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ABSTRACT

Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount
of sequential correlation information carried by temporally adjacent events, we propose an Independent Recurrent
Temporal Graph Convolution Networks (IndRT-GCNets) framework to efficiently and accurately capture event
attribute information. The framework models the knowledge graph sequences to learn the evolutionary represen-
tations of entities and relations within each period. Firstly, by utilizing the temporal graph convolution module
in the evolutionary representation unit, the framework captures the structural dependency relationships within
the knowledge graph in each period. Meanwhile, to achieve better event representation and establish effective
correlations, an independent recurrent neural network is employed to implement auto-regressive modeling.
Furthermore, static attributes of entities in the entity-relation events are constrained and merged using a static graph
constraint to obtain optimal entity representations. Finally, the evolution of entity and relation representations is
utilized to predict events in the next subsequent step. On multiple real-world datasets such as Freebase13 (FB13),
Freebase 15k (FB15K), WordNet11 (WN11), WordNet18 (WN18), FB15K-237, WN18RR, YAGO3-10, and Nell-
995, the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms
most existing models on knowledge reasoning tasks, which validates the effectiveness and robustness.

KEYWORDS
Knowledge reasoning; entity and relation representation; structural dependency relationship; evolutionary
representation; temporal graph convolution

1 Introduction

Knowledge reasoning, as one of the fundamental tasks in natural language processing, has
been extensively applied in various real-world scenarios such as disaster relief [1] and financial
analysis [2]. However, due to the incompleteness of knowledge representation, its representational
performance and application scope are limited. Traditional knowledge graph reasoning is regarded
as a static representation of multiple relationships. Nevertheless, with the emergence of interactive
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data from relevant events, static representations struggle to capture the temporal dynamics within
these interactive data. To address this issue, many researchers have proposed methods for representing
and reasoning with temporal knowledge graphs [3]. Specifically, a temporal knowledge graph can
be represented as a sequence of knowledge graphs with timestamps, where each knowledge graph
contains events that occurred simultaneously at a given time. However, when performing inference
on such data, establishing effective associations and dependencies between entities and relationships
poses significant challenges. Moreover, reasoning efficiency also needs to be improved. Fig. 1 is an
example of a temporal knowledge graph (TKG).
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Figure 1: An instance of TKG

Previous knowledge reasoning methods mainly modeled the occurrence of all events as a single
time point process to learn evolving entity representations, such as dynamic graph representation
methods [4]. Although these methods can effectively improve reasoning efficiency and accuracy, they
cannot effectively model concurrent events within the same period. To address these issues, recently,
approaches based on temporal knowledge graph reasoning have been widely applied [3,5], such as
temporal event graph-based recurrent event networks and sequence generation networks [6,7]. The
recurrent event network processes concurrent events by capturing events related to a given entity,
sequentially modeling and encoding them. Sequence generation networks model events with the same
entities or relationships related to entities. They predict the overall event by focusing on reusing entities
or relationships.

Although the above methods have shown some improvements in predictive performance, effi-
ciency, and the ability to handle concurrent events, they focus solely on established entities and
relationships, neglecting the structural dependencies among entities and relationships within the same
period. Moreover, they tend to lose certain static details of entities during the modeling process. Fur-
thermore, these methods involve extensive modeling of historical events during the encoding process,
with a strong focus on predicting entities within events. This emphasis on entities in events often
overlooks the significance of relationships to entities. In essence, entity and relationship prediction
cannot be effectively integrated within the same network, leading to error accumulation and a decrease
in the model’s reasoning efficiency.

To address the above issues, this paper unifies the modeling of the entire knowledge graph
sequence to learn evolutionary representations of entities and relationships within each period. This
approach effectively captures dependencies among entities and relationships within the knowledge
graph, enables interactions between events, and efficiently models temporally adjacent events through
independent recurrent neural network components. Furthermore, the model’s static graph constraint
module accurately describes the static details of entities throughout the entire event. The main
contributions of this research are as follows.



CMC, 2024, vol.78, no.1 697

(1) This paper proposes a temporal graph convolution framework called Independent Recurrent
Temporal Graph Convolution Networks (IndRT-GCNets) aimed at capturing the dependencies
among concurrent events in the knowledge graph and the static details of entities in temporally
adjacent events. By unified modeling, we encode all events into representations of entities and
relationships to improve the model’s predictive accuracy.

(2) We design the evolutionary representation unit, namely, the Independent Recurrent Temporal
Graph Convolution module (IndRT-GCM), using the aggregation and propagation capabilities of
nodes in temporal graph convolution, to perceive structural dependency relationships and provide a
further description of the static details of entities. This helps in modeling and evolving the interaction
information between events and effectively perceives the correlation between entities and relationships.

(3) We embed the independent recurrent neural network into the evolutionary representation
unit, utilizing the gated recurrent components for autoregressive modeling to effectively capture
sequential patterns of all temporally adjacent events. It is worth mentioning the static attributes of
entities in all events are merged using a static graph as a constraint. To optimize and adjust the
proposed framework for obtaining optimal representations, we design a set of weighted losses. Finally,
experimental validation is conducted on multiple baseline datasets, resulting in the best performance,
along with good robustness and inference efficiency.

The remaining structure of this paper is as follows: Section 2 provides a detailed overview of
related work in knowledge inference. Section 3 focuses on the proposed IndRT-GCNets framework
and provides detailed descriptions of each module. Section 4 presents the experimental results and
analysis, along with discussions on the provided examples. The conclusion and future research
directions are provided in Section 5.

