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ABSTRACT

The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.
Based on the most important biometric application, human gait analysis is a significant research topic in computer
vision. Researchers have paid a lot of attention to gait recognition, specifically the identification of people based
on their walking patterns, due to its potential to correctly identify people far away. Gait recognition systems have
been used in a variety of applications, including security, medical examinations, identity management, and access
control. These systems require a complex combination of technical, operational, and definitional considerations.
The employment of gait recognition techniques and technologies has produced a number of beneficial and well-
liked applications. This work proposes a novel deep learning-based framework for human gait classification in video
sequences. This framework’s main challenge is improving the accuracy of accuracy gait classification under varying
conditions, such as carrying a bag and changing clothes. The proposed method’s first step is selecting two pre-
trained deep learning models and training from scratch using deep transfer learning. Next, deep models have been
trained using static hyperparameters; however, the learning rate is calculated using the particle swarm optimization
(PSO) algorithm. Then, the best features are selected from both trained models using the Harris Hawks controlled
Sine-Cosine optimization algorithm. This algorithm chooses the best features, combined in a novel correlation-
based fusion technique. Finally, the fused best features are categorized using medium, bi-layer, and tri-layered
neural networks. On the publicly accessible dataset known as the CASIA-B dataset, the experimental process of the
suggested technique was carried out, and an improved accuracy of 94.14% was achieved. The achieved accuracy of
the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.
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1 Introduction

Human verification or identification is crucial in various domains, including public security
systems, information security, automated teller machines, and point-of-sale machines [1]. Several
aspects of the human body, including internal and external characteristics such as epidermis, hair,
blood samples, ear shape, recognition of a face, bite by dental forensics, and walking pattern by gait
analysis, can be examined to identify a person [2]. However, popular biometric technologies like facial
recognition and fingerprint verification have their limitations. For instance, face recognition needs a
regulated atmosphere and appropriate distance to function properly. Fingertip contact is necessary for
fingerprint authentication.

Alternately, human gait analysis [3] is a method for classifying individuals from a distance by
examining their walking manner, also known as gait [4]. Typically, model-free and model-based
approaches are used for gait recognition. Certain body parts like the neck, limbs, feet, hands, and legs
are tracked in the model-based approach to derive dynamic and static parameters [5]. This method
involves modeling the skeleton joints and bones of the human. On the other hand, the model-free
process concentrates on the geometry and shape of an object, which is particularly advantageous for
object recognition systems [6].

Human gait recognition (HGR) has multiple applications, including individual recognition, health
care [7], cyber security, and sports science. The gait contains 24 distinguishing characteristics that are
used to identify an individual. Multiple studies and investigations have shown that every individual
has a distinct muscular-skeletal framework, making it possible to identify individuals based on their
gait [8]. Gait recognition has several advantages over other biometric identifiers [9]. First, gait can be
recorded from a distance without the participant’s cooperation [10].

In contrast, other biometrics require the individual to physically and mentally interact with sensors
used to acquire the data [11]. Second, HGR can be applied to low-resolution videos and images,
while facial recognition may not function well in these situations [12]. Thirdly, minimal apparatus is
required to implement gait recognition systems, like an accelerometer, floor sensor, camera, or radar
[13]. Generally speaking, HGR models consist of four major mechanisms [14]. Initially, locomotion
data are extracted from video and situations in real-time using a variety of gears and methods [15]. The
shape of the human body is detected, and background noise is eliminated using different techniques
depending on the properties of the image and the region of interest. Thirdly, contour detection is
carried out after segmentation to fill in any gaps between joints or missing body components. It can be
used for object identification and form analysis. Extraction of features based on human qualities, such
as shape, geometry, and more, is the last phase. The features are then classified using classifiers based
on machine learning [16]. Before proceeding to the next level, like feature extraction, enhancing each
image or frame for image processing in various applications is essential. The enhancement method
depends on high-frequency and low-frequency elements [17]. High-frequency pixel components
represent the scene and objects in the image, whereas low-frequency pixel components denote subtle
characteristics, such as certain lines and tiny points. To enhance the image, it is imperative to keep
the low-frequency components while increasing the high-frequency components [18]. Deep learning
has recently demonstrated significant success in various fields, including identifying objects, gait
recognition, and action identification. Deep learning extracts features from unprocessed images using
a deep learning architecture with multiple hidden layers, including convolutional, pooling, and fully
connected layers. Building a deep learning algorithm on the augmented dataset can result in improved
features that enhance the model’s accuracy in the future [19]. Sometimes, since single networks perform
poorly on complicated and huge datasets, we combined many convolutional neural network (CNN)



