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ABSTRACT

Clear cell renal cell carcinoma (ccRCC) represents the most frequent form of renal cell carcinoma (RCC), and
accurate International Society of Urological Pathology (ISUP) grading is crucial for prognosis and treatment
selection. This study presents a new deep network called Multi-scale Fusion Network (MsfNet), which aims to
enhance the automatic ISUP grade of ccRCC with digital histopathology pathology images. The MsfNet overcomes
the limitations of traditional ResNet50 by multi-scale information fusion and dynamic allocation of channel
quantity. The model was trained and tested using 90 Hematoxylin and Eosin (H&E) stained whole slide images
(WSIs), which were all cropped into 320 × 320-pixel patches at 40× magnification. MsfNet achieved a micro-
averaged area under the curve (AUC) of 0.9807, a macro-averaged AUC of 0.9778 on the test dataset. The
Gradient-weighted Class Activation Mapping (Grad-CAM) visually demonstrated MsfNet’s ability to distinguish
and highlight abnormal areas more effectively than ResNet50. The t-Distributed Stochastic Neighbor Embedding
(t-SNE) plot indicates our model can efficiently extract critical features from images, reducing the impact of noise
and redundant information. The results suggest that MsfNet offers an accurate ISUP grade of ccRCC in digital
images, emphasizing the potential of AI-assisted histopathological systems in clinical practice.
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1 Introduction

Renal cell carcinoma (RCC) is the predominant kidney cancer, comprising about 3% of all
cancer cases, with a 2% increase in annual incidence worldwide [1]. There are three major histological
subtypes of RCC (chromophobe cell carcinoma, clear cell carcinoma, and papillary cell carcinoma)
that histological and clinical alterations can differentiate. Among them, the most common and
lethal one is the ccRCC, which is reported to be 80% of RCC cases [2]. For ccRCC patients,
microscopic tissue analysis continues to be the gold standard for diagnosis, and accurate assessment
of cancer grading increases their chances of successful treatment [3]. However, conventional manual
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pathology examination requires a high workload, and the subjective grading assessment inevitably
leads to inconsistency among pathologists. Consequently, a more reliable tool for rapid and accurate
pathological diagnosis of ccRCC is urgently needed.

In recent years, the integration of computer-aided diagnostic (CAD) systems into medical
pathology has significantly advanced the analysis of histopathological images across a variety of organ-
specific cancers, including those of the breast [4], kidneys [5], prostate [6], stomach [7], and colonoscopy
[8]. These systems have been employed in a range of tasks, such as the detection and segmentation of
cell nuclei, as well as the characterization and grading of cancer subtypes [9].

Despite the broad application of CAD, the automation of RCC pathology image diagnosis has
concentrated on elementary grading and typing, in addition to prognostic predictions. Zheng et al. [10]
introduced a deep learning multi-class model, SSL-CLAM, designed to assist in determining the
Furman grade status of ccRCC patients. This model was trained and validated on 708 digitized
WSIs from 504 patients, demonstrating superior performance in the binary classification of Furman
grades, with AUC scores of 0.936 and 0.915 for internal and external validation sets, respectively.
Fenstermaker et al. [11] explored the efficacy of a Convolutional Neural Network (CNN) in identifying
the presence of RCC in histopathology specimens and in differentiating between RCC subtypes and
grades. The CNN model achieved a remarkable overall accuracy of 99.1% in the testing cohort,
with a sensitivity of 100% and specificity of 97.1% for RCC detection. It also demonstrated a
97.5% accuracy in subtype differentiation and a 98.4% accuracy in Fuhrman grade prediction.
Haeyeh et al. [12] proposed a novel multiscale, weakly-supervised deep learning framework for RCC
subtyping, which distinguished between benign and malignant RCC tissues and accurately identified
tumor subtypes, thereby facilitating medical therapy management. This system attained an overall
classification accuracy of 93.0% ± 4.9%, with a sensitivity of 91.3% ± 10.7% and a specificity of 95.6%
± 5.2% for differentiating ccRCC from non-RCC tissues. Wessels et al. [13] assessed the capability of
a CNN to extract pertinent features from hematoxylin and eosin-stained slides for predicting 5-year
overall survival (5y-OS) in patients with ccRCC. The CNN, trained on TCGA slides and validated
on an independent cohort, achieved a mean balanced accuracy of 72.0%, with a sensitivity of 72.4%,
specificity of 71.7%, and an AUC of 0.75, when combined with clinicopathological parameters through
multivariable logistic regression.

Despite the progress in RCC diagnostic and grading methodologies, significant challenges remain.
The prevailing algorithms for pathological grading have not adequately captured the intricacies
of ccRCC grading. A notable example is the reliance on the Fuhrman grading system, which is
beset with issues of subjectivity and limited reproducibility, casting doubts on its diagnostic criteria
and prognostic validity [14]. Furthermore, some diagnostic models tend to oversimplify grading
by classifying tumors into broad categories such as high-grade and low-grade, thereby lacking the
granularity required for a detailed diagnosis.

This study introduces an enhanced CNN architecture, termed the Multi-Scale Fusion Convolu-
tional Network (MsfNet), aiming to refine the pathological grading of ccRCC. This is achieved by
improving feature extraction capabilities through an innovative approach that integrates and fuses
information from various sampled inputs. The International Society of Urological Pathology (ISUP)
grading system, which is recommended for prognostic prediction in ccRCC, stratifies tumors into
four distinct grades [15]. The ISUP system specifies that grades 1–3 are determined by the degree
of nucleolar prominence, whereas grade 4 is distinguished by marked nuclear pleomorphism, the
presence of giant tumor cells, and/or the manifestation of rhabdoid and sarcomatous differentiation.
Consequently, there is a potential for inter-observer variability in the classification of tumors into
grades 1–3, though grade 4 typically presents more definitive features.
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To address this variability and to provide a more objective measure in the differentiation of benign
and malignant tissue, as well as to diminish the inter-observer variability, particularly among ISUP
grades 1, 2, and 3, this paper proposes a novel, computer-aided approach. The aim is to leverage the
MsfNet to establish a consistent and reproducible grading mechanism that can support pathologists
in making precise and reliable assessments of ccRCC.

