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ABSTRACT

In rice production, the prevention and management of pests and diseases have always received special attention.
Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the
structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep
learning technology has been employed to detect and identify rice diseases and pests. This paper introduces
common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of
image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods
according to the network structure differences; and compares the performances of existing studies. Finally, the
current issues and challenges are explored from the perspective of data acquisition, data processing, and application,
providing possible solutions and suggestions. This study aims to review various DL models and provide improved
insight into DL techniques and their cutting-edge progress in the prevention and management of rice diseases and
pests.
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1 Introduction

As one of the most widely cultivated staple foods, rice is prone to pests and diseases, which cannot
be easily detected in the early stage. Traditionally, artificial and machine recognition methods have
been employed for rice diseases and pests. Artificial recognition relies on a high professional level
and rich experience, wherein people observe and perform classification with their own eyes. However,
when large-scale pests and diseases are discovered, they cannot be dealt with promptly, resulting in
severe economic losses. In contrast, machine recognition methods usually adopt traditional image
recognition methods, such as support vector machine (SVM) [1], artificial neural networks [2], genetic
algorithm [3], K-means clustering algorithm [4] and k-nearest neighbor [5]. These methods have some
limitations, for example, determining similar features in different lighting conditions is challenging. In
current research and industry, more precise efficiency, accuracy and application scenarios are required.
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Additionally, the detection samples of rice pests are acquired by way of expelling or trapping with
insecticidal lamps in the field and then using statistical methods to estimate the number of pests;
however, the accuracy and real-time performance of these methods are lacking, which is unconducive
for realizing rapid pest control. Moreover, in the real-world environment, the detection and recognition
of pests and diseases are influenced by factors such as lighting conditions, disease stages, regional
distribution, and feature colors. Thus, the traditional methods do not exhibit good performances. In
terms of rice diseases, the onset symptoms are apparent and exhibit regional characteristics, leading
studies to focus on identifying individual crop diseases and conducting regional disease detection and
warning. The field sampling and collection of pests for detection and recognition are concerns due to
the migration and concealment of field pests.

Recently, deep learning (DL) technology has been rapidly developed for image recognition and
detection, such as face recognition [6,7], object detection [8,9], image segmentation [10,11], and image
translation [12,13]. Furthermore, numerous DL methods have been employed to detect and recognize
rice diseases and pests. In practical production, researchers have explored appropriate model design
theorems [14,15], combining hardware and software methods, to improve accuracy and reduce time
costs. The utilization of DL for detecting rice diseases and pests not only holds considerable academic
research significance but also provides a wide range of potential market applications. Survey showed
that relevant studies mainly focused on crop diseases and pests, and the prevention and treatment of
diseases and pests in rice, as one of the world’s highest producing crops, during the production process
has been focused on. Recently, DL technology has exhibited excellent performance in rice pests and
diseases research, but the reviews of the work in this field are lacking and existing reviews do not reflect
the latest relevant research [16–18]. Thus, this study aims to comprehensively review the applications
of DL in rice diseases and pests to provide guidance to scholars.

The rest of paper mainly focused on, introducing publicly available datasets and data preprocess-
ing methods in Section 2. Moreover, the DL-based detection and recognition methods for rice diseases
and pests are reviewed in Section 3; the detection and recognition performance of existing DL models
are compared and analyzed in Section 4; and the challenges and future ideas are explored in Section 5.
Finally, the entire research on rice diseases and pests is summarized.

2 Rice Plant Disease and Pest Datasets

Three data sources exist for agriculture: self-collected, network-collected, and public datasets [19].
The images are generally captured by drone aerial camera, mobile phone, digital camera, etc. Alterna-
tively, sensors and photosensitive devices obtain spectral and infrared image data. Thus far, compared
to the datasets in computer vision, such as ImageNet, COCO, and PASCAL-VOC2007/2012, fewer
public datasets of rice diseases and pests exists. Table 1 lists some pest and disease datasets in the
agricultural field, and Table 2 presents the crop types corresponding to the datasets.

Table 1: The list of pest and disease datasets

Reference Datasets Image size Crop species Categories Task Link

[20] PlantVillage 61486 14 39 Plant disease
classification

https://data.
mendeley.com/
datasets/
tywbtsjrjv/1

(Continued)

https://data.mendeley.com/datasets/tywbtsjrjv/1
https://data.mendeley.com/datasets/tywbtsjrjv/1
https://data.mendeley.com/datasets/tywbtsjrjv/1
https://data.mendeley.com/datasets/tywbtsjrjv/1
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Table 1 (continued)

Reference Datasets Image size Crop species Categories Task Link

[21] IP102 75000 8 102 Insect pest
classification
and detection

https://github.com/
xpwu95/IP102

[22] AI Challenger
2018

36261 10 61 Plant disease
classification

https://github.com/
JinbaoSite/plants_
disease_detection

[23] PlantDoc 2598 13 27 Plant disease
detection

https://github.com/
pratikkayal/
PlantDoc-Object-
Detection-Dataset

[24] Rice leaf
diseases data
set

120 1 3 Rice disease
classification

https://archive.ics.
uci.edu/ml/datasets/
Rice+Leaf+
Diseases

[25] Rice leaf
disease image

5932 1 4 Rice disease
classification

https://data.
mendeley.com/
datasets/fwcj7stb8
r/1

[26] IDADP Over 50000 11 52 Crop disease
recognition

http://www.
icgroupcas.cn/
website_bchtk/
index.html

[27] RPDID 18391 1 51 Rice disease
and pest
classification

Non-public

[28] PDDB 2326 21 171 Plant pest
classification
and detection

https://www.
digipathos-rep.
cnptia.embrapa.br/

[29] IP41 46567 4 41 Crop pest
recognition

https://gitee.com/
chenkeyu333/
biyelunwen

[30] ICAR-
NBAIR

Dynamically
updated

Dynamically
updated

Dynamically
updated

Plant pest
classification

https://databases.
nbair.res.in/
insectpests/
pestsearch.php?
cropname=Rice

[31] Paddy doctor 16225 1 13 Rice disease
classification

https://paddydoc.
github.io/

[32] IP_RicePests 8248 1 14 Rice pest
classification

Non-public

[33] Pest24 25378 N/A1 24 Agricultural
pest detection

Non-public

(Continued)

1Pest24 is classified according to the order Insect.