CMC, 2024, vol.78, no.1 359

models to boost recognition accuracy using the fusion process. After the fusion process, several
characteristics are produced, reducing accuracy and lengthening calculation time. Therefore, this
problem is tackled by several feature optimization strategies, including ant colony, variance-based
optimization, firefly, whale, and tree-based optimization, among others [20]. The feature selection
method comprises finding and choosing a smaller group of essential features or variables from a larger
pool of alternatives in order to increase the precision and efficacy of a machine learning model. The
goal of this approach is to reduce the model’s complexity and get rid of duplicate or unneeded traits
that could cause overfitting and poor performance. The individual dataset and situation at hand must
be taken into consideration while selecting the best feature selection approach, and for best results, a
combination of several strategies may be used. A critical step in the machine learning process, feature
selection may lead to models that are more straightforward and understandable, exhibit improved
generalization, and train more quickly. The best feature vector is eventually sent to the various machine
learning (ML) and neural network (NN) classifiers for action classifications, including K-Nearest
Neighbor (KNN), Tree, support vector machine (SVM), Ada boost, linear discriminant (LDA), and
Neural Network classifier [21]. Our major contributions to this work are as follows:

• Fine-tuned two pre-trained lightweight deep models and initialized the static hyperparameters
except for the learning rate. The particle swarm optimization algorithm has opted to select the
learning rate.

• Propose an improved version of the feature selection algorithm named Harris Hawks controlled
Sine-Cosine optimization.

• A correlation-based feature fusion technique is developed for the combination of optimal
features.

2 Related Work

Numerous techniques for classifying human gait recognition based on deep learning are described
in the literature. Few of them focused on traditional techniques such as handcrafted features, and
others used deep learning. A few of them also focused on the fusion and feature selection techniques,
improving accuracy and reducing computational time. Kececi et al. [22] created a framework for
recognizing human locomotion using an enhanced optimization of ant colonies (IACO) algorithm
and deep learning. They selected the most efficient features for machine learning classifiers using
the IACO algorithm. Multiple experiments demonstrated that the IACO method is more precise
and decreases the cost of computation compared to other cutting-edge techniques. Dou et al. [23]
proposed a framework for (HGR) based on deep learning (DL) and kurtosis-controlled entropy (KcE)
and video sequences. The objective was to surmount obstacles presented by human angular shift,
clothing, and movement style. The authors extracted features using the ResNet101 deep model and
employed the KcE method to pick the best features. On the CASIA-B dataset, the proposed framework
obtained accuracies of 95.26 and 96.60%, respectively. Zhu et al. [24] proposed a framework for human
gait recognition that employs a singular stream of optimum deep learning combined features. After
performing data augmentation, the authors utilized two already trained models, namely Inception-
ResNet-V2 and NASNet mobile. Combining and optimizing the derived features from both deep
learning models using the whale optimizer. In the end, machine learning classifiers were applied to
the optimized features, yielding an accuracy of 89%.

Huang et al. [25] proposed a technique for gait recognition using multisource sensing data. They
retrieved 3D human features data during a walk by analyzing the human body’s shape and multisource
stream data. Because every person’s gait is distinctive, these characteristics can be utilized to determine
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a person. The experimental procedure was conducted on the CASIA A dataset, and the suggested
approach obtained a precision of 88.33%. To enhance gait recognition using low-device wearable
sensors, the authors [26] presented a modified residual block and a new shallow convolutional layer
to improve gait recognition using low-device sensors on clothing. To analyze the subject’s locomotion,
they inserted wearable sensors in objects that might be placed on the individual’s body, such as watches,
necklaces, and cellphones. Traditional matching of templates and conventional matching methods
were ineffective for low-device connected devices and did not enhance performance. The enhanced
residual block and narrow convolutional neural network attained an 85% accuracy on the IMU-
based dataset. To address the challenges of irregular walking, patient apparel, and angular changes
in arthritic patients, the authors [27] presented a deep learning (DL) and modular extreme learning
machine-based approach to human gait analysis.