A total of 90 pathological slice Images of renal tissue were collected from Zhongke Guanghua
(Xi’an) Intelligent Biotechnology Co., Ltd. (China), of which 80% were training dataset, and 20%
were test dataset. Owing to the exceptionally large size at 40× magnification, the pathological images
in the training set and test set were cut into 19,963 patches, the size of every patch is 320 × 320.
Experimental results show our proposed method achieved 0.9807 micro-averaged AUC and 0.9778
macro-averaged AUC.

In short, our contributions are summarized as follows: (1) A novel MsfNet is established using
multi-scale feature fusion and channel reweighting, which achieves state-of-the-art classification
performance on the task of ccRCC grading in pathological images. (2) This study explores the use
of deep learning to assist pathologists, providing a possible joint diagnosis mode, which illustrates its
potential for clinical treatment and prognostic assessment.

The remainder of this paper is organized as follows. Section 2 presents the related work of this
study. Section 3 provides the detailed description of the model proposed in this paper. Section 4
describes the datasets used in the experiments and the data processing procedures. Section 5 presents
the experimental results and analysis. Finally, Section 6 concludes the content of the paper and
provides directions for further research.

2 Related Work

The examination of WSIs is a labor-intensive process that is subject to considerable variability
among pathologists, underscoring the critical need for the development of CAD systems. These
systems aim to automate and enhance the reliability of the analysis of H&E-stained histopathological
images. Current CAD methodologies predominantly pivot on two paradigms: Machine Learning
(ML) and Deep Learning (DL) [16].

Machine learning-based CAD systems typically require the manual extraction of features, such as
textural and morphological attributes, which are then utilized to construct classifiers, such as Support
Vector Machines (SVM), Random Forests (RF), and K-Nearest Neighbors (K-NN), for subsequent
classification or regression tasks. For instance, Moncayo et al. [17] in 2015, introduced a machine
learning framework for breast cancer grading that employed SVM classifiers to analyze alterations
in nuclear size, shape, and chromatin texture. This approach was validated on 134 fields of view
(FOVs) at 20× magnification, extracted from 14 breast cancer slides from the Cancer Genome Atlas
(TCGA) database, with the grading performed by a pathologist. The method achieved an accuracy
and recall rate of 0.67. Rathore et al. [18] extracted a combination of clinical and imaging features,
including both conventional (intensity, morphology) and advanced textural features (gray-level co-
occurrence matrix and gray-level run-length matrix), from WSIs. These features were employed to train
an SVM model with a linear configuration, which was then validated on glioma patients with a 10-
fold cross-validation, achieving an accuracy of 75.12% and an AUC of 0.652. Kruk et al. [19] utilized
an ensemble of classifiers in conjunction with wavelet transformations to enhance the recognition of
Fuhrman grading in ccRCC, achieving a sensitivity of 94.3% and a specificity of 98.6%, which marked
a significant improvement over the existing result. Humphrey et al. [20] leveraged machine learning
with an SVM to predict early recurrence of hepatocellular carcinoma (HCC) post-resection, using
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digital pathological images from 158 HCC patients. The model demonstrated an accuracy of 89.9%,
suggesting that digital pathology combined with machine learning can be a potent tool for the accurate
prediction of HCC recurrence, particularly in early stages post-surgery.

While ML methodologies have demonstrated utility in the analysis of medical pathological
images, they are not without limitations. These approaches necessitate a considerable degree of
expertise and often require extensive preprocessing of image datasets to extract pertinent features.
This preprocessing is a critical step, as the performance of ML algorithms is heavily dependent
on the quality and relevance of the features extracted. In contrast, DL represents a data-driven
paradigm that has revolutionized medical image analysis, particularly due to its superior performance
in image classification tasks. DL algorithms, particularly CNNs, have the ability to automatically learn
hierarchical feature representations from raw data, which is a significant advantage over traditional
ML techniques.

Recent research has underscored the efficacy of DL in the domain of medical pathological image
analysis. Baris et al. [21] improved a model based on MatConvNet to classify WSIs of breast biopsies
into diagnostic categories, achieving an accuracy of 55% across five distinct color-coded categories.
Thomas et al. [22] implemented a U-Net-like decoder architecture in their CNN classifier, which
attained a high classification accuracy of 93.6% across various skin cancer grades using a dataset
magnified 10 times. Lin et al. [23] employed a GoogleNet-based binary classifier for hepatocellular
carcinoma histopathology images, which yielded an accuracy of 91.37%, with a sensitivity of 92.16%
and a specificity of 90.57%. Jaber et al. [24] utilized the Cox proportional hazards model to stratify
the risk in negative breast cancer patients, demonstrating that their method improved risk prediction
over traditional baseline models through the analysis of 506 images, including WSIs and hormone
receptor statuses. Wessels et al. [25] developed and validated a vision transformer (ViT) using a self-
supervised learning model, DINO (self-distillation with no labels), to predict overall survival (OS)
and disease-specific survival (DSS) in ccRCC, with the DINO-ViT risk stratification proving to be a
significant predictor for both OS and DSS. Lastly, Sun et al. [26] proposed a hybrid multi-instance
learning model, TGMIL, combining the Transformer and the Graph Attention Network to classify
WSIs of RCC. This model achieved impressive AUC and accuracy rates on a public dataset for RCC,
without the need for pixel-level annotation or region of interest extraction.

3 Methods
3.1 Convolutional Neural Network

CNN is one of the most frequently adopted deep learning approaches, as its hierarchical structure
with multiple layers yielded state-of-the-art performance in classification and detection tasks, such
as energy forecasting [27], new materials [28], and intelligent medicine [29]. To learn numerous
levels of abstraction for data representation, a CNN mainly encompasses three types of layers:
(i) convolutional layers, applying kernel filters to extract features from input images; (ii) pooling layers,
using statistical information (max, mean, etc.) substituting small feature map neighborhoods with to
reduce spatial resolution; and (iii) activation layers, employing activation functions on feature maps
(typically elementwise) to facilitate the non-linear model [30].