2 Related Work

Early knowledge inference mainly focused on using static knowledge graphs to infer missing
events within the graph. Dettmers et al. [8] considered that the existing link prediction models
learned fewer features than those learned by deep multi-layer models, so they introduced ConvE,
proposing a multi-layer convolutional network model for link prediction, which achieved better
performance on multiple datasets. Shang et al. [9] recognized there is no structural constraint in the
embedding space of ConvE. They proposed a novel end-to-end structure-aware convolutional network
(SACN), which combines the advantages of graph convolution and ConvE. SACN uses a weighted
graph convolution network that incorporates knowledge graph node structure, node attributes, and
edge relationship types to effectively locally aggregate detailed information from neighbors, thus
embedding graph node semantics more accurately. Lin et al. [10] proposed a rule-enhanced iterative
complementarity model to infer missing valid triples and improve the semantic representation of
the knowledge graph. This method consists of three crucial components: rule learning, embedding
learners, and triple discriminators. It enriches the semantics of the knowledge graph and further
improves the completeness of rule learning for generating hidden triples. Zhao et al. [11] considered
that graph attention tends to allocate attention to certain high-frequency relations, overlooking the
correlations between target relations, so they proposed a hierarchical attention mechanism to aggregate
information from multi-hop neighbors, aiming to obtain better node embedding representations.
Zhang et al. [12] introduced a Multi-scale Dynamic Convolutional Network (M-DCN) model for
knowledge graph embedding to generate richer features. Schlichtkrull et al. [13] proposed Relational
Graph Convolutional Networks (R-GCNs) and applied them to two knowledge graph completion
tasks: link prediction and entity classification. Vashishth et al. [14] presented a new graph convolution
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framework CompGCN, which jointly embeds nodes and relations into the graph, scaling based on the
number of relations. Ye et al. [15] proposed a vectorized relational graph convolutional network that
can simultaneously learn embeddings for graph entities and relations in a multi-relational network.
This network incorporates role discrimination and translation properties from knowledge graphs into
the convolution process. While these methods can improve inference performance, the quality of static
knowledge graphs can impact reasoning results, and such methods may not effectively predict dynamic
events.

Recently, temporal knowledge graph reasoning methods have received significant attention.
Goel et al. [5] built novel models for temporal KG completion by equipping static models with a
diachronic entity embedding function that provides the characteristics of entities at any point in time.
The embedding function of the method is model-agnostic and can be potentially combined with any
static model. Han et al. [16] proposed a non-Euclidean embedding approach that learns evolving entity
representations in a product of Riemannian manifolds, where the composed spaces are estimated
from the sectional curvatures of underlying data. Wu et al. [17] proposed the TeMP framework to
address the temporal sparsity and variability of entity distributions in temporal knowledge graphs
by combining graph neural networks, temporal dynamics models, data imputation, and frequency-
based gating techniques. Xu et al. [18] proposed ATiSE, which incorporates time information into enti-
ty/relation representations by using Additive Time Series decomposition. Moreover, considering the
temporal uncertainty during the evolution of entity/relation representations over time, they mapped
the representations of temporal KGs into the space of multi-dimensional Gaussian distributions.
Li et al. [19] observed that temporally similar facts exhibit sequential patterns and proposed a
Recurrent Evolutionary Network that learns evolving representations of entities and relationships
at each time point by recurrent modeling of the knowledge graph sequence. Similarly, Li et al. [20]
introduced a Complex Evolutionary Network (CEN) and used Length-Aware Convolutional Neural
Networks (CNNs) to handle evolving patterns of different lengths, representing entities and relation-
ships through an easy-to-hard curriculum learning strategy. Park et al. [21] proposed EvoKG that
jointly models both tasks in an effective framework and captures the evolving structure and temporal
dynamics of the temporal knowledge graph through recurrent event modeling. They used a time
neighborhood aggregation framework to model interactions between entities. Jiao et al. [22] presented
an enhanced Complex Temporal Reasoning Network that improves complex temporal reasoning for
temporal reasoning problems and captures implicit temporal features and relation representations.
Nie et al. [23] introduced TAL-TKGC to capture the influence of time information on quaternion
and node structure information. The time-aware module aims to capture deep connections between
timestamp entities and semantic-level relations, while the importance-weighted graph convolution
considers the structural importance and attention of time information on entities for weighted
aggregation. Wang et al. [24] proposed TASTER, a time-aware knowledge graph embedding method
using a sparse transfer matrix, aiming to use both global and local information. Specifically, the
model treats the Temporal Knowledge Graph (TKG) as a static knowledge graph by ignoring the time
dimension. TASTER first learns global embeddings based on this static knowledge graph to acquire
global information. To capture local information at specific timestamps, TASTER evolves from global
embeddings to local embeddings based on the corresponding subgraphs.

Although these methods effectively model entities and relationships in the knowledge graph,
they overlook the correlation and dependency relationships between entities and relationships in the
temporal knowledge graph. Moreover, they lose a significant amount of static details of entities during
the modeling process.
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3 Proposed IndRT-GCNets Model

In this section, we provide a detailed explanation of the basic workflow of the proposed
IndRT-GCNets knowledge reasoning framework. Furthermore, each important component of the
framework is described in detail, such as the Independent Recurrent Evolution Unit, which includes
the Independent Recurrent Module and the Temporal Graph Convolution Module. We explain the
decoding operations for entities and relationships using Conv-TransD and Conv-TransR and provide
an overview of the process for entity-relationship representation.