In contrast to conventional techniques that concentrate solely on selecting features, the researchers
employed an effective approach to address these problems. The experimental procedure utilized two
pre-trained models, VGG16-Net and Alex Net, improving accuracy. Next, Tian et al. [28] discussed
the problem of identifying gait sequences taken under unregulated unidentified view angles and
dynamically varying view angles during the walk, also known as the free-view gait identification
problem. The researchers proposed a novel method, walking trajectory fitting (WTF), to surmount
the limitations of conventional methods. In addition, they presented the joint gait manifold (JGM)
method for assessing gait similarity.

3 Proposed Methodology

The suggested framework for recognizing human gait is depicted in Fig. 1. This diagram illustrates
the steps involved in the proposed HGR structure, including frames extraction, fine-tuning the pre-
trained CNN models using transfer learning, deep feature extraction from both streams, optimizing
the features, and fusing the optimized feature vectors, and finally, classification is performed. Below
is a concise numerical and mathematical explanation of each phase.

3.1 Preprocessing

A machine learning or deep learning system uses preprocessing techniques to prepare video frames
for further processing. This preliminary stage can improve the accuracy and efficacy of the analysis
by suppressing noise, excluding irrelevant data, and highlighting significant characteristics. Separating
frames from action recordings is the primary objective of the preprocessing procedure in this study.
Initially, each video frame had dimensions of 512 by 512 by k, with k set to 3. After the fact, the frames
are scaled down to 256 × 256 × 3 pixels.

3.2 Pre-Trained Deep CNN Models

Convolutional neural networks (CNNs) are neural networks in which at least one layer, as opposed
to matrix multiplication, executes a convolution operation. Using CNNs, HGR recognition/classifi-
cation accuracy is currently being improved. Convolutional, pooling, and FC layers constitute the
fundamental components of a CNN. Numerous filters with variable parameters are applied to the
image to obtain the convolution layer’s intricate details. The two most important parameters for this
layer are the number of kernels and size. The convolutional procedure can be defined as follows:

L [a × b] = (m ∗ n) [a × b] =
∑

l

∑
k

n [l, k] m [a − l, b − k] (1)
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Here, ‘m’ represents the image being read in, ‘n’ stands for the kernel, and ‘a’ and ‘b’ indicate the
rows and columns. The symbol for the convolutional operator is ∗, and the letter L indicates the output.
After the convolutional layer, a ReLu activation layer is added to replace negative values with 0.

Figure 1: A proposed deep learning-based framework for HGR

ReLu = Max(0, z), z ∈ L (2)

A pooling layer is used to dramatically reduce the size of the vector to speed up computation.
In pooling layers, among others, the average and maximum procedures are carried out. Use the max
pooling layer if you want the highest value; use the average pooling layer if you want the average
value. Before sending the classification result to the output layer, a neural network uses the FC layer
to smooth it out. Here is a mathematical description of the FC layer:

Gout
0 = L [a × b] (3)

Gin
h = Gout

h−1 ∗ Lh + bh (4)
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Gout
h = �h

(
Gin

h

)
(5)

where Gout
0 denotes the outermost FC layer. The layer number is represented by h, while the activation

function is indicated by �. After the FC layer, the SoftMax layer is added for classification.

SoftMax
(
Gout

h

) = exp(Gout
h )∑

k Gout
k

(6)

3.3 Transfer Learning Based Feature Extraction

In this work, we derive features using two convolutional neural networks (CNN) models
(Efficientnet-b0 and Darknet19). Efficientnet-b0 consists of one input layer measuring 224 by 224
by 3, one layer of global average pooling, one layer of fully connected neurons, and one layer of 18
convolutional blocks. Initially, we utilized a model called Efficientnet-b0 that was trained on the 1000-
class ImageNet dataset. Before being transferred to the CASIA-B dataset and trained with the aid of
the transfer learning concept, this deep CNN model was refined by omitting the final fully connected
(FC) layer and adding additional dense layers. Fig. 2 shows the Efficientnet-b0 architecture.

Figure 2: Architecture of Efficientnet-b0 deep model

In computer vision, the Darknet19 architecture for deep CNN is used for applications like
object recognition and categorization. Darknet19 is a condensed version of Joseph Redmon’s Darknet
architecture, with 19 layers. Nineteen layers comprise the Darknet19 architecture; eighteen are
convolutional, and one is the FC layer. It uses the same underlying building elements as the larger
Darknet53 design but with fewer layers, making it more computationally efficient and quicker to train.
Fig. 3 shows the TL process for HGR.
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Figure 3: Knowledge-based transfer learning process for HGR

These models were initially trained on the 1,000-label ImageNet dataset. To make these models
compatible with the CASIA-B dataset, the final FC layer was eliminated, and additional dense layers
were added. These datasets were subjected to transfer learning techniques, and the resulting models
were improved. Training and testing portions of the dataset were allocated 70% and 30%, respectively.
The values for the hyperparameters were 250 epochs, 0.001 initial learning rate, 0.2 dropouts, and 16
for the mini-batch size. After being refined using transfer learning, the new deep model was finally
trained.