https://github.com/xpwu95/IP102
https://github.com/xpwu95/IP102
https://github.com/JinbaoSite/plants_disease_detection
https://github.com/JinbaoSite/plants_disease_detection
https://github.com/JinbaoSite/plants_disease_detection
https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset
https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset
https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset
https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://data.mendeley.com/datasets/fwcj7stb8r/1
https://data.mendeley.com/datasets/fwcj7stb8r/1
https://data.mendeley.com/datasets/fwcj7stb8r/1
https://data.mendeley.com/datasets/fwcj7stb8r/1
http://www.icgroupcas.cn/website_bchtk/index.html
http://www.icgroupcas.cn/website_bchtk/index.html
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http://www.icgroupcas.cn/website_bchtk/index.html
https://www.digipathos-rep.cnptia.embrapa.br/
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https://databases.nbair.res.in/insectpests/pestsearch.php?cropname=Rice
https://databases.nbair.res.in/insectpests/pestsearch.php?cropname=Rice
https://databases.nbair.res.in/insectpests/pestsearch.php?cropname=Rice
https://databases.nbair.res.in/insectpests/pestsearch.php?cropname=Rice
https://paddydoc.github.io/
https://paddydoc.github.io/
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Table 1 (continued)

Reference Datasets Image size Crop species Categories Task Link

[34] AgriPest 49707 4 14 Plant pest
detection

https://drive.google.
com/drive/folders/1
yhncjl9zFZLmnAB
nzIpoFuIaIgskTVu
t?usp=sharing

Table 2: The comprehensive crop types and features of datasets

Datasets Crop species Features

PlantVillage Apple, Blueberry, Cherry, Corn,
Grape, Orange, Peach, Pepper,
Potato, Raspberry, Soybean,
Squash, Strawberry, Tomato

The dataset was recorded on the website
www.plantvillage.org and comprises
sufficient samples. The dataset was
evaluated using Deep convolution neural
network(CNN) and achieved the highest
validation accuracy of 96.46%

IP102 Alfalfa, Beet, Corn, Citrus,
Rice, Mange, Vitis, Wheat

The dataset was obtained from the field
and contains sufficient samples but some
are of low quality. The dataset was
evaluated by ResNet and achieved the
highest accuracy of 49.4%

AI Challenger 2018 Apple, Cherry, Corn, Grape,
Orange, Peach, Pepper, Potato,
Strawberry, Tomato

The dataset was classified by
species–disease–degree but cross-labeling
problem exists. The dataset was evaluated
by ResNet with transfer learning and
achieved the average accuracy of 88.65%

PlantDoc Apple, Bell Pepper, Blueberry,
Cherry, Corn, Grape, Peach,
Potato, Raspberry, Soyabean,
Squash, Strawberry, Tomato

The dataset comprises 300 human hours
of effort in annotating internet scraped
images but wrongly classified images are
present. The dataset was evaluated by
Faster R-CNN and achieved the best
accuracy of 38.9%

Rice leaf diseases data set Rice The dataset was obtained from the field
but the original samples are not sufficient,
and thus, it is difficult to obtain high
accuracy with DL methods. The dataset
was evaluated by SVM and achieved the
best accuracy of 93.33%

Rice leaf disease image Rice The dataset was evenly obtained from the
field and data. It was evaluated by 13
classification models and achieved the best
accuracy of 98.38% in ResNet50 + SVM

(Continued)

https://drive.google.com/drive/folders/1yhncjl9zFZLmnABnzIpoFuIaIgskTVut?usp\protect $\relax =$sharing
www.plantvillage.org
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Table 2 (continued)
Datasets Crop species Features

IDADP Field crops such as rice and
wheat, fruits and vegetables
such as cucumber and grape,
etc.

The dataset comprises data from the fields
or greenhouses with complex
backgrounds in actual cultivation
environments and some data from
PlantVillage. The recognition accuracy of
the complex background test set on
ResNet50 reached 89%

RPDID Rice The data is unevenly distributed and
protected by copyright. The dataset was
evaluated by convolutional rebalancing
network and achieved the accuracy of
97.58%

PDDB Piper nigrum, Phaseolus
vulgaris, Anacardium
occidentale, Manihot esculenta,
Citrus spp, Zea mays, Cocos
nucifera, Coffea arabica, Vitis
vinifera, Gossypium hirsutum,
Glycine max, Brassica oleracea,
Cucumis melo L, Theobroma
grandiflorum, Oryza sativa,
Elaeis Guineensis, Saccharum
officinarum, Triticum aestivum,
Passiflora edulis, Carica
papaya, Ananas comosus

Although the original data size is
considerable, it is not sufficient for DL
methods. According to certain criteria, the
data are subdivided into smaller and more
homogeneous sub-images. It can be used
freely in the academic context

IP41 Trunk-boring pests,
Underground pests, Piercing
and Sucking pests, Defoliators

The data from field and search engine
with sufficient samples. It has the largest
average sample size and a low imbalance
rate. The dataset was evaluated by
Inception-V3 and achieved the maximum
recognition accuracy of 87%

ICAR-NBAIR Rice, Maize, Ragi, Sugarcane,
Pigeonpea, Chickpea,
Green&black gram, Horse
gram, Cowpea,Soybean, Field
bean, Gingelly, Castor,
Groundnut, Sunflower,
Safflower, Cotton, Sunhemp

The dataset comprises data from the
Indian agroecosystems and is essentially a
knowledge source. It achieved 26.68% of
mean average precision(mAP) in 3-shots
and 33.43% of mAP in 5-shots

Paddy doctor Rice The dataset comprises data from the field
and data of the variety and age of paddy
crops with sufficient samples. It was
evaluated by ResNet34 and achieved the
best accuracy of 97.5%

(Continued)
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Table 2 (continued)
Datasets Crop species Features

IP_RicePests Rice The dataset is based on IP102 and uses
data augmentation technique to expand
samples. It was evaluated by VGG16 with
fine-tuning and achieved the best accuracy
of 84.39%

Pest24 Coleoptera, Homoptera,
Hemiptera,Orthoptera,
Lepidoptera

The dataset typically comprises large-scale
multi-pest image data, very small object
scales, high object similarity, and dense
pest distribution. It was evaluated by
Yolov3 and achieved the highest mAP of
63.54%