3.1 Overview

Fig. 2 illustrates the overall structure of the proposed IndRT-GCNets knowledge reasoning frame-
work. The main components of this framework include the Independent Recurrent Temporal Graph
Convolution Module (IndRT-GCM), entity-relation decoding, and embedding learning prediction
module. The IndRT-GCM consists of the Static Graph Constraint Module (SGCM), Independent
Recurrent Module (IndRM), and Temporal Graph Convolution Module (T-GCM) [25]. The SGCM
aims to model the detailed attributes of entities and relationships, enhancing the representation
of entities and relationships in events. The T-GCM captures the internal structural dependencies
of events in the knowledge graph and models the correlation among entities and relationships
within the same period, thereby strengthening their interaction and improving the discriminative
power of deep semantics. The IndRM sequentially represents the temporal or adjacent time steps
through gating mechanisms, capturing useful sequential information. It also incorporates the static
attributes of entities and relationships obtained from the static graph into the temporal knowledge
graph, significantly improving the evolutionary representation performance. The entity decoder Conv-
TransD [26] and the relationship decoder Conv-TransR [27] transform entities and relationships and
establish associations between them while preserving the translational features of convolutions to the
maximum extent. They work collaboratively to enhance the prediction performance of entities and
relationships in events. It is worth noting that the embedding learning prediction module is combined
with the entity-relation decoders to achieve the evaluation of the corresponding tasks.

The prediction of entities and relations mainly focuses on predicting the missing entities and
relations in the query event. Assuming the temporal knowledge graph is a knowledge graph sequence
with time intervals, denoted as ς = {ς1, . . . , ςt} where each knowledge graph can be represented as
ςi = (ν, R, εi) ∈ ς , where v represents the set of graph nodes, i.e., entities in time. R represents the
set of relations in the event. εi represents all the events within the period t and can be represented
as a quadruple (s, r, o, t) that contains entities, relations, and time. The static graph aims to capture
the detailed attributes of entities in the event and can be represented as ς s = {(vs, Rs, εs)}, where
vs represents the set of entities, Rs and εs represent the set of relations and edges, respectively. By
constructing the aforementioned temporal and static graphs, we can model entities and relations to
accurately infer entities and relations in the event.

3.2 Independent Recurrent Temporal Graph Convolution Module (IndRT-GCM)

IndRT-GCM is the evolutionary unit of entities and relationships in the knowledge reasoning
framework. IndRT-GCM consists of a temporal graph convolutional module, two independent
recurrent modules [28,29], and a static graph constraint component. The temporal graph convolutional
module aims to capture the structural dependencies within the knowledge graph in each time interval
and represent entities and relations. It establishes effective correlations between entities and relations
by utilizing node propagation and aggregation functions to obtain deep semantic information while
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building associations between entities and relations. The static constraint component primarily models
the static details of entities and embeds these attribute details into the temporal graph convolution to
enhance entity representation. The operational steps of entities and relations within the independent
recurrent temporal graph convolutional module are as follows.

Figure 2: The overall network structure of IndRT-GCNets. The “IndRM” represents the Independent
Recurrent Module, and the “T-GCM” represents the Temporal Graph Convolution Module. “TGs”
indicates the time gates module. “SGCM” indicates static constrained graph convolution module.
“Entity” and “Relation” respectively indicate entities and relationships. “Conv-TransD” and “Conv-
TransR” represent the decoding components for entities and relationships. “Vec” denotes the vector-
ization operation. “Fully Connect” refers to the fully connected layer responsible for mapping entity-
relation vectors. “Embedding Learning” primarily handles subsequent prediction tasks. R, Rt−1 and
Rt−2 represent the relationship matrices within different periods of events. Ht, Ht−1 and Ht−2 denote the
entity matrices for different periods of events

Step 1. Assuming that the temporal knowledge graph during time intervals j to t can be represented
as a sequence {ςt−j+1, ςt}, where the entity embedding matrix is denoted as {Ht−j+1, Ht}, and the relation
embedding matrix is denoted as {Rt−j+1, Rt}. Considering the existence of correlations between entities
within this time interval or the fact that a particular relation corresponds to multiple entities, it is
also possible to obtain the relationships between entities through shared entities. This means that
each knowledge graph can be a multi-relational graph, indicating the presence of concurrent events in
the knowledge graph with strong structural dependencies. Therefore, there may be concurrent events
within each time interval, and their structures are dependent on each other.

Step 2. For multi-relational graphs with concurrent events, we rely on the characteristic of
graph convolution to effectively represent unstructured data and construct a deep temporal graph
convolution module with L layers to model the structural dependencies in the relational graph. The
embedding representation of entities and relations in the knowledge graph at the ith time step and lth

layer is given by Eq. (1).{
h(l)

o,i = σ
(

1
λo

∑t,Z

i=1,z∈Z W (l−1)

1 · (
h(l−1)

s,i + ri

) + W (l−1)

2 · h(l−1)

o,i

)
z = (s, r, o, t), Z = (s, r, o) ∈ εi, t � i < t

(1)
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a triplet set of head entities, relationships, and tail entities. εi represents all the events within the period
t. σ(·) denotes the activation function of the randomized rectified linear unit PReLU [30]. h(l−1)

o,i , h(l−1)

s,i

and ri represent the embedding representations of s, o and r, respectively, in the (l − 1)
th layer at

time ith ∈ t and W (l−1)

1 , W (l−1)

2 represent the weight matrices of the (l − 1)
th layer. λ0 represents the

normalization constant of entity o. All graph nodes are self-loop nodes.

Step 3. Considering the correlation between adjacent events and the sequential patterns that
provide effective contextual semantics over time, it is beneficial for improving the representation per-
formance of entities and relations. Furthermore, to capture the contextual semantic details provided by
correlation and sequential patterns, we model these events by stacking deep layers of temporal graph
convolution. However, when the length of the knowledge graph sequence is large and multiple layers
are stacked, it may lead to the issues of gradient vanishing or explosion, which can affect convergence
and representation capacity. Therefore, we employ two temporal gating components (TGs) to alleviate
these issues and determine the entity embedding matrix by the joint output of the temporal graph
convolution module at the time tth and the time (t − 1)

th. The specific operation is shown in Eq. (2).{
Ht = ϕt ⊗ H (L)

t − ϕt ⊗ Ht−1 + Ht−1

ϕt = σ1 (W3Ht−1 + θ)
(2)

where σ1 (·) represents the activation function ReLu [31]. W3 represents the weight matrix of the tem-
poral gating component. ⊗ denotes the dot product operation. H (L)

t represents the entity embedding
matrix of the last layer ((l)th layer) at time tth.