The deep features of the fine-tuned Efficientnet-b0 model are extracted using a Global Avg
Pooling layer. This layer yields a feature vector designated by Vec1 with dimensions (N × 1280). The
features of the Darknet19 model are extracted using a 2-dimensional global average pooling (2gap)
layer. As a result, the Vec2 representation of the extracted feature vector has a size of (N × 1024).

3.4 Feature Selection

Over the past two years, feature selection has been pivotal in machine learning. Many methods
have been introduced, but they all have drawbacks, such as compromising on key aspects or cherry-
picking the most relevant ones. These factors can lengthen the computation time and decrease
accuracy. Since many of the first-generation optimization methods suffer from performance issues
when applied to real-world, large datasets, researchers have seen the feature selection literature expand
with modifications and hybridizations that leverage the strengths of different methods to improve
search efficiency.
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3.4.1 Harris Hawks Optimization (HHO)

HHO is a swarm-based metaheuristic algorithm inspired by the hunting techniques of Harris
Hawks. Hawks often hunt in groups, seeing their prey from above and then swooping to strike. Once
located, the hawks will close in and make a concerted effort to capture the prey before it can escape.
The authors [29] used this method to develop the HHO cornerstones of exploration and exploitation.
Exploration, the transition from exploration to exploitation, and exploitation are the three main stages
of the HHO. These stages are triggered based on the parameter F (the prey’s fleeing energy) and a
random variable called random (.). To avoid being caught, the fleeing energy factor F decreases with
time (as shown mathematically in Eq. (7)).

F = 2F0

(
1 − t

tmaximum

)
(7)

where F0 is the starting energy, t is the number of iterations, and tmaximum is the maximum number of
iterations. When |F| is less than 1, the HHO enters its exploratory mode, indicating that the prey is too
far away to attempt a capture.

Exploration phase: To begin searching, HHO generates a population of N possible solutions
randomly distributed over the search space then assesses their fitness. For the first set of iterations,
t = [1, 2, . . . , tmaximum], where tmaximum is the maximum number of iterations, |F| ≥ 1, Eq. (2) is used to
probe the search space.

yt+1
j =

{
yrandom − random ()

∣∣yrandom () − 2random ()yt
j

∣∣ if random ≥ 0.5(
yprey − yt

) − random ()
[
lcj + random ()

(
ucj − lcj

)]
if random () < 0.5

(8)

When called, random() is a function that always produces a unique random integer between 0 and
1. Generation t + 1’s jth solution is denoted by yj

j+1, the best site so far by yprey, the dimensional mean of
all solutions by yt, and the bottom and upper bounds of the searching space by lc and uc, respectively.

Exploitation phase: When HHO is in this stage, it is surrounding its prey (a rabbit, for example)
and preparing to make a surprise attack, having previously identified a promising search region. As the
prey tries to evade capture, the hawks can employ one of four different attack strategies, as determined
by their collective intelligence: a soft besiege (SB), a soft attack with rapid falls (SBRD), a hard besiege
(HB), or a hard besiege with dives (HBRD). Apart from hard besiege, these local search algorithms
provide sufficient randomization to prevent a lack of variety in solutions throughout the optimization
process. The following exploitation strategies are defined in HHO utilizing the escaping energy variable
E and the chance of escape calculated using random ():

Step one: We will use a gentle besiege technique (|F| 0.5, random () 0.5). Harris Hawks are using
this strategy because their prey has the strength to get away from them. It is done so the locally
designated area can be thoroughly searched before concurrence. In mathematical terms, the step is
expressed as:

yt+1
j = (yprey − yt

j) − F
∣∣Kyprey − yt

j

∣∣ , (9)

K = 2(1 − random())