AgriPest Corn, Rape, Rice, Wheat The dataset is a domain-specific
benchmark dataset in tiny wild pest
recognition and detection but the data is
imbalanced. It was evaluated by Faster
R-CNN and achieved the best results in
both MAE and MSE of 49.4% and 79.7%,
respectively

Crop pest and disease datasets collected in natural environments are highly practical. The IP102
dataset is taken as an example. It contains 14 kinds of rice pests in a total of 8417 samples; the number
distribution is shown in Table 3, and the plot of each pest is shown in Fig. 1. The table and figure show
that the most common pests are the Rice Leaf Roller and Asiatic Rice Borer. Moreover, the rarest pests
are the Paddy Stem Maggot and Grain Spreader Thrips, which is related to the situations that may
be encountered in actual rice production. Therefore, the training accuracy of a DL model for samples
with a non-uniform distribution needs to be ensured. The sample size of publicly available datasets
on rice diseases and pests is very scarce, and the image resolution needs to be improved. However,
DL methods are data-driven, and insufficient data will lead to overfitting during network training.
Therefore, more high-resolution image samples need to be obtained and high-quality training samples
need to be generated using the limited raw data, which has become an urgent problem that needs to
be solved.

Table 3: The sample distribution of the IP102 Dataset

Category Name of pests Number of images

0 Rice Leaf Roller 1115
1 Rice Leaf Caterpillar 487
2 Paddy Stem Maggot 261
3 Asiatic Rice Borer 1053
4 Yellow Rice Borer 504
5 Rice Gall Midge 506
6 Rice Stemfly 369

(Continued)
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Table 3 (continued)

Category Name of pests Number of images

7 Brown Plant Hopper 834
8 White Backed Plant 893
9 Small Brown Plant 553
10 Rice Water Weevil 856
11 Rice Leaf Hopper 404
12 Grain Spreader Thrips 173
13 Rice Shell Pest 409

Figure 1: Illustration of samples in IP02

In addition to capturing more samples with specialized equipment, one processing method is the
expansion of existing samples, which is known as data augmentation. When the amount of raw sample
is small in a DL task, new images can be generated by techniques such as flip, rotation, scale, cropping,
shift, Gaussian noise, and contrast changes. Recently, methods such as generative adversarial networks
[35,36], sample matching [37], counterfactual reasoning [38,39], and automatic augmentation [40] have
emerged that can effectively solve the problem of insufficient training samples, and thereby, the pest
and disease datasets can be expanded. As an example, the data of the ESRGAN network is enhanced
[41], as shown in Fig. 2. Fig. 3 provides some examples of the data augmentation of rice diseases and
pests.

3 The Application of Deep Learning in Detection and Recognition of Rice Diseases and Pests

This section mainly reviews DL-based detection techniques for rice diseases and pests. Compared
to computer vision tasks, DL methods perform the detection of rice diseases and pests by extracting
features using different model designs. Based on the structure of different networks, the research
can be divided into four categories: image classification networks, image detection networks, image
segmentation networks, and networks integrating attention mechanisms. Additionally, an overview of
meta-learning methods in the context of detecting and recognizing rice diseases and pests is provided.
Fig. 4 shows the framework of the method for detecting and identifying rice diseases and pests based
on deep learning.
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Figure 2: The framework of ESRGAN

Figure 3: Data augmentation of rice pest images

Methods for detecting and 
identifying rice pests and diseases

Based on deep learning

Based on meta learning

Image classfication network

Image detection network

Image segmentation network

Fusion attention network

Few-shot network

Figure 4: The overall of detecting and identifying rice diseases and pests based on deep learning

3.1 Image Classification Network

Image classification involves classifying image categories. It includes image preprocessing, feature
extraction, and classifier design. Image classification methods based on DL autonomously learn
features from training samples through neural networks, extracting high-dimensional and abstract
features closely related to the classifier, making it an end-to-end method. Owing to convolution neural
networks (CNNs) such as AlexNet [42], VGGNet [43], GoogleNet [44], ResNet [45], DenseNet [46],
MobileNet [47], ShuffleNet [48], and EfficientNet [49], CNNs have become the most commonly
employed method for feature extraction with rice disease images. Most existing studies employed the
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above classic networks as the classification network for images of rice diseases and pests, and some
design network structures are based on practical problems. The basic structure of the classification
recognition model is shown in Fig. 5. When an image to be recognized is inputted into the network,
the training network model returns the classification label corresponding to the image.

Figure 5: The structure of recognition model based on CNN

For the design of the rice pest recognition network, Yang et al. [50] utilized the transfer learning
method. They employed the VGG16 pre-training model and identified six rice pests, including rice
leaf borer, rice planthopper, dichemical borer, trichemical borer, rice locust, and rice weevil. Their
accuracy rate was 99.05%. Zeng et al. [51] used ERSGAN to enhance the rice image data, solving the
issues of low resolution and low information. Furthermore, they proposed a model called SCResNet
based on the ResNet and applied it to the mobile end. Their accuracy for seven rice pest identification
tasks reached 91.2%. Bao et al. designed a lightweight residual network-based method for identifying
rice pests in natural scenes, named LW-ResNet [52], which focuses on rice pests in natural scenes. The
model effectively extracted the deep global features of rice pest images by increasing the convolutional
layers and branches to improve the residual block. They designed a lightweight attention submodule
to focus on local discriminative features of pests. LW-ResNet achieved recognition accuracy of 92.5%
on the test dataset of 13 rice pest images.

Especially, to solve the problem of DL models in mobile deployment and resource-constrained
environments, various lightweight network architectures have been proposed, such as deep separable
convolution and group convolution, representing models comprise MobileNet, ShuffleNet, Efficient-
Net, etc. Figs. 6 and 7 display the basic structures of ShuffleNet and EfficientNet, respectively.
ShuffleNet achieves high efficiency by employing channel shuffling, group convolution, bottleneck
building blocks, and multiple shuffle units. Different versions are available to strike a balance between
performance and model complexity [53]. EfficientNet accomplishes performance improvement by
compound scaling, efficient building blocks, and model variants for different needs. It has become
a popular choice for transfer learning in computer vision tasks. In rice pest identification and
detection tasks, Chen proposed a novel network architecture named Mobile-Atten [54], which employs
MobileNet-V2 as the backbone and has an attention mechanism for learning the importance of inter-
channel relationships. Mobile-Atten has been tested on a rice disease dataset captured from real-life
agricultural fields and online sources. It achieved 98.48% accuracy in terms of rice plant disease
identification under complicated backdrop conditions. To improve the rice disease classification
accuracy, Zhou proposed a novel DL model called GE-ShuffleNet [55], which is easier to deploy with
fewer Params and smaller model size compared to other models, such as ShuffleNet V2 [53], AlexNet,
and VGGNet. Experiments on four rice leaf diseases showed that the identification accuracy of GE-
ShuffleNet reached 96.65%. Furthermore, Nguyen et al. provided a new dataset of rice leaf diseases
[56], which contains 13106 rice leaf images, including 7 common diseases. They used the RMSprop
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and Adam optimization algorithms with the EfficientNet-B4 model to evaluate the dataset, achieving
the highest classification accuracy of 89%.