Step 4. In the embedding of relations, sequential patterns can also provide effective contextual
semantics, and there is a correlation between entities and relations. Therefore, obtaining contextual
semantic details is beneficial for the embedding representation of entities and relations. Due to
the independence and cross-layer information propagation capabilities of the independent recurrent
neural network, it is helpful to extract useful details from events across time. Therefore, we adopt the
independent recurrent module to model it. The specific operation is shown in Eq. (3).{

Rt = χδ

(
Rt−1, R′

t

)
R′

t = GAPooling (Ht−1) ⊕ R
(3)

where GAPooling(·) represents the global average pooling operation, which is beneficial for encoding
global information and increasing the representation of global semantics in entities and relations. ⊕
represents the concatenation of feature matrices. χδ(·) represents the independent recurrent module
(IndRM) for modeling relations, and IndRM is mainly composed of two layers of independent
Recurrent neural networks. The specific operation of IndRM at the time tth is shown in Eq. (4).{

χ t
�

= σ�

(
ω · xt + μ � χ t−1

�
+ θ�

)
χ

n,t
� = σ�

(
ωn · xn,t + μnχ

n,t−1
� + θ n

�

) (4)

where σ�(·) represents the activation function RReLu [32]. ω represents the input weights. μ represents
the recurrent weights. � represents the Hadamard product. θ� represents the bias weights. χ

n,t
�

represents the hidden layer output information of the tth neuron in IndRM.

Step 5. It is worth noting that the Static Graph Constraint Module (SGCM) can effectively capture
the detailed attributes of entities in events to enhance the embedding representation of entities. The
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specific operations of the Static Graph Constraint Module are shown in Eq. (5).{
hs

k = σ s
(

1
λk

∑Zk

zk Wrk · h′k
k (ξ)

)
zk = (rs, ξ) ∈ εs, Zk = (k, rs, ξ) ∈ εs

(5)

where σ s represents the LeakyReLu [33] activation function. Wrk represents the weight matrix for
relations. λk represents the normalization constant, which is the number of connections between
entities.

3.3 Entity and Relation Decoding and Prediction Module

This module mainly consists of the Conv-TransD and Conv-TransR decoders, which have a
convolutional structure. They are used to decode and model the entities and relations in the events,
respectively. These embedding vectors are mapped to a unified space to obtain better feature repre-
sentations. While the embedding prediction component aims to integrate these decoding features and
perform entity and relation prediction in the same space. The specific decoding and prediction process
is shown in step 6.

Step 6. We take the entity matrix Ht and the relation matrix Rt, which are the outputs of the
Independent Recurrent Temporal Graph Convolutional Module (IndRT-GCM) at the time tth, as
inputs to the decoders. We use Conv-TransD to obtain the entity vector fHt and Conv-TransR to obtain
the relation vector fRt . It is worth noting that Conv-TransR applies one-dimensional convolution
with activation to map the relations, capturing decoding information while preserving translational
properties to the maximum extent. The specific decoding embedding process is shown in Eq. (6).{

fHt=ψctx(Ht)

fRt=ψctr(Rt)

(6)

where ψctx, ψctr represent the entity decoder Conv-TransD and the relation decoder Conv-TransR,
respectively. The one-dimensional convolution operation �ctr in the Conv-TransR decoder is shown in
Eq. (7).

φctr (s, o, n) =
G−1∑
α=0

ωc (α, 0) ŝ (n + α) + ωc (α, 1) ô (n + α) (7)

Among them, G represents the size of the convolution kernel. �c represents the parameterization
of the cth convolution kernel. n represents the index of the output vector.

Step 7. We perform another one-dimensional convolution operation on the decoded and
dimension-aligned entity vectors and relationship vectors to map them to the same low-dimensional
space, obtaining the embedding vector fvec. Next, we establish associations through the head entity
and transmit this vector to a linear fully connected layer for embedding learning, to achieve accurate
predictions of entities and relationships. The specific operations are shown in Eq. (8).{

fvec = φ1×1

([
fHt , fRt

])
ffc (s, r, o) = FC (BN (fvec))

(8)

where FC(·), BN(·) represent the fully connected layer and batch normalization operation, respectively.
φ1×1(·) denotes the one-dimensional convolution operation with a kernel size of 1 × 1. The predictions
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are performed according to the Eq. (9).

ρ (s, r, o, t) = σρ

(
ffc (s, r, o)

)
(9)

where σρ(·) represents the logistic sigmoid activation function.

In summary, our proposed IndRT-GCNets use the connectivity of temporal knowledge graph
nodes to model entities and relationships, capturing static attribute representations of entities while
enhancing the interaction between entities and relationships. In addition, Conv-TransD and Conv-
TransR are employed to encode and integrate entities and relationships, achieving the final prediction.
These operations effectively handle entities and relationships in concurrent events.