Step two: hard assault (|F| 0.5, random () 0.5) this phase, in contrast to the preceding one, is
performed when the searching agent almost discovers the nearby solution. If the prey is too tired to
escape, the hawks have a better chance of catching it. You may summarize the scenario using Eq. (10):

yt+1
j = yprey − F

∣∣yprey − yt
j

∣∣ (10)
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Step three: a gentle assault with sharp dives (|E| ≥ 0.5, random () < 0.5). This search method
employs a Levy flight-style search of the region of interest. In this situation, the hawks will do a series of
low, quick dives around the victim until it gives up. This action is mathematically expressed in Eq. (11).

yt+1
j =

{
A if f (A) < f

(
yt

j

)
B if f (B) < f

(
yt

j

) (11)

A = (
yprey − F

∣∣Kyprey − yt
j

∣∣)
B = A + Vrandom × Levy (C)

where C is the number of dimensions in the issue, and Vrandom is a vector of random numbers created
using the random () function.

Step four: a tense siege with frequent dives (|F|< 0.5, random () < 0.5). This maneuver uses the
swarm’s knowledge while making arbitrary Levy flying maneuvers. The hawks can get closer to their
quarry because HHO significantly reduces the prey’s escaping energy. The relative expression is found
by using Eq. (12).

yt+1
j =

{
A if f (A) < f

(
yt

j

)
B if f (B) < f

(
yt

j

) (12)

A = (
yprey − F

∣∣Kyprey − yt
∣∣) (13)

B = A + Vrandom × Levy (C) (14)

where C is the number of dimensions in the issue and Vrandom is a vector of random numbers created
using the random () function.

In older formulations, the Levy flight function was written as Eq. (15).

Levy (C) = 0.01 × random × σ

|V | 1
β

σ =

⎛⎜⎜⎝� (1 + β) × sin
(

πβ

2

)
�

(
(1 + β)

2

)
× β2

β−1
2

⎞⎟⎟⎠ (15)

where β is a constant and, by convention, β = 1.5, the step size is controlled by a second constant value
of 0.01 in Eq. (7), although this value is also variable.

Algorithm 1: Lays out the HHO technique in detail
Initialization:
The population size N, starting prey escape energy F0, problem dimensions D, lower and upper
limits lc, uc, and the maximum number of iterations tmaximum should be set as control parameters.
Initialize potential solutions at random.
Analyze the Initial population in terms of fitness.
While t ≤ tmaximum

Using Eq. (1), update the prey escape energy parameter F.
for candidate solution yj do

(Continued)
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Algorithm 1 (continued)
if |F| ≥ 1 then

Using Eq. (2), update the candidate solution.
else

if |F| ≥ 0.5, random () ≥ 0.5 then
Using Eq. (3), update the candidate solution.

endif
if |F|< 0.5, random () ≥ 0.5 then

Using Eq. (4), update the candidate solution.
endif
if |F| ≥ 0.5, random () < 0.5 then

Using Eq. (5), update the candidate solution.
endif
if |F|< 0.5, random () < 0.5 then

Using Eq. (6), update the candidate solution.
endif

endif
end for

Utilize the fitness function to assess potential solutions.
Set the best answer yprey has so far discovered.
Aim for t = t + 1 as the iteration counter.

end while
return the best solution yprey.

3.4.2 Sine-Cosine Algorithm

Recently, reference [30] formalized the use of Sine and Cosine—two trigonometric functions—
into a search technique they dubbed the Sine-Cosine algorithm (SCA). The SCA is a straightforward
example of a stochastic algorithm that works with populations based on the fundamental optimization
principles of discovery and use.

In this case, we update the answer in all dimensions by applying Eq. (16) to each N search agent
in the population.

yt+1
j,i =

{
yt+1

j,i = yt
j,i + ρ × sin (random ( )) × ∣∣random ( ) yt

best i − yt
j,i

∣∣ if random ( ) < 0.5
yt+1

ji = yt
ji + ρ × cos (random ( )) × ∣∣random ( ) yt

best i − yt
i

∣∣ if random ( ) ≥ 0.5
(16)

where yt
best i is the ith dimension of the optimal solution identified so far, and yt+1

j,i represents the ith
dimension of the jth candidate solution. Eq. (8) uses a random number generator function called
random (), which always returns a random value between [0, 1]. The variables t and t + 1 represent
the current and next-generation counters. Adjusting the value of ρ parameter that governs exploration
and exploitation yields Eq. (17).