In recent years, a variety of backbone network variations have been introduced and refined for
learning in CNNs. For instance, LeNet [31] uses a back-propagation algorithm as an early successful
gradient learning example. AlexNet [32] is a pioneering deep architecture with an 84.6% top-5 test
accuracy on ImageNet data. VGGNet [33] demonstrates significant improvements by pushing depth to
16–19 weight layers in large-scale image recognition settings. ResNet [34] introduces a residual learning
framework to facilitate the training of substantially deeper networks than before.
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3.2 Multi-Scale Fusion Residual Network

Most previous methods enhance the performance by increasing the network depth and using
filters with smaller kernel sizes. In our study, an improved residual network architecture based on
ResNet, namely MsfNet, was developed to improve the feature extraction ability of the proposed
network by fusion of multi-scale features.

The proposed pipeline is shown in Fig. 1. Our model’s structure design is adopted from the
ResNet50 design and is built using the Pytorch backend. The main structure of ResNet50 is composed
of 5 stages, followed by a 4-way fully connected layers (denoted as fc-layer in Fig. 1a) and a final
softmax layer. Except that the first stage includes a 7 × 7 convolution layer and a 3 × 3 max-
pooling layer, the other stages contain several bottleneck blocks in respective order (see Fig. 1a). As a
basic component module in many of the backbone networks, the bottleneck blocks employed in our
proposed network extract features from the pathology images and update weights during training. In a
more concise manner, Stages 2 to 5 contain 3, 4, 6, and 3 bottleneck blocks each. The bottleneck block
comprises three convolution kernels: (1) a 1 × 1 kernel that reduces input channels to 1/4, minimizing
computational load; (2) a 3 × 3 kernel for feature extraction; and (3) a final 1 × 1 kernel that restores
the channel count to its initial amount. The residual link between input and output functions as an
identity map, enabling feature map inheritance from previous blocks and facilitating deep network
training. Additionally, by using a global average pooling layer (GAP) and a 4-way fully connected layer
with softmax, the network outputs a 4-dimension tensor which represents the predicted probabilities
of each ccRCC ISUP grade. The grade with the max probability is decided as the final prediction result
of the network.

Figure 1: The network structures of ResNet50 and the proposed MsfNet. (a) Pipeline of ResNet50;
(b) Pipeline of our proposed MsfNet
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While ResNet allows for considerably deeper, more accurate, and more efficient training through
shorter connections between input-proximate and output-proximate layers, it may sacrifice original
shallow semantic information during deeper feature extraction. For achieving more representation at
each scale of both the shallow and deep semantic information from input patches, a multi-scale infor-
mation fusion residual network was integrated into ResNet50 to aggregate features x1, x2, x3, x4, and x5,
which output from different stages with different semantic depths. Specifically, as shown in Fig. 1b,
our method MsfNet has two significant differences from ResNet50.

Multi-scale information fusion: For more efficient feature extraction, the output at anywhere stage
incorporates multiple inputs from all preceding stages and repeated use for further feature aggregation
in subsequent stages, rather than solely considering the input feature map from the immediately
preceding layer.

Fig. 1b illustrates the workflow of the proposed network schematically. It can denote the feature
map generated by stage sth as xs ∈ R

W×HXC, W , H and C represent the width, height, and channel
dimension of the feature map, respectively. In traditional ResNet architecture, the representation xs is
then directly passed to the following stage as the input of the (s + 1)th stage, which can be represented
by

Is+1 = xs, 1 ≤ s ≤ 5 (1)

It should be noted that I6 represents the input feature map of the fc-layer. However, this type
of connection between individual layers only obtains feature representation from a particular stage,
leading to the limitation of information flow in subsequent stages. In the proposed MsfNet, stage
interconnections are generated utilizing preceding feature representations for aggregating features
from various receptive regions. The operation is initially performed by downsampling different scale
feature maps to uniform spatial resolutions. Following that, these downsampled variants of feature
maps are integrated into a fusion feature vector, which is achieved by using multiple inputs from all
preceding stages to create a feature map, and then repeatedly employed for further feature aggregation
in subsequent stages. Afterward, the fusion vector and the shortcut connection are aggregated through
concatenation and are passed through the following stage. The fusion of feature vectors can be
represented as

Is+1 =
⎧⎨
⎩

xs, s = 1[
x

1
2 C
ss , x

1
4 C

ss−1, . . . , x
1

2s−1 C

s2 , x
1

2s−1 C

s1

]
+ xs, 2 ≤ s ≤ 5

(2)

where the xc
si is the output feature map from the ith stage to be fused with the feature map of xs in the

sth stage with c number of channels.

Dynamic allocation of channel quantity: At the same time, considering that the feature maps output
at different stages contains different levels of semantic information. Inspired by [35], while making full
use of the shallow semantic information in order to ensure that the model can extract deeper feature
information. As shown in Eq. (2), this study designed a simplified channel quantity allocation strategy,
assigning more channel quantity to the feature maps with deeper semantic information while assigning
less quantity to the shallow feature maps. In addition, to successfully complete the concatenate of
feature maps, max pooling is applied to ensure that the feature maps have the same size, and then a
1 × 1 convolution is used to change the channel feature maps.

Take the input of Stage 4, which is denoted as I4, i.e., the output of Stage 3 in ResNet50, as an
example. In MsfNet, I4 is the concatenation of the preceding stage output (x1, x2, x3). The specific
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process is as follows: firstly, the max-pooling with the kernel of 4 or 2 is used to ensure x1 and x2 have the

same height and width as x3. Then, the feature map x
1
2 C

33 , x
1
4 C

32 , x
1
4 C

33 are calculated by a 1 × 1 convolution
which is used to assign different channels to the 1th, 2th, and 3th stages, and 1

2
C, 1

4
C, 1

4
C, and C

are representative of the channel of x33, x32, x31 and x3. It should be noted that x
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feature map obtained by processing x3, x
1
4 C

32 represents the feature map obtained by processing x2,

x
1
4 C

31 represents the feature map obtained by processing x1. Finally, the fusion vector [x
1
2 C

33 , x
1
4 C

32 , x
1
4 C

31 ] are
channel-wise additions with the feature map x3 through shortcut connection according to residual
learning. Following that, Table 1 presents the structural details of all stages, which operate with
different scales of feature maps in the fusion module.