3.4 Reconstructed Loss Function

To facilitate the achievement of optimal performance in the proposed IndRT-GCNets knowledge
reasoning framework, we develop a weighted loss function that allows for individual optimization and
adjustment of each module handling entities and relationships. Specifically, for the loss function of the
static graph constraint module τSGCM , it is defined as shown in Eq. (10).{

τSGCM = ∑(|v|−1)

k=0 Max
(
cosθa − cos

(
hs

k, ht−m+a, k
)
, 0

)
θa = Min

(
γ a, 90◦) (10)

where γ represents the ascent rate. As for the embedding representation of entities and relationships
in the independent recurrent temporal graph convolution module, it is defined as shown in Eq. (11).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τH = ∑T−1

t=0

∑
Z(t+1)

2 · ∣∣Y H
t+1 ∩ ρ (o|s, r, Ht, Rt)

∣∣∣∣Y H
t+1| + |ρ (o|s, r, Ht, Rt)

∣∣
τR = ∑T−1

t=0

∑
Z(t+1)

2 · ∣∣Y R
t+1 ∩ ρ (r|s, o, Ht, Rt)

∣∣∣∣Y R
t+1| + |ρ (r|s, o, Ht, Rt)

∣∣
(11)

where T represents time, and T > t ∈ T . The loss function τ for the decoding module is defined as
shown in Eq. (12).

τ =
(|ν|−1)∑

i=0

Yt−1,ilogρi (s, r, o, t) (12)

To obtain an optimal representation, we have reconstructed these loss functions by weighting
them, forming a new loss function τtotal as shown in Eq. (13).

τtotal = β1 · τSGCM + β2 · τH + β3 · τR + β4 · τ (13)

where {β1, β2, β3, β4} represent adjustable factors that control the loss functions.

In conclusion, the reconstructed loss provided by controlling each module separately enables
the proposed IndRT-GCNets framework to achieve optimal performance, thereby improving the
representation of entities and relationships. Algorithm 1 outlines the overall workflow of the proposed
knowledge inference framework.

Algorithm 1: IndRT-GCNets implements the reasoning representation process of TKG
1: Input: (1) ς = {ς1, . . . , ςt: the given temporal knowledge graph sequence; (2) ςi = (ν, R, εi) ∈ ς :
knowledge graph at time ith; (3) (s, r, o, t): the quadruples; (4) ς s = {(vs, Rs, εs)}: the static constraint
graph; (5) τ1, τ2, τ3, τ4: loss functions for each module.

(Continued)
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Algorithm 1 (continued)
2: For epochs = 0 to epochs = Max do
3: Ht ←TGs

SGCM h(l)
o,i

T−GCM← (s, r, o, t) //represent quadruples as embedding representations of entities at time
tth

4: Rt ←IndRM
T−GCM R′

t

GAPooling(.)← [Ht−1, R] //obtain embedding representations of relationships at time tth

5: [fHt , fRt ] ←ψctr(.)
ψctx(.)

[Ht, Rt] //obtain entity and relation vectors through the entity and relation decoders

6: ρ(s, r, o, t)
σρ (·)← ffc

FC(BC(.))← fvec

φ1×1(·)← [fHt , fRt ] //associate entity vectors and relation vectors, and predict
entities and relations through fully connected layers and normalization operations
7: Optimizing and adjusting each module using Eqs. (10)–(13)
8: end
9: Output: Prediction of entities and relations in temporal knowledge graphs

4 Experiments and Analysis

In this section, we validate the effectiveness of the proposed IndRT-GCNets framework through
various evaluations, including internal module ablation and comparisons with other knowledge
reasoning methods. Firstly, we provide data interpretation, experimental settings, and evaluation
metrics. Secondly, we compare the framework with different knowledge graph reasoning methods and
present the corresponding experimental results and analysis. Finally, we conducted internal module
ablation experiments and provided analysis and discussions accordingly.

4.1 Dataset

The FB13 dataset consists of 13 relationship types and 75,043 entities. The FB15K dataset
contains 1,345 relationship types and 14,951 entities. The FB15K-237 dataset contains 237 relationship
types and 14,951 entities, with more complex relationship types. The WN11 dataset contains 11
relationship types and 38,696 entities. The WN18 dataset contains 18 relationship types and 40,943
entities. The WN18RR dataset contains 11 relationship types and 40,943 entities. The YAGO3-10
dataset is similar to the FB15K-237 dataset and contains many relationships with high degrees,
meaning that for a given relationship, a head/tail entity may correspond to a large number of tail/head
entities. The Nell-995 dataset contains 75,492 entities and 200 relationship types.

4.2 Environment and Parameter Settings

In experiments, we set the training iterations to 100. The learning rate is set to 1e-4, and the
batch size is set to 1,024. In data processing, we define a time length of 1,024 as a time interval to
divide the entire data. To ensure that the framework obtains optimal feature representation, we use
AdamW as the optimizer with a decay rate of 1e-3. We also adopt a multi-step strategy to dynamically
adjust the learning rate. Specifically, the dynamic step schedule is set as [45, 60, 70, 80, 90, 96], and the
multiplicative factor for learning rate decay is set to 0.5. All experiments in this study are conducted
in a unified environment. Python 3.7.6 is used as the programming language, and training and testing
are performed on a machine with dual GPU RTX A5000. Other required environments include cu110,
torch 1.7.0+cu110, numpy, and other deep-learning libraries.
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4.3 Evaluation Metrics

To ensure experimental consistency, we adopted MRR (Mean Reciprocal Rank) and Hits@
[1,3,10] as the comprehensive evaluation metrics for this experiment. The specific equations are shown
in Eq. (14).⎧⎪⎪⎨
⎪⎪⎩

MRR = 1
m

m∑
i=1

1
�i

Hits@n = 1
m

m∑
i=1

� (�i ≤ n)

(14)

where �(·) represents an indicator function that returns 1 if the condition is true and 0 if the condition
is false. �i represents the ranking of the ith entity or relation.

4.4 Comparative Experiments

To demonstrate the effectiveness and superiority of the proposed IndRT-GCNets knowledge rea-
soning framework, we conducted experimental evaluations on various open-source baseline datasets
and provided corresponding experimental results and analyses. The experimental results are shown in
Tables 1 and 2.