ρ = α − t
α

T
, Default value of α = 2 (17)

where α is a constant that may be adjusted by the user according to the nature of the optimization task
at hand. SCA, like HHO, uses an adaptable range of Sine and Cosine functions to transfer from the
exploration to exploitation phases.
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Algorithm 2: Description of SCA technique
Initialization:
The population size N, problem dimensions D, lower and upper limits lc, uc, and the maximum
number of iterations tmaximum should be set as control parameters.
Initialize potential solutions at random.
Analyze the Initial population in terms of fitness.
While t ≤ tmaximum

Using Eq. (9), update parameter ρ.
for candidate solution yj do
for each dimension yj,i do

Using Eq. (8), update the candidate solution.
end for

end for
Utilize the fitness function to assess potential solutions.

Set the best answer ybest has so far discovered.
Aim for t = t + 1 as the iteration counter.
end while

return best solution ybest.

3.5 Fusion

Fusion is a method used to enhance recognition accuracy by integrating many feature vectors
into a single vector. Here, we employed a modified correlation extended serial technique to combine
optVec1 and optVec2, two ideal feature vectors. Using the following formula, we can determine the
relationship between j and i using the vectors optVec1 ∈ Kj and optVec2 ∈ Li.

Corelation =
∑ (

Kj − K
) (

Li − L
)√∑ (

Kj − K
)2 (

Li − L
)2

(18)

where Vec3 contains features with a positive correlation, whereas Vec4 contains features with a negative
correlation as calculated by the formula. Following this, we compare each feature to the mean value
of Vec4 as shown below:

CT =
{

Ṽec4 for Vec4 ≥ μ

ignore, otherwise
(19)

At last, we combine Vec4 and Vec3 to form a new vector, Vec5, by use of the following equation:

Vec5 (i) =
(

Vec3 (i)m×n

Ṽec4 (i)m×n

)
(20)

N × Vec5 is the final vector’s dimension. Finally, the various neural network classifiers use the final
vector, Vec5, to recognize human gait.

4 Results and Discussion

The numerical results and discussion of the proposed framework have been discussed in this
section. Initially, the detail of the selected dataset is given and then the experimental setup. After that,
the detailed results are discussed and compared with recent techniques followed.
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4.1 Datasets and Performance Measures

The CASIA-B dataset was used to assess the suggested approach. This dataset has a total of 11
angles, namely, zero, 18, 36, 54, 72, 90, 108, 126, 144, 162, and 180. Each angle has three classes:
Bag, Coat, and Normal, as illustrated in Fig. 4 [31]. Five classifiers—Wide Neural Network (WNN),
Narrow Neural Network (NNN), Medium Neural Network (MNN), Tri-layered Neural Network (Tri-
Layered NN), and Bi-layered Neural Network (Bi-Layered NN) were used to categorize the activities
and computed the performance of each classifier in term of accuracies.

Figure 4: Sample frames of the CASIA-B dataset for all angles. Copyright @ 2018, SPIE Digital
Library [32]
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4.2 Experimental Setup

The neural networks were trained using several hyperparameters, including a minibatch size of 32,
a learning rate of 0.0001, a value of momentum of 0.7, 150 epochs, 10-fold cross-validation, and the
Adam optimizer for learning rate optimization. Training and testing set was created from the dataset
in a 70:30 split. On a PC with a Core-i7 CPU, 8 GB of RAM, and a 2 GB graphics card, the suggested
approach was put into practice using MATLAB 2022a.

4.3 Numerical Results

The outcomes of the proposed framework are shown in tabular form. The results are presented
in five different experiments. In the first experiment, Efficientnet-b0 model features are extracted and
applied to neural networks for classification. Five neural networks are used for classification accuracy:
WNN, NNN, MNN, Bi-layered NN, and Tri-layered NN. The accuracy is computed for each angle
separately. For angle zero, the 96.2% highest accuracy is achieved by WNN. On angle 18, the WNN
attained the best accuracy of 98.7%, whereas this classifier performed well for the other angles, such
as 36, 54, 72, 90, 108, 126, 144, 162, and 180, and attained the accuracy of 97.7%, 97.1%, 85.3%,
88.9%, 93.2%, 88.2%, 90.9%, 93.9%, and 99.9%. The results of each angle of the dataset evaluation
are reported individually. The results of the CASIA-B dataset in terms of accuracies are shown in
Table 1 by analyzing Efficientnet-b0 deep features.