Figure 6: The basic unit structure ShuffleNet

Figure 7: The basic unit structure of EfficientNet

In summary, the methods based on image classification networks are widely used. They identify
rice diseases and pests by categorizing entire images into predefined classes, such as “healthy rice”
or “rice with diseases/pests”. These networks are trained on labeled datasets, where each image is
associated with a specific class label. During inference, the models analyze a given image and assign it
to the most likely class based on learned patterns and features. The strengths of image classification
networks include simplicity, efficiency, and ease of training, which makes them suitable for tasks where
a binary or multi-class decision is sufficient. However, their primary limitation is their inability to
provide detailed spatial information. They cannot pinpoint the exact location or extent of diseases or
pests within an image, limiting their usefulness in precision agriculture applications that require precise
localization for targeted interventions. Additionally, they struggle with images containing multiple
issues or overlapping instances of diseases and pests as they assign a single label to an entire image.
Table 4 summarizes some commonly used models for detecting rice leaf diseases and pests.

Table 4: Application of image classification network in rice diseases and pests

Reference Proposed Model Method Image source Categories Original image Enhanced image Accuracy Task

[50] VGG_N VGG Field and internet 6 686 6860 99.05% Pest
[51] SCResNet ResNet Field 7 630 2310 91.20% Pest
[52] LW-ResNet ResNet Field 13 1413 4872 92.50% Pest
[54] Mobile-Atten MobileNet V2 Field and internet 12 1100 N/A 98.48% Leaf
[55] GE-ShuffleNet ShuffleNet Publicly available 4 1068 5163 96.60% Leaf
[56] Improved EfficientNet EfficientNet B4 Kaggle and github 8 13106 N/A 89.00% Leaf
[57] AlexNet_n AlexNet Field and internet 4 461 4610 98.92% Pest
[58] VGG-DS VGG Field 9 1426 N/A 93.66% leaf
[59] RE-GoogLeNet GoogleNet Field and Kaggle 8 1122 9600 99.58% leaf
[60] GAN-MSDB-ResNet ResNet Field 4 5932 20000 99.34% Leaf
[61] AB-SE-DenseNet DenseNet Publicly available 5 1353 4235 99.4% Leaf
[62] INC-VGGN VGG + Inception Laboratory 5(rice) 500(rice) N/A 92.00% Leaf
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3.2 Object Detection Network

DL-based methods are used to determine the area and category of a target. Recently, many seminal
target detection algorithms have been proposed. One type is the R-CNN algorithms represented by
Faster-RCNN [63] and Cascade-RCNN [64], which usually first extract the target candidate boxed area
and then regress and classify the candidate area. These methods require two steps to obtain the final
detection results and are hence called two-stage algorithms. Another type uses YOLO [65,66], single
shot multibox detector (SSD) [67], RetinaNet [68] and other one-stage algorithms to directly regress
the detection frame of the target. Although the accuracy of such methods is lower than that of the
two-stage algorithms, the detection speed is fast. In contrast, anchor-free algorithms, like CenterNet
[69] and CornerNet [70], transform the regression of target-detection-anchor to a key-point detection
problem. Simultaneously, such algorithms also bring new thinking directions, representing the trend
of mutual reference between object detection and other machine learning fields. Detection algorithms
of rice diseases and pests based on DL provide excellent technical support in the research on pest and
disease detection in rice production. Table 5 illustrates the applications of object detection networks
for rice diseases and pests.

Table 5: Application of object detection network in rice diseases and pests

Reference Proposed model Method Image
source

Categories Original image Enhanced
image

Accuracy
(mAP)

Task

[71] Improved SSD SSD Field and
internet

5 1928 11568 79.3% Pest

[72] Improved RetinaNet RetinaNet Field 2 3012 12048 93.76% Pest
[73] N/A Yolov4 tiny Field and

laboratory
3 N/A 762 97.36% Leaf

[74] N/A Yolov5 Field 4 400 N/A 62% Leaf
[75] N/A Yolov5 Field 5 1500 N/A 76% Leaf
[76] Simple CNN VGG16 Field 9 1426 N/A 94.33% Leaf
[77] RiceNet YoloX and

Siamese network
Field 4 200 626 95.58% Leaf

[78] Improved Cascaded
R-CNN

Cascaded
R-CNN

Field and
internet

5 1343 N/A 94.15% Pest

[79] Improved Faster-
RCNN

Faster-RCNN Field and
publicly
available

4 2400 16800 N/A Leaf

[80] Improved CornerNet CornerNet Field 2 2876 11504 N/A Pest
[81] Improved CenterNet CenterNet Field 3 1448 1532 87.1% Pest

For the detection on rice diseases and pests in one stage, She et al. [71] proposed using feature
pyramids to improve the SSD multi-scale feature map, improving the recognition rate and providing
better convergence for small targets. They improved the recognition rate and detection speed of five
types of pests: Chilo suppressalis, stem borer, rice planthopper, rice locust, and diamond. Yao et al. [72]
improved RetinaNet by normalizing and optimizing the FPN structure, identifying the damage status
of rice leaf roller and stem borer, with an average detection accuracy reaching 93.76%, which is better
than the results of feature extraction networks using VGG and ResnetNet101. One study [73] proposed
a smart mobile-phone automated system to detect rice leaf diseases. The system is based on the Yolov4
model and is mainly applicable for brown spots, leaf blasts, and hispa, with a recognition efficiency
of 97.36%. The system can push suitable governance plans to farmers. References [74,75] innovatively
employed Yolov5 for rice leaf disease recognition and constructed a detection system, yielding good
recognition results in model accuracy, recall rate, and mAP. Fig. 8 displays the one-stage model.
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Figure 8: The model structure of one-stage