Table 1: The experimental results of different reasoning methods on the FB13, FB15K, WN11 and
WN18 datasets

Models FB13 FB15K
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CENET [34] 0.5913 0.5351 0.6197 0.6905 0.7269 0.6238 0.7774 0.9179
ComplEx [35] 0.5288 0.4768 0.5616 0.6212 0.4115 0.3846 0.4169 0.4613
GIE [36] 0.5970 0.5414 0.6239 0.6992 0.5996 0.5011 0.6387 0.7879
MTDM [37] 0.5875 0.5619 0.6016 0.6331 0.4238 0.2631 0.5288 0.6989
RotatE [38] 0.4526 0.4044 0.4727 0.5307 0.4154 0.3789 0.4202 0.4842
DHGE [39] 0.6142 0.5931 0.6819 0.7245 0.6011 0.4803 0.6957 0.7884
LCGE [40] 0.6685 0.7244 0.7317 0.7228 0.5917 0.4589 0.6712 0.7433
IndRT-GCNets 0.7632 0.7503 0.7719 0.7853 0.6043 0.4806 0.7078 0.7937
Models WN11 WN18

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
CENET [34] 0.3542 0.3289 0.3569 0.4055 0.5643 0.4955 0.5841 0.6965
ComplEx [35] 0.3694 0.3565 0.3667 0.3954 0.3964 0.3851 0.3984 0.4129
GIE [36] 0.4824 0.4367 0.4954 0.5711 0.6197 0.5157 0.6873 0.8107
MTDM [37] 0.2445 0.1389 0.3058 0.4557 0.2976 0.1642 0.3821 0.5272
RotatE [38] 0.3641 0.3534 0.3591 0.3858 0.3788 0.3691 0.3781 0.3983
DHGE [39] 0.5172 0.4417 0.5819 0.6213 0.6049 0.4418 0.6127 0.7795
LCGE [40] 0.5529 0.4438 0.6417 0.6953 0.5859 0.4235 0.6017 0.7254
IndRT-GCNets 0.58 0.4597 0.6742 0.7778 0.6115 0.4765 0.7319 0.7944
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Table 2: The experimental results of different reasoning methods on the FB15K237, WN18RR,
YAGO310 and Nell995 datasets

Models FB15K-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
CENET [34] 0.6025 0.5211 0.6288 0.7639 0.3596 0.3349 0.3611 0.4080
ComplEx [35] 0.4496 0.4257 0.4508 0.4940 0.3681 0.3616 0.3682 0.3779
GIE [36] 0.5424 0.4695 0.5629 0.6867 0.3911 0.3302 0.4233 0.5019
MTDM [37] 0.5298 0.4711 0.5590 0.6352 0.2834 0.1827 0.3464 0.4923
RotatE [38] 0.4146 0.3815 0.4232 0.4603 0.3610 0.3541 0.3605 0.3733
DHGE [39] 0.6833 0.7017 0.6899 0.7142 0.5938 0.4718 0.6517 0.6634
LCGE [40] 0.7211 0.7119 0.7428 0.7752 0.6197 0.5108 0.6744 0.6814

IndRT-GCNets 0.7602 0.7335 0.7854 0.7968 0.6472 0.5559 0.7303 0.7941

Models YAGO3-10 Nell-995

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CENET [34] 0.4967 0.4441 0.5032 0.6015 0.4807 0.4376 0.4994 0.5548
ComplEx [35] 0.4010 0.3833 0.4024 0.4309 0.4067 0.3594 0.4487 0.4561
GIE [36] 0.4555 0.3974 0.4595 0.5675 0.4874 0.4499 0.5114 0.5524
MTDM [37] 0.4443 0.3289 0.5335 0.6024 0.3427 0.2723 0.3731 0.4848
RotatE [38] 0.3903 0.3777 0.3866 0.4132 0.3967 0.3566 0.4185 0.4386
DHGE [39] 0.5593 0.4627 0.6211 0.6453 0.5004 0.4187 0.5719 0.5988
LCGE [40] 0.5788 0.4807 0.6647 0.7011 0.5092 0.4327 0.5807 0.6129

IndRT-GCNets 0.6257 0.5171 0.7262 0.7689 0.5384 0.4649 0.5927 0.6559

Based on Tables 1 and 2, we can draw the following conclusions.

(1) Our proposed IndRT-GCNets model achieves optimal results on multiple benchmark datasets.
The MRR for FB13, FB15, and FB15k237 datasets are 0.7632, 0.6043, and 0.7602, respectively. One
reason is that the static graph constraint module models the detailed attributes of entities, capturing the
contextual semantic information in events and improving the entity embedding representation. What’s
more, embedding the IndRM and TGs in the temporal graph convolution avoids overfitting and
the vanishing gradient problem caused by excessively long events, enhancing the interaction between
entities and relations while capturing the structural dependencies of concurrent events. Finally, IndRT-
GCNets uses different decoders for entities and relations, further fine-tuning the acquired semantic
information, and establishing effective correlations between entities and relations, thereby enhancing
the performance of the proposed model.

(2) However, our proposed IndRT-GCNets model does not achieve optimal performance on the
FB15K dataset. While it improves the MRR metric by 0.0047 compared to the GIE [36] method, it
decreases by 0.1226 compared to the CENET [34] method. It could be attributed to the fact that the
CENET method can predict potential new events by jointly investigating historical and non-historical
information to distinguish the most potential entities that best match a given query. Additionally, the
FB15K dataset contains a significant imbalance in the amount of information included in the triples.
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Only a small portion of high-frequency entities played a crucial role in training, while other entities
have a minor impact on training, resulting in significant data sparsity, which limits the performance
of the proposed model.