Table 1: Classification results using Efficientnet-b0 deep features

Classifiers Accuracy (%)

0 18 36 54 72 90 108 126 144 162 180

NNN 96 98.3 97.4 96.7 84.8 88.3 92.7 87.7 90.4 93.4 99.8
MNN 96.1 98.4 97.5 96.7 84.6 88.8 92.9 88.1 91 93.9 99.8
WNN 96.2 98.7 97.7 97.1 85.3 88.9 93.2 88.2 90.9 93.9 99.9
Bi-layered NN 96.2 98.3 97.6 96.6 84.7 88.3 92.4 87.5 90.3 93.7 99.7
Tri-layered NN 96.2 98.2 97.3 96.7 84.5 87.4 92.8 87.5 90.2 93.1 99.8

In the second experiment, Darknet19 model features are extracted and applied neural networks for
classification. The accuracy is computed for each angle separately. For angle zero, the 96.7% highest
accuracy is achieved by Tri-Layered NN. On angle 18, the Tri-Layered NN attained the best accuracy
of 99.8%, whereas this classifier performed well for the other angles such as 36, 54, 72, 90, 108, 126,
144, 162, and 180 and attained the accuracy of 98.1%, 97.4%, 81.6%, 87.1%, 90.2%, 85.5%, 88.3%,
93.6%, and 96.7%. The results of each angle of the dataset evaluation are reported individually. The
results of the CASIA-B dataset in terms of accuracies are shown in Table 2 by analyzing Darknet19
deep features.

In the third experiment, Efficientnet-b0 model features are optimized using the Sine-Cosine
optimizer and applied neural networks for the classification. The accuracy is computed for each angle
separately. For angle zero, the 96.7% highest accuracy is achieved by Tri-Layered NN. On angle 18,
the Tri-Layered NN attained the best accuracy of 99.8%, whereas this classifier performed well for the
other angles such as 36, 54, 72, 90, 108, 126, 144, 162, and 180 and attained the accuracy of 98.1%,
97.4%, 81.6%, 87.1%, 90.2%, 85.5%, 88.3%, 93.6%, and 96.7%. The results of each angle of the dataset
evaluation are reported individually. The results of the CASIA-B dataset in terms of accuracies are
shown in Table 3 by analyzing the best features of the Efficientnet-b0 model.
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Table 2: Classification results using Darknet19 deep features

Classifiers Accuracy (%)

0 18 36 54 72 90 108 126 144 162 180

NNN 96.6 99.8 98 97.3 81.5 86.7 90.3 85.1 88.4 94.1 96.6
MNN 96.6 99.8 98.1 97.5 81.8 87.1 90.4 85.8 88.3 93.7 96.6
WNN 96.6 99.8 97.9 97.3 82.3 87 90.7 86.1 88.8 94 96.6
Bi-layered NN 96.6 99.7 97.9 97.4 81.6 86.4 90.5 84.8 88.2 93.8 96.6
Tri-layered NN 96.7 99.8 98.1 97.4 81.6 87.1 90.2 85.5 88.3 93.6 96.7

Table 3: Classification results after optimization using Efficientnet-b0 deep features

Classifiers Accuracy (%)

0 18 36 54 72 90 108 126 144 162 180

NNN 95.9 97.4 96.5 96.1 83.1 85.9 91.5 85.5 88.6 92.2 99.7
MNN 96 97.9 96.8 96.4 84.4 87.2 91.7 86.5 89.9 92.8 99.8
WNN 96.2 98.1 96.9 96.6 84.1 87.9 92.1 86.8 90.2 93.2 99.8
Bi-layered NN 95.7 97.2 96.6 96.5 83.2 86.7 91.9 86.2 88.9 92.3 99.7
Tri-layered NN 95.7 97.7 96.6 96.3 83.9 85.2 91.7 86 88.7 92.1 99.5

In the fourth experiment, Darknet19 model features are optimized using the sine-cosine optimizer
and applied neural networks for the classification. The accuracy is computed for each angle separately.
For angle zero, the 96.2% highest accuracy is achieved by WNN. On angle 18, the WNN attained the
best accuracy of 99.7%, whereas this classifier performed well for the other angles, such as 36, 54, 72,
90, 108, 126, 144, 162, and 180, and attained the accuracy of 97.5%, 97.2%, 81.5%, 86.8%, 90.1%,
85.6%, 87.7%, 93.1%, and 99.8%. The results of each angle of the dataset evaluation are reported
individually. The results of the CASIA-B dataset in terms of accuracies are shown in Table 4 by
analyzing the best features of the Darknet19 model.