For two-stage rice diseases and pest, Rahman et al. [76] proposed a two-stage small-scale CNN
model for rice disease detection focusing on model size issues. They tested the model on 1426 images
of rice diseases and pests collected from the paddy fields of Bangladesh Rice Research Institute and
achieved an accuracy of 93.3%. A two-stage method called RiceNet [77] was proposed to identify four
important rice diseases: rice panicle neck blast, rice false smut, rice leaf blast, and rice stem blast. In the
first phase of RiceNet, the YoloX algorithm detects the rice leaf disease to reconstruct the dataset. In
the second phase, the Siamese network prevents overfitting and improves the identification accuracy by
directly identifying limited annotated rice disease patches. Reference [78] optimized cascaded R-CNN
using feature pyramid FPN, soft non-maximum suppression, and ROI Align calibration, effectively
improving the detection and overlapping target recognition ability of small targets. Five types of
rice pests including rice planthopper, rice grasshopper, black-tailed leafhopper, mole cricket, and rice
armyworm have been tested on optimized cascaded R-CNN and achieved an accuracy of 94.15%.
Bari et al. [79] proposed a region-based CNN (Faster R-CNN) for the real-time detection of rice
leaf diseases to improve the diagnostic accuracy. Combined with the RPN architecture, their model
accurately located the position of leaf diseases, generating candidate regions for diagnosing rice blast,
brown spot, and hispa with accuracy rates of 98.09%, 98.85%, and 99.17%, respectively. Additionally,
the model identified healthy rice leaves with an accuracy of 99.25%. The two-stage model is shown in
Fig. 9.

Figure 9: The model structure of two-stage

For anchor-free-based rice diseases and pests, Yao et al. [80] proposed an automatic detection
algorithm for light-induced planthoppers based on CornerNet. They focused on the small proportion
of rice planthoppers in images of light-induced insects, using the overlapping sliding window method
to improve the ratio of rice planthoppers in image detection and removing redundant detection boxes
through the detection box suppression method. They effectively enhanced the detection effect of
rice planthoppers in light-induced insect images. To prevent the same insect from being repeatedly
counted under the same posture, Lin et al. [81] proposed a detection and recognition method that
combines image redundancy elimination with a CenterNet network. Through truncation thresholding
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processing, bilateral filter, and redundancy elimination operations, they solved the problem of dupli-
cate detection of similar images, guiding the early warning of rice planthoppers and prediction of
population density. Fig. 10 depicts the anchor-free stage model.

Figure 10: The model structure of anchor-free

To sum up, detection networks identify and locate instances of rice diseases and pests by
drawing bounding boxes around affected areas in images. They learn from annotated datasets where
these bounding boxes are specified. In contrast to classification networks, which determine whether
a particular issue is present, detection networks provide spatial information about the problems’
positions within the images. However, they have limitations compared to classification networks. They
excel at localization but lack details about the extent and severity of the issues. They also struggle
with overlapping cases and crowded images, potentially missing some instances. Furthermore, like
segmentation networks, they require annotated data with bounding box information for training,
which can be resource intensive and costly.

3.3 Image Segmentation Network

Image segmentation involves dividing an image into multiple regions by identifying areas with
similar or identical features, allowing for the extraction of key information and the removal of
non-interesting regions. The commonly used image segmentation algorithms in rice diseases and
pests images include threshold segmentation [82,83], edge detection [84], clustering segmentation
[24,85], and deformable shape segmentation [86]. These methods have the disadvantages of abundant
computation and poor robustness, and they cannot effectively extract image features. With the rise
of deep neural networks, semantic segmentation network models have been proposed, such as FCN
[87], U-Net [88], SegNet [89], PSPNet [90], Mask R-CNN [91], and Segformer [92]. These models
are currently widely applied in the field of rice disease and pest detection and recognition, and
they effectively address the issues of noise and nonuniformity in images. Table 6 lists the relevant
applications of image segmentation methods in rice diseases and pests, and Fig. 11 presents the
semantic segmentation basic unit.

Table 6: Application of image segmentation method in rice diseases and pests

Reference Proposed model Method Image source Categories Original image Enhanced image Accuracy Task

[93] DFFANet DCABlock Publicly available 1 800 N/A 96.15% Leaf
[94] FCN-ECAD FCN Field 10 2225 22250 95.50% Pest
[95] Optimized U-Net U-Net Field 1 300 N/A 98.82% Leaf
[96] RSW-based Deep RNN SegNet Github 3 120 276 90.50% Leaf
[97] Rsegformer Segformer Publicly available 3 450 1350 85.38% Leaf
[98] Improved Mask R-CNN Mask R-CNN Field and internet 1 1558 N/A 81.00% Leaf
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Figure 11: Semantic segmentation network model

Feng et al. [93] proposed a real-time segmentation method based on feature fusion and attention
mechanism for the severity of rice blast disease, named DFFANet, which includes a feature extraction
module, a feature fusion module, and a lightweight attention module. It effectively realizes the shallow
and deep feature extraction of rice blast and fuses the features extracted at different scales. The
model achieved 96.15% accuracy in rice blast spot segmentation. Gong et al. [94] introduced a
new encoder–decoder and a series of sub-networks connected by jump paths in the FCN network,
named FCA-ECAD, combining long jump and fast connection to realize accurate and fine-grained
insect boundary detection. The network constitutes the conditional random field module for insect
contour thinning and boundary location. The FCA-ECAD model achieved 98.28% accuracy on 10
rice pest segmentation and classification tasks. Oddy et al. [95] proposed a semantic segmentation
model for rice leaf blast and pest images based on the U-Net architecture, with parameters adjusted
through three optimization methods: HyperBand, random search, and Bayes. Daniya et al. [96] used
segments to extract statistical, CNN, and textural features. Furthermore, the proposed algorithm,
named RideSpider Water Wave, was used to train Deep RNN and generate optimal weights. The
accuracy of the proposed algorithm for the identification of brown spot, rice blast and bacterial
leaf blight was 90.5%. Reference [97] proposed a lightweight network based on copy–paste and
semantic segmentation, and they collated a dataset for major rice disease segmentation to enhance
the collected disease samples, including rice bacterial blight, rice blast, and brown spot. By replacing
the backbone network with a lightweight semantic segmentation network Segformer, combining
attention mechanisms, and changing upsampling operators to train a new RSegformer model, the
balance between local and global information was improved, the training process was accelerated,
and network overfitting was reduced. Zhang et al. [98] proposed an improved Mask R-CNN method
for identifying rice diseases. By changing the feature fusion process of the feature pyramid to bottom-
up and incorporating multi-scale expansion convolution, they achieved good recognition results on
the rice bacterial blight dataset.