(3) Compared to other reasoning methods, GIE has shown strong competitiveness in these
datasets. For example, on FB13, WN11, and YAGO310 datasets, GIE achieves an improvement of
0.0682, 0.113, and 0.0545 in MRR compared to ComplEx [35], respectively. On WN18RR and Nell995
datasets, Hits@1 outperforms the MTDM [37] method by 0.1475 and 0.1776, respectively. One reason
is that GIE can capture geometric interactions and learn reliable spatial structures, enhancing its
capability to transfer reasoning rules in knowledge graphs with complex structures. What’s more,
utilizing rich and expressive semantic matching between entities improves the performance of relation
representation. The CENET also performs well on the YAGO310 and Nell995 datasets, with an MRR
improvement of 0.0957 and 0.074 compared to the ComplEx method, respectively. Possible reasons
are twofold: the YAGO310 and Nell995 datasets have a larger number of relation types and more
complex data structures, leading to data imbalance and other challenges; CENET learns historical
and non-historical dependency relations to distinguish the most potential entities that match a given
query, while also investigating whether the current moment relies more on historical or non-historical
events through contrastive learning, indicating relevant entities in the search space.

(4) RotatE [38] reasoning method exhibits the poorest performance on the FB15K237 and
YAGO310 datasets. For example, Hits@10 decreases by 0.0337 and 0.0167 compared to ComplEx,
respectively. One possible reason is that RotatE neglects to model complex relations, which diminishes
the model’s performance. On the other hand, the ComplEx method harmonizes expressiveness
and complexity by using complex-valued embeddings, while also exploring the connection between
complex-valued embeddings and diagonalization, effectively modeling all possible relations. The
CENET reasoning method achieves a lower MRR on the WN11 dataset compared to the ComplEx
and RotatE reasoning methods, with decreases of 0.0152 and 0.0099, respectively. There are two
possible reasons for this: On one hand, the WN11 dataset has simpler relation types, with fewer
concurrent events in the same period; On the other hand, RotatE is an adversarial negative sampling
technique that can model and infer various relationship patterns, including symmetry/asymmetry,
inversion, and composition, especially in scenarios with a limited number of relations.

(5) On benchmark datasets, both DHGE [39] and LCGE [40] methods have achieved competitive
results. For instance, on YAGO310, MRR is improved by 0.169 and 0.1885, respectively, compared
with the RotatE method. On FB15K237, MRR is improved respectively compared with CENET.
The DHGE method establishes hierarchical relationships between entities through the dual-view
super-relationship structure, strengthening the affiliation between entities and concepts and improving
reasoning performance. The LCGE method establishes constraints between logic and common sense,
reducing their differences.

4.5 Ablation Studies

To demonstrate the positive contributions of each component in the proposed IndRT-GCNets
knowledge reasoning framework to the overall model performance, we conducted experiments on
multiple open-source datasets and provided corresponding experimental results and analysis. The
specific experimental results are shown in Tables 3 and 4.
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Table 3: Ablation experiments with different methods after module replacement based on IndRT-
GCNets (Ind-RNN, Conv-TransD, Dice loss) on the FB13, FB15K, WN11 and WN18 datasets.
Where the letter “G” represents GRU, “C” represents Conv-TransE, “D” represents the Dice loss [41]
function, which is the loss function used in the training process of our proposed model, “M” refers
to cross-entropy loss function, “I” represents Ind-RNN, “R” represents RNN, “X” refers to Conv-
TransX. For example, GCD represents replacing Ind-RNN with GRU, replacing Conv-TransD with
Conv-TransE, and simultaneously using Dice loss. RCM represents replacing IndRNN with RNN,
replacing Conv-TransD with Conv-TransE, and replacing Dice loss with cross-entropy loss

Models FB13 FB15K

MRR Hits@1 Hits@3 Hits@10 MRR Hits@10 Hits@3 Hits@10
GCD 0.6499 0.6488 0.6498 0.6505 0.4681 0.3511 0.5653 0.6450
GCM 0.6524 0.6492 0.6524 0.6564 0.4695 0.3531 0.5670 0.6458
ICD 0.6497 0.6489 0.6498 0.6504 0.4674 0.3499 0.5652 0.6462
ICM 0.6516 0.6495 0.6521 0.6554 0.4676 0.3501 0.5657 0.6455
RCD 0.6581 0.6527 0.6575 0.6658 0.4678 0.3514 0.5645 0.6450
RCM 0.6563 0.6500 0.6581 0.6713 0.4671 0.3509 0.5639 0.6436
GXD 0.7571 0.7398 0.7697 0.7850 0.4715 0.5395 0.5671 0.6916

Ours 0.7632 0.7503 0.7719 0.7853 0.6043 0.4806 0.7078 0.7937

Models WN11 WN18

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

GCD 0.4365 0.3267 0.5161 0.6257 0.4814 0.3547 0.5965 0.6464
GCM 0.4380 0.3232 0.5245 0.6267 0.4791 0.3516 0.5927 0.6482
ICD 0.4443 0.3321 0.5302 0.6295 0.4844 0.3574 0.6008 0.6476
ICM 0.4425 0.3315 0.5241 0.6280 0.4834 0.3574 0.5971 0.6476
RCD 0.4434 0.3287 0.5310 0.6261 0.4682 0.3437 0.5745 0.6449
RCM 0.4415 0.3245 0.5297 0.6261 0.4837 0.3573 0.5998 0.6473
GXD 0.5735 0.4592 0.6545 0.7742 0.6191 0.4865 0.7379 0.7952

Ours 0.5800 0.4597 0.6742 0.7778 0.6115 0.4765 0.7319 0.7944

From Tables 3 and 4, several conclusions can be drawn.