Table 1: The detail of all stages operates with different scales of feature maps in MsfNet and ResNet50

Stage s C MsfNet ResNet50

IS RC IS RC

Stage 1 – 3 Input 3 Input 3
Stage 2 1 64 x1 64 x1 64
Stage 3 2 256 [x22, x21] [128, 128] x2 256
Stage 4 3 512 [x33, x32, x31] [256, 128, 128] x3 512
Stage 5 4 1024 [x44, x43, x42, x41] [512, 256, 128, 128] x4 1024
Stage 6 (Fc-layer) 5 2048 [x55, x54, x53, x52, x51] [1024, 512, 256, 128, 128] x5 2048

4 Experiment

The workflow of the experiment is shown in Fig. 2, which consists of 4 phases: data collection and
preprocessing, data augmentation, model training, and performance test.

Figure 2: The workflow of the experiment about predicting the ISIP grade of ccRCC using MsfNet
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4.1 Data Collection and Preprocessing

This study collected the renal tissue sections of 90 patients from the No. U090KI01 clear cell renal
cell carcinoma tissue chip of Zhongke Guanghua (Xi’an) Intelligent Biotechnology Co., Ltd. Of these,
80 patients were diagnosed with clear cell carcinoma of the kidney, and 10 were diagnosed as normal.
Table 2 presents the specific clinical characteristics of these patients:

Table 2: Clinical characteristics in the No. U090KI01

Variable Specific Quantity

Age (year)
≤50 33
51–70 49
>70 8

Gender
Male 28
Female 62

Grade

ISUP I 38
ISUP I 26
ISUP II 16
Normal 10

Stage
I 59
II 19
III 2

TNM
T1N0M0 59
T2N0M0 19
T3N0M0 2

Position
Left kidney 10
Right kidney 8
Unknown 62

In terms of data, this study is different from other scholars in that this study divided the data set
by patients and divided 80% of patients into training set and 20% of patients into testing set according
to the different diseases. The training set, which contains 31 ISUP I patients, 22 ISUP II patients, 13
ISUP III patients, and 8 normal patients, is used to participate in the iterative training of the model to
get the best performance model. The testing set, which contains 7 ISUP I patients, 4 ISUP II, 3 ISUP
III patients, and 2 normal patients, is used to test the performance of the network.

The original size of each pathological image was 5120 × 5120, and it is impossible to feed the
entire pathological sections into the neural network at once. So, this work decided to cut pathological
sections of each patient’s renal tumor at 40 times the microscopic magnification. As shown in Fig. 2,
firstly, cut the image into 320 × 320 pixels small patches. Meanwhile, in order to reduce the information
loss, this study set the step size is 260. Then, filtered the cut patches and eliminated the ones that only
contained blank areas, tissue fibers, bleeding, blood vessels, cysts, and lymphatic lesions that did not
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belong to cancer. The final training set has 16,547 image patches, and the testing set has 3,416 image
patches.

4.2 Data Augmentation

Data augmentation is one of the important methods to improve network performance and reduce
the risk of overfitting classification network models [36]. Inevitably, the study has also conducted
data augmentation processing on the filtered patches. The main training set process is illustrated
in Fig. 2. First, the patches are resized to 256 × 256 pixels. Subsequently, a set of transformation
operations, including random horizontal flips, random vertical flips, random rotation of the image
and normalization processing, are conducted. Finally, the resulting tensor is fed into the CNN model
for training. However, for the testing set, the patches only need to be resized to 256 × 256 pixels and
undergo normalization processing before being input into the CNN model.

4.3 Implementation Details of Model Training

To accelerate model training while improving generalization and stability, this study initialize
ResNet weights using the ImageNet dataset [37]. Every model was trained with 100 epochs, a batch
size of 32, and optimized network parameters using the stochastic gradient descent (SGD) algorithm.
The learning rate is 0.005 and decays to one-tenth of the original rate every 30 epochs.

4.4 Metrics of Performance Test

Firstly, the loss function uses the cross-entropy loss, and the calculation method, as shown in
Eq. (3), x represents the input sample, y represents the actual label, ỹ represents the predicted output,
and n represents the total number of samples.

loss = −1
n

∑
x

[y ln ỹ + (1 − y) ln(1 − ỹ)] (3)

Then, to present the evaluation results, the label values were categorized into positive and negative.
Finally, this study employed the metrics of Accuracy, Precision, Recall, and F1-score to quantitatively
assess the model’s performance. Accuracy represents the prediction accuracy, determined by dividing
the total number of correct predictions by the overall sample count. Precision represents the likelihood
that a correct prediction is a positive sample among predicted positives. Recall denotes the probability
that an original sample is correctly predicted as positive. F1-score serves as a harmonic mean
evaluation index for precision and recall.

5 Results and Discussions
5.1 Ablation Analysis

This study compared the performance of ResNet50 and MsfNet with different structures, which
used dynamic weight multi-scale feature fusion before the current stage, on the same testing set
including 16,547 images from 17 patients. Different network structures are illustrated in Figs. 1b
and 3. Fig. 3 illustrates different structures of MsfNet using dynamic weight multi-scale feature fusion
strategy in the preceding stages. Taking Fig. 3c as an example, ‘stage=5’ indicates that the feature
vectors inputted in Stages 3, 4, and 5 have all incorporated the dynamic weight multi-scale feature
fusion proposed in this paper, while ‘stage=1’ and ‘stage=2’ signify that the input feature scales are
single, without employing the multi-scale feature fusion strategy.
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Figure 3: MsfNet with different feature fusion structures about use the multi-scale feature fusion before
the current stage. (a) stage=3; (b) stage=4; (c) stage=5

The corresponding results are shown in Table 3, where bold data represents the best results for
each metric. As observed from Table 3, the performance of the MsfNet model exhibits a continuous
improvement trend as the number of stages using dynamic weight multi-scale feature fusion increases.
This provides validation for the effectiveness of dynamic weight multi-scale feature fusion and
channel reweighting techniques. Particularly, when ‘stage=6’ is performed, indicating the application
of dynamic weight multi-scale feature fusion to all input feature vectors, MsfNet achieves the best
results across all metrics. MsfNet (stage=6) surpasses ResNet50 by 1.78% accuracy (87.06% vs.
85.28%), 1.61% precision (87.78% vs. 86.17%), 1.38% recall (85.85% vs. 84.47%), and 1.83% F1-score
(86.72% vs. 84.89%). These results indicate that in the proposed network MsfNet, dynamic weight
multi-scale feature fusion extracts additional valuable features from input images by preserving shallow
visual information and incorporating deep semantic understanding. This substantially enhances the
expression capability of the proposed network compared to the baseline ResNet50.