Table 4: Classification results after optimization using Darknet19 deep features

Classifiers Accuracy (%)

0 18 36 54 72 90 108 126 144 162 180

NNN 96.1 99.7 97.4 96.8 80.5 85.4 89 84.6 87.1 92.5 99.8
MNN 96.2 99.7 97.3 97 81.5 86 89.1 85.2 87.7 93.1 99.8
WNN 96.2 99.7 97.5 97.2 81.5 86.8 90.1 85.6 87.7 93.1 99.8
Bi-layered NN 96 99.7 97.3 96.9 81.1 85.5 89.5 84.7 87 92.9 99.8
Tri-layered NN 96.1 99.6 97.5 96.9 80.7 85.5 89.1 84.3 87 93 99.7

In the final experiment, the fusion of both optimized feature vectors is performed, and the final
optimal fused vector is passed to neural networks for classification. The accuracy is computed for each
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angle separately. For angle zero, the 96.8% highest accuracy is achieved by WNN. On angle 18, the
WNN attained the best accuracy of 99.9%, whereas this classifier performed well for the other angles,
such as 36, 54, 72, 90, 108, 126, 144, 162, and 180, and attained the accuracy of 98.7%, 98.1%, 85.5%,
89.5%, 93.3%, 87.9%, 91.3%, 94.7%, and 100%. The results of each angle of the dataset evaluation are
reported individually. The results of the CASIA-B dataset in terms of accuracies are shown in Table 5
by analyzing the final fused optimal vector. In the last, the proposed framework accuracy is visualized
in a graphical form, as shown in Fig. 5. In this figure, it is observed that the fusion process improved
the accuracy.

Table 5: Classification results after fusing the optimization of both deep model features

Classifiers Accuracy (%)

0 18 36 54 72 90 108 126 144 162 180

NNN 96.7 99.9 98.8 97.9 85.2 89 92.6 87.7 91.1 94.5 100
MNN 96.8 99.9 98.6 98 85.1 89.1 92.9 88.2 91.7 94.6 100
WNN 96.8 99.9 98.7 98.1 85.5 89.5 93.3 87.9 91.3 94.7 100
Bi-layered NN 96.7 99.8 98.7 98.1 84.6 89 92.7 87.4 90.6 94.6 100
Tri-layered NN 96.6 99.8 98.6 98.1 84.7 89 92.8 87.8 90.9 94.2 99.9

Figure 5: Visual investigation of the proposed framework’s intermediate phases

The accuracy of the suggested approach was compared against state-of-the-art (SOTA) methods
using different angles of the CASIA-B dataset, with the results shown in Table 6. The recommended
framework outperformed the most recent methods with a improved accuracy rate of HGR. The data
in this table shows that overall, the proposed HGR framework produced better accuracy than SOTA
techniques.
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Table 6: Accuracy comparison with of proposed technique with different existing methods

Reference Year Angles

0 18 36 54 72 90 108 126 144 162 180

[33] 2022 − 94.3 93.8 94.7 − − − − − − −
[34] 2022 − − − − 98.3 − − − − 94.9 98.6
[35] 2022 92.1 96.1 − 95.7 − 93 − − − 94.87 91.33
[36] 2022 97 97.9 − − 97.2 − − − − − 96.0
[37] 2020 98.8 95.6 96.3 91.9 94.0 95.2 94.6 95.4 90.4 93.0 95.1

Proposed 96.7 99.9 98.7 98.1 85.5 89.5 93.3 87.9 91.3 94.7 100

5 Conclusion

A deep learning and optimal feature selection using Harris Hawks controlled Sine-Cosine based
framework is proposed in the work to classify covariate factors such as carrying a bag and wearing a
coat. Two pre-trained CNN architectures are tweaked and trained using deep transfer learning in the
first step using static hyperparameters. The learning rate is selected by employing the particle swarm
optimization (PSO) algorithm. Then, features are retrieved from both trained models using a Harris
Hawks-controlled Sine-Cosine optimization approach. This algorithm chooses the best features, which
are then combined in a novel correlation-based manner. Finally, neural networks are employed for
the classification of selected features. The publicly accessible dataset, the CASIA-B dataset, has been
utilized for the experimental process and attained an improved accuracy of 94.14%. Comparison is
also conducted with recent techniques and shows an improvement in accuracy. Overall, we conclude
that the learning rate selection using a static manner decreased the accuracy. In addition, the selection
of best features improved the accuracy and reduced the computational time compared to the existing
experiments.
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