 23.5% 19.6% 23.3% 98.4%
Mobilenet VMI-CT-FGSM 43.2% 28.8% 13.6% 24.3% 98.6%

Ours-CT 58.4% 44.5% 37.6% 31.0% 98.8%

4.2.3 Quantitative Analysis of Visual Quality

Moreover, the PSNR metric has also been introduced to evaluate the quality of adversarial
fingerprint images. As presented in Table 6, when compared to alternative attack methods, the
adversarial fingerprints generated by our method exhibit a notably higher PSNR value, signifying
superior visual quality. Again, the scheme proposed in this paper is effective.

Table 6: PSNR values of adversarial examples generated by different methods

Datasets I-FGSM MI-FGSM VMI-FGSM Ours

LiveDet2019 18.7 18.9 18.6 22.3
LiveDet2017 18.8 18.9 18.8 22.2

5 Conclusion and Future Work

FLD based on deep learning not only suffers from spoofing attacks of forged fingerprints, but also
faces the deceptive attacks problem of adversarial fingerprints. The existing FLD research tasks lack
the study of adversarial examples, and the transferability of adversarial attacks in the face of unknown
network models is generally poor. To solve the above problems, we propose an adversarial attack
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method based on local adaptive gradient variance, which is designed to enhance the transferability
of adversarial attacks and improve the visual quality, to further enhance the security of the fingerprint
recognition system. Initially, we constrain the perturbation generation range and formulate gradient
variance as the squared difference between the current gradient and the average gradient of the
neighborhood during each iteration. Subsequently, during the generation of adversarial examples at
each iteration, we optimize the current gradient direction based on the gradient variance from the
previous iteration. To address the challenge of selecting appropriate parameters, this paper proposes
an adaptive parameter search method that employs gradient ascent to identify the optimal solution.

Experimental results reveal that our proposed method can effectively enhance the transferability
of adversarial attacks and further improve the visual quality while maintaining a high success rate
for white-box attacks. These findings underscore the current vulnerabilities of DFFD systems, which
struggle to withstand adversarial attacks. While black-box attacks have demonstrated feasibility, there
remains room for improving their success rates, albeit at the cost of elevated computational complexity
in generating adversarial examples. These challenges merit further exploration in future research, with
an emphasis on developing more robust defenses against such attacks.
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