Table 3: Performance metrics comparison (%) between ResNet50 and MsfNet with different feature
fusion structure

Method Accuracy Precision Recall F1-score

ResNet50 (baseline) 85.28 86.17 84.47 84.89
MsfNet (stage=3) 85.54 85.04 84.45 84.18

(Continued)
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Table 3 (continued)

Method Accuracy Precision Recall F1-score

MsfNet (stage=4) 86.27 86.93 85.18 85.91
MsfNet (stage=5) 86.68 87.60 85.89 86.68
MsfNet (stage=6) 87.06 87.78 85.85 86.72

Then, in order to further compare the performance of the MsfNet and ResNet50, this work
have drawn their receiver operating characteristic curve (ROC) and calculated the AUC. The ROC
reflects the recognition ability of a classifier to samples at a certain threshold. The abscissa represents
the false positive rate predicted by the classifier, while the ordinate represents the true positive rate
predicted by the classifier. The AUC describes the overall discrimination ability of the classifier.
The closer the curve is to the upper left corner, and the larger the area under the curve, the better
the mode’s performance. Considering the problem of sample imbalance in the testing set and to
more effectively assess the model’s performance, the macro-average and micro-average ROC curves of
various algorithms are drawn, and the corresponding macro-average and micro-average AUC values
are calculated, respectively.

As shown in Table 4, consistent with the results from Table 3, as more stages utilize dynamic
weight multi-scale feature fusion, the performance of MsfNet improves. When ‘stage=6’, except the
MsfNet AUC value of discriminate normal pathological images is lower than ResNet50 (0.9957 vs.
0.9979), the MsfNet50 AUC value of micro-average (0.9807 vs. 0.99740), macro-average (0.9778 vs.
0.9707), ccRCC1 (0.9811 vs. 0.9781), ccRCC2 (0.9521 vs. 0.9351), ccRCC3 (0.9818 vs. 0.9711) are better
than ResNet50. The result shows that fusing the multi-scale feature and reusing the shallow semantic
information is effective for MsfNet to achieve better performance than the baseline ResNet50.

Table 4: Comparison of the AUC values of ResNet50 and MsfNet with different structure

Method Micro Macro ccRCC1 ccRCC2 ccRCC3 Normal

ResNet50 (baseline) 0.9740 0.9707 0.9781 0.9351 0.9711 0.9979
MsfNet (stage=3) 0.9739 0.9735 0.9836 0.9449 0.9716 0.9934
MsfNet (stage=4) 0.9765 0.9725 0.9797 0.9428 0.9692 0.9976
MsfNet (stage=5) 0.97.66 0.9762 0.9811 0.9500 0.9794 0.9935
MsfNet (stage=6) 0.9807 0.9778 0.9811 0.9512 0.9818 0.9957

5.2 Visual Analysis

This study introduced Grad-CAM to intuitively observe the change in the region of interest (ROI)
of the improved model when outputting the predicted result of the input image. The Grad-CAM
[38] generates a coarse localization map by utilizing the gradient of a target concept flowing into the
final convolution layer, highlighting crucial regions in the image for concept prediction. Because the
classifier predicts the grade of the pathological image according to the morphology of cell nucleolus,
if the ROI of the network is more concentrated with the nuclear region, it can extract more useful
classification features and eliminate the interference of irrelevant regions.
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In Fig. 4, three types of pathological images of (a) mixed cancelation area and blank area, (d) all
are cancerous regions, and (g) all are normal regions to observe the changes of the concerned regions
of the ResNet50 and the improved network MsfNet, respectively. Figs. 4b, 4e and 4h are the Grad-
CAMs of the ResNet50 produced from images Figs. 4a, 4d, 4g, and Figs. 4c, 4f, 4i are the Grad-CAMs
of the MsfNet produced from images in Figs. 4a, 4d and 4g. Compared with ResNet50, the focus on
the feature area of MsfNet is more accurate, and the effect is significantly improved. The visualized
results show that the MsfNet can focus on more important areas in the pathological image patches to
predict ISUP grade. This can be explained by the fact of the weighted fusion of the multi-scale feature
map extract by different stages and reusing the shallow semantic information and the deep semantic
information.

Figure 4: Exemplified class activation maps. (a, d, g): Raw pathology images; (b, e, h): Grad-CAM
of ResNet50; (c, f, i): Grad-CAM of MsfNet. Red highlights the areas where the model focuses its
attention on the prediction, while dark blue areas signify regions with low attention

In Fig. 5, this study showed the t-SNE results of two methods: the left one uses raw test image
data directly, while the other one uses features extracted from test image data by the MsfNet. t-SNE is
a technique for visualizing high-dimensional data by reducing its dimensions, effectively revealing the
structure and patterns within the dataset [39]. As shown in Fig. 5a, we consider the intensity values of
each pixel as features of the data points and then the t-SNE algorithm was used to lower the dimensions
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of these high-dimensional features. The drawback of this approach is that the raw images contain a
large amount of redundant information and noise, which can affect the results of the t-SNE plot,
leading to a less clear distribution of data points in the low-dimensional space. Meanwhile, as shown
in Fig. 5b, we first employ MsfNet to extract features from the raw images, effectively capturing local
features and global structural information within the images. After processing through the MsfNet,
we obtain a set of more compact and expressive feature vectors. This study then applied the t-SNE
algorithm to decrease the dimensions of these feature vectors, and the brown dotted curves were
manually drawn onto the visualizations to mark the approximate border positions. Compared to using
raw image data directly, this method exhibits a clearer distribution of data points in the t-SNE plot,
better revealing the intrinsic structure and similarity within the dataset.