(1) The collaboration between different modules in the proposed IndRT-GCNets knowledge
reasoning framework is essential for achieving optimal performance. For example, in the Nell995
dataset, IndRT-GCNets outperforms GCD in terms of MRR and Hits@ [1,3] by 0.008, 0.0179,
and 0.0064, respectively. Similarly, in the WN18RR dataset, IndRT-GCNets shows improvements
over ICD in terms of MRR, Hits@1, Hits@3, and Hits@10 by 0.1447, 0.1406, 0.1491, and 0.1492,
respectively. The possible reason for these improvements is that IndRM not only establishes effective
long-term dependency relationships and alleviates the gradient vanishing problem but also relies on
cross-layer information transfer and independent neurons within each layer to obtain more effective
dependency relationships. Additionally, it captures the contextual semantics of entities and relations
in temporal events, thereby enhancing the representation performance of entities and relations.
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Table 4: Ablation experiments with different methods after module replacement based on IndRT-
GCNets (Ind-RNN, Conv-TransD, Dice loss) on the FB15K237, WN18RR, YAGO310 and Nell995
datasets. Where the letter “G” represents GRU, “C” represents Conv-TransE, “D” represents the Dice
loss function, which is the loss function used in the training process of our proposed model, “M” refers
to cross-entropy loss function, “I” represents Ind-RNN, “R” represents RNN, “X” refers to Conv-
TransX. For example, GCD represents replacing Ind-RNN with GRU, replacing Conv-TransD with
Conv-TransE, and simultaneously using Dice loss. RCM represents replacing IndRNN with RNN,
replacing Conv-TransD with Conv-TransE, and replacing Dice loss with cross-entropy loss

Models FB15K-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
GCD 0.6188 0.5964 0.6394 0.6489 0.4831 0.3955 0.5528 0.6418
GCM 0.6175 0.5941 0.6391 0.6485 0.4709 0.3809 0.5408 0.6428
ICD 0.6177 0.5931 0.6394 0.6509 0.5025 0.4153 0.5812 0.6449
ICM 0.6183 0.5948 0.6387 0.6498 0.4741 0.3868 0.5390 0.6417
RCD 0.6162 0.5923 0.6383 0.6486 0.4866 0.4006 0.5564 0.6409
RCM 0.6171 0.5936 0.6386 0.6487 0.4727 0.3882 0.5319 0.6394
GXD 0.7384 0.7028 0.7698 0.7908 0.6192 0.5323 0.6803 0.7918
Ours 0.7602 0.7335 0.7854 0.7968 0.6472 0.5559 0.7303 0.7941

Models YAGO3-10 Nell-995

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

GCD 0.5483 0.4537 0.6405 0.6614 0.3811 0.3245 0.4100 0.4877
GCM 0.5478 0.4575 0.6379 0.6491 0.3714 0.2990 0.4149 0.5035
ICD 0.5445 0.4530 0.6371 0.6489 0.3867 0.3160 0.4319 0.5087
ICM 0.5386 0.4464 0.6297 0.6490 0.3774 0.3212 0.4137 0.4798
RCD 0.5558 0.4651 0.6469 0.6594 0.3936 0.3329 0.4218 0.5235
RCM 0.5452 0.4535 0.6368 0.6493 0.3977 0.3510 0.4154 0.4808
GXD 0.5870 0.667 0.6929 0.7429 0.5304 0.4470 0.5863 0.6709

Ours 0.6257 0.5171 0.7262 0.7689 0.5384 0.4649 0.5927 0.6559

(2) Compared to optimizing entities and relations using cross-entropy, the Dice loss used in our
proposed framework demonstrates better competitiveness. For instance, on the FB13 and FB15K
datasets, the MRR of RCD is higher than that of RCM by 0.0018 and 0.0007, respectively. On the
FB15K237 and YAGO310 benchmark datasets, the MRR of GCD is higher than that of GCM
by 0.0013 and 0.0005, respectively. It demonstrates the effectiveness of Dice in optimizing entities
and relations. On the WN11 and WN18 datasets, the MRR of GXD is higher than that of GCD
by 0.137 and 0.1377, respectively. This indicates that Conv-TransD, as used in our framework, is
more suitable for decoding entities compared to Conv-TransE, as it maximizes the preservation of
translation invariance in entity vectors.

(3) In the FB15K237 dataset, the ICD method shows a decrease of 0.0007 in MRR and 0.0017
in Hits@1 compared to the ICM method. However, Hits@3 and Hits@10 improved by 0.0007 and
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0.0011, respectively. The reason is that, compared to the cross-entropy loss function, the Dice loss
function better addresses the class imbalance in this dataset, resulting in higher Hits@3 and Hits@10
scores. On the other hand, the cross-entropy loss function has a relatively faster convergence rate in
the early stages of training, leading to better performance in MRR and Hits@1.

5 Conclusion and Future Work

This paper introduces a knowledge graph reasoning framework, IndRT-GCNets, which models
the detailed attributes of entities using a static constraint graph and enhances entity representations
by embedding a Temporal Graph Convolution Module (T-GCM). Furthermore, the Independent
Recurrent Module (IndRM) models temporally adjacent events, effectively capturing contextual
semantics of entities and relations within events, thereby strengthening the embedding representations
of entities and relations. In addition, Conv-TransD and Conv-TransR are separately employed to
decode entity and relation vectors, facilitating effective interactions between them. Meanwhile, a
weighted loss function is designed, involving the optimization of various components using different
loss functions, thereby enhancing the model’s performance. Finally, validation and evaluation were
conducted on multiple benchmark datasets, demonstrating the effectiveness of the proposed model.

Although the proposed knowledge graph reasoning framework demonstrates good robustness
and representation performance, two limitations were identified during the training process: (1) the
framework has a high model complexity; (2) using decoders with different convolutions to decode
entities and relations separately may overlook the correlation between entities and relations. Therefore,
in future research, we will focus on addressing these two aspects and design a more efficient and concise
temporal knowledge graph semantic representation network to further enhance the representation
performance of entities and relations.
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