In general, segmentation networks identify rice diseases and pests by precisely delineating and
labeling affected regions at a pixel level in rice field images. These networks are trained on annotated
datasets where each pixel is assigned a specific class, such as healthy rice, diseased, or pest-infested
regions. During inference, segmentation models analyze images and output detailed masks, high-
lighting the exact locations and extents of rice diseases and pests. This level of granularity provides
valuable insights for farmers and researchers, facilitating targeted interventions and improved crop
management. However, segmentation networks have some limitations compared to classification
and detection networks. They require extensive pixel-level annotation, which is time consuming and
costly. Moreover, segmentation models tend to be computationally more intensive, making real-time
applications challenging in resource-constrained settings. Additionally, they struggle with complex or
overlapping instances of diseases and pests within an image. Despite these challenges, segmentation
networks excel in providing fine-grained information critical for precise agricultural decision making.
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3.4 Fusion Attention Network

The proportion of rice diseases and pests in crop images is often relatively small, making it
difficult to observe with the naked eye. Additionally, although many images are carefully processed,
the recognition accuracy may be low due to factors such as camera angle, distance, and complex
background during shooting. To solve these problems, the emergence of attention mechanism has
attracted widespread interest. The attention mechanism was proposed by Bahdanau et al. [99] and has
recently been widely used in various fields such as DL. A new network structure, transformer [100],
is entirely composed of attention mechanisms. A standard transformer comprises an encoder and a
decoder. The encoder includes a self-attention layer and a feed-forward neural network, while the
decoder includes a self-attention layer, an encode–decode attention layer, and a feed-forward neural
network. Subsequently, with the widespread success of transformer networks in natural language
processing problems, many variants of transformer have emerged to solve computer vision problems,
among which ViT Transformer [101], DeiT [102], TNT [103], Swin transformer [104] are transformer-
based image classification models; DERT [105] is a transformer-based object detection model; and
SETR [106] is a transformer-based semantic segmentation model. Studies have shown that the
incorporation of attention mechanisms can improve the pest feature extraction and accuracy [107–
110]. The structure of a typical ViT is presented in Fig. 12. Firstly, the input image is segmented into
non-overlapping patches of fixed sizes, then, these patches are flattened, and positional embedding
is applied through linear projection. The primary purpose of positional embedding is to preserve the
spatial information of the patches in relation to the original image. Following this, the resulting output
vector is fed into a series of N transformer blocks for further processing. Table 7 lists the relevant
network models for identifying rice diseases and pests that employ attention mechanisms.

Figure 12: The basic structure of ViT Transformer
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Table 7: Models for rice diseases and pests based on attention mechanism

Reference Proposed
model

Method Image source Categories Original
image

Enhanced
image

Accuracy Task

[111] Residual-
distilled
transformer

Transformer Field 4 805 3420 92.00% Leaf

[112] CG-
EfficientNet

CBAM +
Efficientnet

Field and
publicly
available

5 2857 N/A 95.63% Leaf

[113] Improved
swin-
transformer

Swin-
Transformer

Internet and
Kaggle

5 6298 N/A 93.40% Leaf

[114] Improved
DeiT

DeiT Field and
internet

10 373 2283 87.67% Leaf/Pest

[115] PlantXViT ViT
transformer

Publicly
available

5 (rice) 560 (rice) N/A 98.33% Leaf

[116] MDACaps
Net

CapsNet +
Attention

Publicly
available

14 4200 N/A 95.31% Pest

[117] Improved
capsule
network

CapsNet +
CBAM

Filed 5 6688 3508 99.19% Pest

Zhou et al. [111] proposed a residual distillation transformer architecture to rapidly and accurately
recognize rice diseases and pests in images. They used visual and distillation transformers as residual
modules for extracting key disease features and fed into the MLP layer for prediction. This work
marked the pioneering application of transformer models in the field of rice disease recognition.
Experimental results on four rice leaf diseases achieved 89% F1-score and 92% top-1 accuracy.
Yang et al. [59] developed a lightweight network called VGG-DS, which is suitable for mobile devices.
This model incorporates SE attention modules to enhance feature extraction capabilities and achieved
an accuracy of 93.66% on nine different rice disease detection tasks. Wei et al. [112] introduced the
lightweight convolutional block attention module [118] to improve the mobile inverted bottleneck
convolution of the main module in EfficientNet-B0, named CG-EfficientNet, and they used the Ghost
module to optimize the convolution layer in the network to reduce the number of network parameters.
Finally, they employed an adam optimization algorithm to improve the network’s convergence rate.
The proposed model achieved an accuracy of 95.63% for the classification of five rice leaf diseases:
rice bacterial blight, rice kernel smut, rice smut, rice flax spot, and healthy leaves. Zhang et al. [113]
proposed a rice disease identification method based on a swin-transformer, including sliding window
operation and hierarchical design, which limits the attention calculation to each window and reduces
the computational complexity. The model effectively classified five rice diseases (i.e., rice stripe,
rice blast, rice false smut, rice brown spot, and rice sheath light) with an accuracy rate of 93.4%.
Ma et al. [114] proposed a DeiT feature encoder-based algorithm for identifying disease types and
generating relevant descriptions of rice crops. The model achieved 87.67% accuracy on the Rice2k
dataset. Furthermore, a vision transformer enabled Convolutional Neural Network model called
PlantXViT is proposed for plant disease identification [115]. The proposed model combines the
capabilities of traditional convolutional neural networks with the vision transformers to efficiently
identify a large number of plant diseases for several crops. The average accuracy for recognizing five
rice diseases is shown to exceed 98.33%. Liu et al. [116] proposed a dual-path attention capsule network
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based on CapsNet, named MDACapsNet, to address the issue of low accuracy in identifying rice pests
with variable positions and postures using existing methods. MDACapsNet comprises an encoding
module, a reconstruction module, and a classification module. The attention mechanism is mainly
used for the encoding module, while the multi-scale dual attention module and local shared dynamic
routing algorithm are used to improve the feature extraction ability and reduce the computations.
An accuracy rate of 95.31% was achieved during recognition experiments on 14 rice pests. Similarly,
the attention mechanism capsule network technology has been also used in reference [117], which
introduced a convolutional attention model that combines spatial attention and channel attention
mechanisms into capsule networks, enabling the model to focus on crucial features. They achieved an
accuracy of 99.19% in the recognition of five different rice pests in complex environments.