Figure 5: The t-SNE visualization results. (a) The t-SNE visualization of the raw dataset. (b) The t-SNE
visualization of the features extracted by MsfNet

Therefore, according to the comparison of these two methods, the t-SNE plot after extracting
features using MsfNet is more effective in revealing the structure and similarity information than
directly applying t-SNE on raw image data. This is mainly because the MsfNet can efficiently extract
key features from images, reducing the impact of noise and redundant information and resulting in a
clearer distribution of data points in the t-SNE plot.

5.3 Comparative with Other Networks

In the testing phase, this study evaluated the performance of our proposed model, MsfNet, against
several classic CNNs and vision transformer networks (ViT [40] and Swin-Transformer [41]). The
performance metrics for these networks are presented in Tables 5 and 6. For a balanced comparison,
all models were trained using the same dataset and evaluated under identical conditions.

In Table 5, the MsfNet outperforms all other networks with metrics of accuracy, precision, recall,
and F1-score. This suggests that MsfNet is highly effective in comparison to the classic CNNs and
vision transformer networks under the given experimental conditions. The superior performance of
MsfNet may be attributed to its unique architecture and design choices, which contribute to more
effective feature extraction and learning. Meanwhile, it can be seen from Table 6 that the AUC value
of our proposed model in the ROC curve is only slightly lower than ResNet50 (0.9957 vs. 0.9979) when
identifying normal and performs better than other networks in identifying other categories. Generally,
the proposed network outperforms other competitors under the AUC evaluation index. Subsequently,
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fusing the multi-scale feature map in the CNNs is a good trick to improve the performance of
the network. However, it is worth noting that ViT and Swin-Transformer performed less effectively
compared to other CNNs. This could be attributed to the fact that vision transformers rely more on
large-scale training datasets and global semantic information, while CNNs excel at exploiting local
critical details from the limited medical images available in this study.

Table 5: Comparison of the performance metrics (%) of different CNNs

Method Accuracy Precision Recall F1-score

ResNet50 85.28 86.17 84.47 84.89
ShuffleNet V2 77.14 77.41 74.50 75.70
DenseNet121 85.04 86.11 82.62 84.00
VGG16 84.46 84.65 84.21 84.42
ViT 73.94 76.59 70.53 71.17
Swin-Transformer 69.39 71.05 62.43 63.72
MsfNet (ours) 87.06 87.78 85.85 86.72

Table 6: Comparison of the AUC values of different CNNs

Method Micro Macro ccRCC1 ccRCC2 ccRCC3 Normal

ResNet50 0.9740 0.9707 0.9781 0.9351 0.9711 0.9979
ShuffleNet V2 0.9489 0.9398 0.9592 0.8548 0.9595 0.9850
DenseNet121 0.9733 0.9724 0.9761 0.9483 0.9710 0.9935
VGG16 0.9709 0.9655 0.9741 0.9348 0.9547 0.9976
ViT 0.9026 0.8982 0.9625 0.7577 0.9108 0.9613
Swin-Transformer 0.8807 0.8848 0.9523 0.8002 0.8538 0.9322
MsfNet (ours) 0.9807 0.9778 0.9811 0.9512 0.9818 0.9957

5.4 Comparative Analysis with Representative Studies

Finally, some representative studies on the assisted diagnosis of RCC in the past four years are
summarized in Table 7. Among these eight studies, four focus on CT images, while the other four
focus on histopathological images. These studies mainly employ radiomics and deep learning methods,
aiming to predict ISUP grading and histological subtypes of RCC. As illustrated in Table 7, radiomics
methods have achieved higher accuracy in predicting ISUP grading. The AUC values for [42–45] are
0.969, 0.875, 0.841, and 0.902 (training set)/0.940 (testing set), respectively. These results indicate that
radiomics methods can distinguish ISUP grading of RCC patients with high sensitivity and specificity.

At the same time, deep learning methods have obtained significant results in the analysis of
histopathological images. The accuracy of reference [11], reference [12] and ours are 98.4%, 93.0%,
and 87.06%, respectively. Additionally, the AUC of reference [46] and ours are 0.98 and 0.9807 (micro-
averaged)/0.9778 (macro-averaged), respectively. These achievements confirm the high accuracy and
reliability of deep learning methods in predicting histological subtypes and ISUP grading of renal cell
carcinoma.
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Table 7: Compare with the representative studies on the assisted diagnosis of RCC

Study Date Image
technology

Number
samples

Method Purpose Result

Moldovanu
et al. [42]

2020 CT 41 patients Radiomics ISUP Garde AUC = 0.969;
sensitivity = 90.0%,
specificity = 95.2%

Wang et al. [43] 2021 CT 90 patients Radiomics ISUP Garde AUC = 0.875,
sensitivity,
specificity, and
accuracy were
72.7%, 87.5%, and
81.5%.

Yu et al. [44] 2022 CT 156 patients Radiomics ISUP Garde AUC = 0.841
Gao et al. [45] 2023 CT 113 patients Radiomics ISUP Garde Train AUC = 0.940;

Test AUC = 0.902
Fenster-maker
et al. [11]

2020 Histopathology 42 patients Deep learning Fuhrman
Grade

Accuracy was
98.4%

Haeyeh et al. [12] 2022 Histopathology 52 WSIs Deep learning Histologic
subtype

Accuracy = 93.0%
± 4.9%, sensitivity
= 91.3% ± 10.7%

Zhu et al. [46] 2021 Histopathology 78 resection
slides, 79
biopsy slides

Deep learning Histologic
subtype

AUCs on the
internal resection
slides and internal
biopsy slides are
0.98 and 0.98

Ours 2023 Histopathology 90 patients Deep learning ISUP Garde 0.9807 and 0.9778
micro-averaged and
macro-averaged
AUC

Our study attains 0.9807 and 0.9778 micro-averaged and macro-averaged AUC. By employing
deep learning models for ccRCC grading, our research addresses a gap in the field. The results
demonstrate that our method exhibits high performance and accuracy in RCC auxiliary diagnosis,
particularly in predicting ISUP grading of ccRCC using histopathology images.

In summary, significant progress has been made in RCC auxiliary diagnosis research in the past 4
years. Radiomics and deep learning methods have played important roles in improving the prediction
accuracy of ISUP grading and histological subtypes for RCC patients.

6 Conclusion

In this study, a new deep framework MsfNet was introduced to predict the ISUP grade of ccRCC
through the pathological image. This is achieved by fusing multi-scale information and reusing the
shallow semantic information and the deep semantic information. We first trained the model on
the training set divided by patients and tested the performance of the MSFNet on the testing set
with independent patient data. The findings demonstrate that the proposed MSFNet can classify the
ISUP grade of ccRCC with greater accuracy and better than other classification networks. In the
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future, we will further optimize our approach to enable prediction at the WSI level. Additionally, we
plan to enhance the model’s capabilities by accurately identifying subtypes of RCC and achieving
precise grading for different subtypes. Lastly, we envision the application of real-time computer-aided
diagnosis in clinics, which can significantly save time for doctors and reduce missed detections.

Acknowledgement: Thanks for reviewers and editors for providing suggestions during review process.

Funding Statement: This research was supported by the Scientific Research and Innovation Team of
Hebei University (IT2023B07), the Natural Science Foundation of Hebei Province (F2023201069), the
Postgraduate’s Innovation Fund Project of Hebei University (HBU2024BS021).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: K. Yang, S. Chang, L. Xue; data collection: Y. Wang, M. Wang, H. Yang; analysis and
interpretation of results: K. Yang, S. Chang, S. Liu; draft manuscript preparation: S. Chang, K. Liu,
L. Xue. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data will be available on suitable request from corresponding
author.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. Fitzmaurice, C. Allen, R. M. Barber, L. Barregard, Z. A. Bhutta et al., “Global, regional, and national

cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years
for 32 cancer groups, 1990 to 2015,” JAMA Oncology, vol. 3, no. 4, pp. 524–528, 2017.

[2] J. J. Patard, N. Rioux-Leclercq, F. Guille, L. Cindolo, V. Ficarra et al., “682The prognostic value of
histologic subtypes in renal cell carcinoma. A multicenter experience in 4063 patients,” European Urology
Supplements, vol. 4, no. 3, pp. 173, 2005.

[3] L. Flegar, C. Groeben, R. Koch, M. Baunacke, A. Borkowetz et al., “Trends in renal tumor surgery in
the united states and germany between 2006 and 2014: Organ preservation rate is improving,” Annals of
Surgical Oncology, vol. 27, no. 6, pp. 1920–1928, 2020.

[4] M. Liu, L. Hu, Y. Tang, C. Wang, Y. He et al., “A deep learning method for breast cancer classification in
the pathology images,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 10, pp. 5025–5032,
2022.

[5] H. A. Abdeltawab, F. A. Khalifa, M. A. Ghazal, L. Cheng, A. S. El-Baz et al., “A deep learning frame-
work for automated classification of histopathological kidney whole-slide images,” Journal of Pathology
Informatics, vol. 13, pp. 100093, 2022.

[6] W. Xie, N. P. Reder, C. Koyuncu, P. Leo, S. Hawley et al., “Prostate cancer risk stratification via
nondestructive 3D pathology with deep learning—assisted gland analysis,” Cancer Research, vol. 82, no. 2,
pp. 334–345, 2022.

[7] W. Ba, S. Wang, M. Shang, Z. Zhang, H. Wu et al., “Assessment of deep learning assistance for the
pathological diagnosis of gastric cancer,” Modern Pathology, vol. 35, no. 9, pp. 1262–1268, 2022.

[8] S. J. Byeon, J. Park, Y. A. Cho and B. J. Cho, “Automated histological classification for digital pathology
images of colonoscopy specimen via deep learning,” Scientific Reports, vol. 12, no. 1, pp. 12804, 2022.

[9] E. Ivanova, A. Fayzullin, V. Grinin, D. Ermilov, A. Arutyunyan et al., “Empowering renal cancer
management with AI and digital pathology: Pathology, diagnostics and prognosis,” Biomedicines, vol. 11,
no. 11, pp. 2875, 2023.



CMC, 2024, vol.78, no.1 409

[10] Q. Zheng, R. Yang, H. Xu, J. Fan, P. Jiao et al., “A weakly supervised deep learning model and human-
machine fusion for accurate grading of renal cell carcinoma from histopathology slides,” Cancers, vol. 15,
no. 12, pp. 3198, 2023.

[11] M. Fenstermaker, S. A. Tomlins, K. Singh, J. Wiens and T. M. Morgan, “Development and validation of a
deep-learning model to assist with renal cell carcinoma histopathologic interpretation,” Urology, vol. 144,
pp. 152–157, 2020.

[12] Y. A. Haeyeh, M. Ghazal, A. El-Baz and I. M. Talaat, “Development and evaluation of a novel deep-
learning-based framework for the classification of renal histopathology images,” Bioengineering, vol. 9, no.
9, pp. 423, 2022.

[13] F. Wessels, M. Schmitt, E. Krieghoff-Henning, J. N. Kather, M. Nientiedt et al., “Trends in renal tumor
surgery in the United States and Germany between 2006 and 2014: Organ preservation rate is improving,”
PLoS One, vol. 17, no. 8, pp. e0272656, 2022.

[14] B. Delahunt, J. N. Eble, L. Egevad and H. Samaratunga, “Grading of renal cell carcinoma,”Histopathology,
vol. 74, no. 1, pp. 4–17, 2019.

[15] P. A. Humphrey, H. Moch, A. L. Cubilla, T. M. Ulbright and V. E. Reuter, “The 2016 WHO classification of
tumours of the urinary system and male genital organs—Part B: Prostate and bladder tumours,” European
Urology, vol. 70, no. 1, pp. 106–119, 2016.

[16] Y. Wu, M. Cheng, S. Huang, Z. Pei, Y. Zuo et al., “Recent advances of deep learning for computational
histopathology: Principles and applications,” Cancers, vol. 14, no. 5, pp. 1199, 2022.

[17] R. Moncayo, D. Romo-Bucheli and E. Romero, “A grading strategy for nuclear pleomorphism in
histopathological breast cancer images using a bag of features (BOF),” in 20th Iberoamerican Congress,
pp. 75–82, Montevideo, MV, Uruguay: Springer, 2015.

[18] S. Rathore, T. Niazi, M. A. Iftikhar and A. Chaddad, “Glioma grading via analysis of digital pathology
images using machine learning,” Cancers, vol. 12, no. 3, pp. 578, 2020.