Attention networks, such as self-attention mechanisms and transformer models, identify rice
diseases and pests by dynamically emphasizing relevant features within an image while downplaying
less important areas. They learn to focus on specific regions of interest, like diseased plants or pest-
infested areas, by assigning different attention weights to different parts of an image. This adaptability
makes them powerful tools for detecting and localizing issues within rice field images. Their strengths
include the ability to capture complex relationships between image elements and adapt to varying
problem sizes and shapes. However, their limitations include increased computational demands,
especially for large-scale images, and the need for substantial labeled data for effective training.
Additionally, their interpretability is challenging, making it harder to understand the reasoning behind
their predictions. Nonetheless, attention networks offer promising capabilities for fine-grained analysis
of rice diseases and pests.

3.5 Few-Shot Network

Image recognition and object detection techniques in DL help to accurately predict and locate
pests in farmland images. However, a dataset with sufficient samples is required, and due to the wide
variety of pests, collecting thousands of training images for each sample is impractical. To address
this issue, small sample learning and meta-learning have received widespread attention [119–122], and
Fig. 13 displays the model architecture. The first task-driven meta-learning small sample classification
work in the agricultural field was conducted by reference [123]. They introduced an intuitive task-
driven learning scheme and collected a balanced database covering pests and plants from publicly
available resources. Through extensive comparison and experimental analysis of N-way K-shot and
domain shift, they provided reference and benchmark for subsequent research on the application of
small sample learning in the agricultural field.

To solve the problem of poor generalization and dependence on a large amount of data in DL
algorithms, Wang et al. proposed a small sample classification method called IMAL [120] for plant
diseases. Using the model-independent meta-learning method with strong generalization ability as
the overall framework, they proposed a new soft center loss function to enhance the ability of the
model to distinguish features. Moreover, they used the PRelU Activation function to enhance the
model fitting ability. Compared to three advanced few-shot learning methods, IMAL exhibited better
classification performance on the PlantVillage dataset, especially in small sample situations. Some
studies have been conducted on identifying rice diseases and pests using few-shot learning. Pandey
proposed a meta-learning technique for rice pest detection based on few shot [30], including IP102 and
ICAR-NBAIR datasets, wherein IP102 serves as the supporting dataset for performing meta-learning,
while ICAR-NBAIR is used for performing few-shot learning. Selecting 14 types of rice pests from
the IP102 dataset, the proposed model was evaluated using the training methods of 14 way-3 shots
and 14 way-5 shots.
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Figure 13: Few-shot network structure

Few-shot networks identify rice diseases and pests using a small number of labeled examples to
make predictions and to adapt to new and unseen cases. They are trained on a wide range of tasks,
including rice disease and pest detection, to learn versatile feature representation and improve their
adaptation ability. When presented with a new rice disease or pest, they can quickly adapt and make
accurate predictions based on the limited labeled examples available. Advantageously, they can tackle
data scarcity, which is common in agriculture, and have the potential to generalize novel problems.
However, they require a substantial amount of pre-training data, there is a risk of overfitting to
the few-shot tasks, and their interpretability may be challenging due to their complex architectures.
Nevertheless, few-shot learning networks provide a promising approach for effective and efficient rice
disease and pest detection, particularly in situations with limited labeled data.

4 Performance Comparison

Four metrics are used to evaluate the detection and recognition of rice diseases and pests:
Accuracy, Precision, Recall, and F1-score (F1). Before introducing them, several symbols must be
explained, which have their own worth in both classification and detection tasks.

• TP (True Positive) means correctly classifying things in classification tasks or the number of
correct detections in detection tasks.

• FP (False Positive) represents something incorrect classification or the number of misclassified,
non-confirming bounding box coordinates in the predicted bounding box.

• FN (False Negative) represents another incorrect detection. It refers to instances where the
model fails to identify something that does belong to a particular category.

• TN (True Negative) whose meaning is opposite to TP, represents the model can correctly
identify instances as not belonging to a particular category.

Based on the above, the Accuracy metric is defined as the proportion of the correct predicting
ones in all samples, as shown in Eq. (1).

Accuracy = TP + FN
TP + TN + FP + FN

(1)
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Precision is specific to prediction results, representing how many of the predicted positive samples
are truly positive and can reflect the correctness of a category’s prediction, as shown in Eq. (2).

Precision = TP
TP + FP

(2)

Recall represents the ability of the model to find all relevant targets, that is, the maximum number
of real targets that can be covered by the predicted results provided by the model, as shown in Eq. (3).

Recall = TP
TP + FN

(3)

F1 is a harmonic average based on accuracy and recall, as shown in Eq. (4).

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Finally, there are three metrics introduced to improve the effectiveness of evaluating a model, as
shown in Eqs. (5)–(7).

AP =
∫ 1

0

Precision d Recall (5)

mAP =
∑

AP/n (6)

mIoU = 1
n + 1

n∑
i=0

TP
FN + FP + TP

(7)

where Precision is the precision in images, and Recall is the predicted correct ratio in all positive
samples in images, n denotes the number of categories.

The evaluation results of the pest detection and identification models in literature were compared.
Tables 8 to 10 present the performance evaluations of different image classification models, object
detection models, and image segmentation network models on rice disease and pest identification.
Taking the rice pest dataset in IP102 as an example, the ARGAN network was used to enhance the
data and the results of ResNet, VGG16, and MobileNet were compared based on the above indicators.
Table 8 lists the accuracy results of different models. In Table 9, one-stage, two-stage, and anchor-
free algorithms are compared in terms of performance. Finally, based on the semantic segmentation
network model, the performance of mainstream algorithms in rice diseases are compared in Table 10.

Table 8: Performance comparison of image classification models on the same rice pest datasets2

Models Accuracy (%) Recall (%) F1 (%) Precision (%)

ResNet50 87.41 87.40 87.35 87.81
VGG16 88.68 88.68 88.69 88.87
MobileNet 86.44 86.41 86.22 86.73

2All the data from the reference [32] and collect from field.
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Table 9: Performance comparison of object detection models on different rice pest datasets

Reference Models Datasets Accuracy (%) mAP (%) Recall (%) F1 (%)

[67] CornerNet + Overlapping
sliding window

Field 48.70 N/A 93.74 64.10

[67] CornerNet + Overlapping
sliding
window + Detection Box
suppression

Filed 95.53 N/A 95.50 95.52

[72] Improved SSD Field and
internet

N/A 79.3 N/A N/A

[73] Improved RetinaNet Field N/A 93.76 N/A N/A
[74] YOLOv3 tiny Field and

laboratory
85.37 82.79 70.00 74.00

[74] YOLOv4 tiny Field and
laboratory

98.13 97.36 88.00 87.00

[75] YOLOv5 Field 83.00 62.00 94.00 N/A
[82] RiceNet Field 99.03 95.58 85.00 88.00

Table 10: Performance comparison of image segmentation models on the same rice disease datasets3

Models MloU (%) Parms (M) Flops (G)

RSegformer 85.38 14.36 26.13
DeepLabv3+ 83.47 12.47 54.31
Segformer-B1 83.95 13.74 15.94
Segformer-B2 84.93 27.48 62.45

With the continuous development of DL, the application performance of some typical algorithms
on different datasets of rice diseases and pests has gradually improved and the accuracy, mAP, F1-
score, and other indicators of the algorithms have also improved, yielding good results. Due to the lack
of an open and comprehensive dataset of rice diseases and pests that allows for a unified comparison
of all algorithms, the complexity of rice pest images in existing research still needs to catch up to real-
time pest and disease detection and recognition algorithms based on mobile devices. Therefore, the
dataset and algorithm performance need to be improved in future studies.

5 Challenges and Future Directions

Although deep learning has achieved significant results in detecting and recognizing rice diseases
and pests, it also faces some unresolved challenges, mainly in the following aspects. Meanwhile, some
potential solutions are mentioned.

3All the data from the reference [98] and collect from field.



CMC, 2024, vol.78, no.1 217

(1) Data acquisition

This is an expensive and time-consuming task to obtain large-scale annotated image data of
rice pests and diseases. In the processing of dataset production, some rice pests and diseases may
occur less frequently, resulting in category imbalance. Then, the light and environmental conditions
between rice fields may vary depending on the location and season, which can affect the quality and
characteristics of the image. Although some rice disease and pest datasets are publicly available, the
quality varies, making it essential to collect data from different regions and rice varieties to create a
more representative dataset.

From perspectives of human, future advancements in data research involve collaborative efforts
to collect data through crowdsourcing platforms or farmer cooperatives. Additionally, the utilization
of high-resolution sensors like UAV and smartphones for data acquisition is pivotal. Simultaneously,
fostering data sharing and cooperation among diverse research institutions is crucial to collectively
establish larger-scale datasets. From perspective of technology, future data research involves addressing
challenges in rice disease and pest detection. This includes utilizing data augmentation and transfer
learning techniques to address the limited availability of annotated data for the detection of rice
diseases and pests. Furthermore, it aims to mitigate the issue of class imbalance in rice disease and
pest categories through resampling and loss function adjustments. Simultaneously, data preprocessing
methods like image normalization can be employed to reduce the influence of varying environmental
conditions.

(2) Models for deep learning

Deep learning models often require large amounts of computing resources and high-performance
hardware, and are considered black-box models, making it difficult to explain their decision-making
process. Another issue that needs to be mentioned that a model trained on one region or rice variety
may not necessarily generalize well to others. It can be challenging to design deep learning models for
the recognition and detection of rice diseases and pests.

In future researches, the utilization of transfer learning techniques can involve starting with pre-
trained models that excel in related domains, such as plant disease detection, and fine-tuning them
to adapt to the task of rice disease and pest detection. Alternatively, AutoML (Automatic Machine
Learning) techniques can be employed to search for the optimal architecture within deep learning
networks tailored to the requirements of rice disease and pest detection. Furthermore, combining
different types of deep learning models, such as convolutional neural networks and recurrent neural
networks, can yield improved performance.

(3) Practical applications in rice crop fields

The complete process of using deep learning for identifying and detecting rice diseases and
pests includes data collection, data preprocessing, model training, model evaluation, deployment,
continuous monitoring and improvement. Despite achieving satisfactory accuracy in many researches,
there are doubts about the feasibility of deploying these models on distributed systems and terminal
devices. On one hand, these models tend to be overly large, and practical field devices often lack the
necessary resources to support prolonged model execution. On the other hand, achieving network
coverage in the agricultural production process is currently challenging, making model updates and
online learning a manual process, undoubtedly increasing labor costs.

In future research focused on practical applications in rice fields, promising areas of investigation
involve feature engineering, the development of lightweight models, the exploration of incremental
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learning, local decision-making, and the establishment of collaborative networks. Specifically, firstly,
the fusion of multimodal rice data including visible light images, infrared images, and multispectral
images, can be explored to enhance detection accuracy by combining data from different sensors.
Secondly, it is a crucial to construct the lightweight deep learning models can reduce model size
and computational complexity. Furthermore, implementing incremental learning allows the model
to gradually adapt to new data and types of rice diseases and pests and allowing models on terminal
devices to make local decisions can reduce communication costs. Lastly, by establishing collaborative
networks that enable multiple devices to share model updates reduces data transfer and lightens the
workload for each device.

6 Conclusion

Manual detection of rice diseases and pests is often time-consuming, labor-intensive and requires
specialized knowledge. The high accuracy and reliability of deep learning techniques can help farmers,
agricultural experts, and government departments better understand the species, distribution, and
severity of diseases and pests. This paper reviews the relevant applications of deep learning in rice pest
detection and recognition in recent years, including image classification, object detection, semantic
segmentation, attention mechanism and small-sample learning, and summarizes and compares the
performance of various methods. Numerous researchers have made remarkable works in deep learning
to recognize and detect rice diseases and pests in paddy field. However, the widespread practical
implementation remains a challenge. To fully explore the vast development potential and application
value of deep learning technology, it is essential for experts from relevant fields to collaborate and
integrate their expertise and knowledge in rice crop protection with deep learning algorithms and
models.
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