[19] M. Kruk, J. Kurek, S. Osowski, R. Koktysz, B. Swiderski et al., “Ensemble of classifiers and wavelet
transformation for improved recognition of Fuhrman grading in clear-cell renal carcinoma,”Biocybernetics
and Biomedical Engineering, vol. 37, no. 3, pp. 357–364, 2017.

[20] P. A. Humphrey, H. Moch, A. L. Cubilla, T. M. Ulbright and V. E. Reuter, “Prediction of early recurrence
of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning,”
Modern Pathology, vol. 34, no. 2, pp. 417–425, 2021.

[21] B. Gecer, S. Aksoy, E. Mercan, L. G. Shapiro, D. L. Weaver et al., “Detection and classification of cancer
in whole slide breast histopathology images using deep convolutional networks,” Pattern Recognition, vol.
84, pp. 345–356, 2018.

[22] S. M. Thomas, J. G. Lefevre, G. Baxter and N. A. Hamilton, “Interpretable deep learning systems for multi-
class segmentation and classification of non-melanoma skin cancer,” Medical Image Analysis, vol. 68, pp.
101915, 2021.

[23] Y. S. Lin, P. H. Huang and Y. Chen, “Deep learning-based hepatocellular carcinoma histopathology image
classification: Accuracy vs. training dataset size,” IEEE Access, vol. 9, pp. 33144–33157, 2021.

[24] M. I. Jaber, L. Beziaeva, C. W. Szeto and S. C. Benz, “Deep learning-based risk stratification for HER2-
negative breast cancer patients,” bioRxiv, vol. 8, pp. 1–16, 2021.

[25] F. Wessels, M. Schmitt, E. Krieghoff-Henning, M. Nientiedt, F. Waldbiling et al., “A self-supervised vision
transformer to predict survival from histopathology in renal cell carcinoma,” World Journal of Urology,
vol. 41, pp. 2233–2241, 2023.

[26] X. Sun, W. Li, B. Fu, Y. Peng, J. He et al., “TGMIL: A hybrid multi-instance learning model based on the
transformer and the graph attention network for whole-slide images classification of renal cell carcinoma,”
Computer Methods and Programs in Biomedicine, vol. 242, pp. 107789, 2023.

[27] Y. Guo, D. Yang, Y. Zhang, L. Wang and K. Wang, “Online estimation of SOH for lithium-ion battery
based on SSA-elman neural network,” Protection and Control of Modern Power Systems, vol. 7, no. 1, pp.
40, 2022.



410 CMC, 2024, vol.78, no.1

[28] M. Zhang, W. Wang, G. Xia, L. Wang and K. Wang, “Self-powered electronic skin for remote human-
machine synchronization,” ACS Applied Electronic Materials, vol. 5, no. 1, pp. 498–508, 2023.

[29] J. Escorcia-Gutierrez, R. Soto-Diaz, N. Madera, C. Soto, F. Burgos-Florez et al., “Computer-aided
diagnosis for tuberculosis classification with water strider optimization algorithm,” Computer Systems
Science and Engineering, vol. 46, no. 2, pp. 1337–1353, 2023.

[30] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, “A survey of convolutional neural networks: Analysis,
applications, and prospects,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no.
12, pp. 6999–7019, 2022.

[31] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition,”
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[32] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet classification with deep convolutional neural
networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[34] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016.

[35] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-decoder with atrous separable
convolution for semantic image segmentation,” in Proc. of the European Conf. on Computer Vision (ECCV),
Munich, Germany, pp. 833–851, 2018.

[36] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of
Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[37] K. Weiss, T. M. Khoshgoftaar and D. Wang, “A survey of transfer learning,” Journal of Big Data, vol. 3,
no. 1, pp. 1–40, 2016.

[38] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh et al., “Grad-CAM: Visual explanations
from deep networks via gradient-based localization,” International Journal of Computer Vision, vol. 128,
no. 2, pp. 336–359, 2020.

[39] G. Andrej, S. Alexander and H. Barbara, “Parametric nonlinear dimensionality reduction using kernel
t-SNE,” Neurocomputing, vol. 147, no. 3, pp. 71–82, 2015.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai et al., “An image is worth 16 × 16 words:
Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[41] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” arXiv preprint arXiv:2103.14030, 2021.

[42] C. G. Moldovanu, B. Petresc, A. Lebovici, A. Tamas-Szora, P. Medan et al., “Computed tomography
texture analysis features in clear cell renal carcinomas-assessment for prediction ISUP grading,” in
European Congress of Radiology-ECR 2020. Vienna, VN, Austria: EPOS, pp. C-10149, 2020.

[43] X. Wang, G. Song, P. Pang, Z. Wang, L. Zheng et al., “A preliminary study of radiomics in predicting
WHO/ISUP grading of clear cell renal cell carcinoma based on unenhanced CT texture analysis,” Chinese
Journal of Radiology, vol. 12, no. 1005–1201, pp. 176–281, 2021.

[44] R. Yu, W. Liu, Y. Song, J. Zhang, X. Liu et al., “Identification of ISUP grade of clear cell renal cell
carcinoma by radiomics on multi-phase CT images,” Chinese Journal of Academic Radiology, vol. 5, no.
1, pp. 37–46, 2022.

[45] Y. Gao, X. Wang, X. Zhao, C. Zhu, C. Li et al., “Multiphase CT radiomics nomogram for preoperatively
predicting the WHO/ISUP nuclear grade of small (< 4 cm) clear cell renal cell carcinoma,” [Online].
Available: https://www.researchsquare.com/article/rs-2612246/v1 (accessed on 10/02/2023)

[46] M. Zhu, B. Ren, R. Richards, M. Suriawinata, N. Tomita et al., “Development and evaluation of a deep
neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides,”
Scientific Reports, vol. 11, no. 1, pp. 1–9, 2021.

https://www.researchsquare.com/article/rs-2612246/v1

	Using MsfNet to Predict the ISUP Grade of Renal Clear Cell Carcinoma in Digital Pathology Images
	1 Introduction
	2 Related Work
	3 Methods
	4 Experiment
	5 Results and Discussions
	6 Conclusion
	References


