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ABSTRACT

As computer technology continues to advance, factories have increasingly higher demands for detecting defects.
However, detecting defects in a plant environment remains a challenging task due to the presence of complex
backgrounds and defects of varying shapes and sizes. To address this issue, this paper proposes YOLO-DD, a defect
detection model based on YOLOv5 that is effective and robust. To improve the feature extraction process and better
capture global information, the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware
Transformer (RDAT). Additionally, an Information Gap Filling Strategy (IGFS) is proposed to improve the fusion
of features at different scales. The classic lightweight attention mechanism Squeeze-and-Excitation (SE) module
is also incorporated into the neck section to enhance feature expression and improve the model’s performance.
Experimental results on the NEU-DET dataset demonstrate that YOLO-DD achieves competitive results compared
to state-of-the-art methods, with a 2.0% increase in accuracy compared to the original YOLOv5, achieving 82.41%
accuracy and 38.25 FPS (frames per second). The model is also tested on a self-constructed fabric defect dataset, and
the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5, demonstrating
its stability and generalization ability. The high efficiency of YOLO-DD enables it to meet the requirements of
industrial high accuracy and real-time detection.
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1 Introduction

Surface defect detection is a crucial aspect of computer vision (CV) tasks [1]. In manufacturing
environments, various defects such as crazing, scratches, and others can occur in the products due to
production conditions. These defects can impact the product lifespan [2] and can even cause safety
concerns [3]. Initially, most factories relied on manual inspection, which was not only time-consuming
and labor-intensive but also particularly inefficient.

Currently, methods for defect detection can be broadly categorized into traditional feature extrac-
tion methods and deep learning feature extraction methods. Traditional machine learning algorithms
can be broadly classified into three categories: texture feature-based methods, color feature-based
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methods, and shape feature-based methods. Wang et al. [4] used the entity sparse pursuit (ESP) method
to segment images, resulting in a significant improvement in computational efficiency. Liu et al. [5]
employed the non-subsampled shearlet transform and the kernel locality preserving projection (NSST-
KLPP) to identify surface defects in aluminum strips. Li et al. [6] statistically analyzed saliency
features of defective and defect-free areas in cloths and utilized support vector machines (SVM) [7] for
classification, resulting in high detection accuracy. However, traditional feature extraction methods
require manual feature design, making the model heavily dependent on the environment and weak
in generalization. Traditional methods are also not suitable for handling large amounts of data and
information. In contrast, deep learning-based methods have shown significant improvements in defect
detection.

With advancements in CV [8,9], Convolutional Neural Networks (CNN) have been widely applied
in the field of CV. Deep learning-based approaches can be classified into image classification networks
and object detection networks, depending on the function of the selected neural network [10]. The
classical classification networks are ResNet [11], Visual Geometry Group (VGG) [12], etc. Object
detection networks can be classified into two categories: one-stage detect models and two-stage detect
models. The two-stage algorithm first utilizes selective search [13] or region proposal network (RPN)
to predict region images and then merges the Region Of Interestes (ROIs) after extracting the features
of each ROI. Afterward, the features of ROIs are subjected to object classification and bounding box
regression. The current state-of-the-art two-stage detection models are R-CNN [14], Fast R-CNN [15],
and Faster R-CNN [16]. The most outstanding representatives of the single-stage detection models
are the You Only Look Once (YOLO) series [17–21], and Single Shot Detector (SSD) [22], among
others. These approaches formulate the detection task as a unified, end-to-end regression problem,
which only necessitates a single image processing step to detect the target. Thus, it is considerably
faster than the two-stage detection model. Despite the improved accuracy and efficiency brought
about by CNN, there are still some limitations in object detection. Most CNN-structured [23,24]
models are good at extracting local features but have difficulty capturing global relationships. For
industrial defect detection, single-stage object detection networks are better suited to the real-time
inspection requirements in factories, but the detection accuracy is not high enough. In contrast, while
the two-stage detection model achieves high accuracy, it is often slow and cannot meet the real-
time requirements of industrial applications. With the continuous development of CV and natural
language processing (NLP) [25], the Transformer [26] has become an increasingly popular and effective
structure. It has a powerful global capture capability and can dynamically focus on regions of interest,
making object detection more efficient and effective. However, industrial defect detection poses several
challenges, such as complex backgrounds and defects of varying sizes and shapes [27], requiring a
model with adaptive dynamic adjustment capabilities. Naseer et al. [28] demonstrated the effectiveness
and flexibility of the Transformer in this context. Vision Transformer (ViT) [29] directly uses the
Transformer encoder structure for image classification. Detection Transformer (DETR) [30] uses
CNN to process the image and obtain the feature map, which is then put into the Transformer for
object detection. The Swin Transformer [31] employs a hierarchical feature representation with a
shifted window, reducing computational overhead and improving detection efficiency. While these
methods have their advantages, they are often less effective in dealing with small datasets and can be
computationally expensive to train and deploy. Additionally, the structure of the vanilla transformer
is better at extracting global information, while the ability to extract local details is relatively weak.
To address this issue, a combination of the Transformer module and CNN can leverage the local
modeling capability of CNN and the global capture capability of the Transformer module, significantly
improving detection efficiency.
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Based on the aforementioned challenges in industrial defect detection, this study proposes the
YOLO-DD, which utilizes YOLOv5 as its base model. Relatvie-Distance-Aware Transformer (RDAT)
replaces the last layer of the CSP1_1 to improve feature extraction and preserve both local and global
representations. Information Gap Filling Strategy (IGFS) is incorporated in the neck to address the
loss of detailed information caused by an increasing number of convolution layers. Additionally, a
lightweight attention module Squeeze-and-Excitation (SE) is added to enhance the overall defect
detection performance of the model. Experimental results indicate that the YOLO-DD structure is
highly efficient and meets real-time requirements while achieving high accuracy in defect detection. In
summary, the main contributions of this work are as follows:

• A novel defect detection model, YOLO-DD, has been designed by modifying the vanilla
YOLOv5 model. The model significantly improves the performance of defect detection.

• A new module RDAT is designed to take advantage of the global modeling capabilities of the
Improved Swin Transformer Block and improve feature extraction.

• The YOLO-DD model incorporates an improved neck that enhances the feature fusion abil-
ity. IGFS is introduced to compensate for the information loss caused by upsampling and
downsampling, while the SE module adaptively highlights important regions to enhance feature
representation.

• The effectiveness of the YOLO-DD model is experimentally verified, and its performance is
compared with other state-of-the-art models. Additionally, ablation experiments are conducted
to demonstrate the usability of the proposed RDAT, IGFS, and SE modules.

2 Related Work

In this section, the work related to the model proposed in this paper is reviewed, which includes
the defect detection network, the attention mechanism module, and Transformer.

2.1 Defect Detection Network

In industrial defect detection applications, workers often use generic object detection networks
and adapt them to fit their specific industrial data. However, these networks may not perform well
in detecting defects under certain challenging conditions such as complex backgrounds or similar
foreground and background textures. To improve the real-time performance of the detection model,
several researchers have proposed modifications to the base models. Tao et al. [32] used a cascaded
two-stage Faster R-CNN model to locate insulator defects accurately in aerial images. Zhao et al. [33]
used multiscale fusion and deformable convolution to reconstruct Faster R-CNN, achieving 75.2% on
the NEU-DET dataset. Li et al. [34] improved the detection of small defects by using an improved
end-to-end YOLO model to detect steel surface defects. Similarly, Zhao et al. [35] improved the
YOLOv5 model using Res2Net block, dual feature pyramids and dual decoupling heads, and achieved
81.1% accuracy on the NEU-DET dataset. Chen et al. [36] proposed an adaptive convolutional
anchor network for surface defect detection, which achieved 76.4% on the NEU-DET dataset.
Yu et al. [37] used aggregated feature guidance module, efficient stair pyramid and dynamic scale-aware
head to improve the detection capability of YOLOv4, achieving 79.1% on the NEU-DET dataset.
Zhang et al. [38] improved the detection of solar cell surface defects by adding a variable convolution
to the backbone of YOLOv5 and a detection head for shallow features in feature fusion. In this paper,
the vanilla YOLOv5 is chosen as the base model because of its speed, accuracy, and lightweight design,
making it suitable for meeting real-time industrial requirements.
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2.2 Attention Mechanism Module

The attention mechanism module is a technique that selectively focuses on the most important
areas, similar to how the human eye selectively focuses on specific objects or details. This module
works by adaptively assigning higher weights to important parts of the feature map and lower weights
to less important parts. It was first introduced in NLP before gaining popularity in CV research. In the
context of defect detection, the attention mechanism can be leveraged to focus on critical regions of a
complex background. By doing so, the network can better differentiate defects from the background
areas in an image, leading to improved detection accuracy. This approach enhances the representation
of important features, leading to more precise localization of defects and reduced false positives.
Ultimately, the attention mechanism module is a powerful tool that improves the robustness of the
defect detection network, making it more effective in challenging industrial environments.

Currently, the mainstream attention mechanism modules used in CV research include SE [39],
Convolutional Block Attention Module (CBAM) [40], and Efficient Channel Attention (ECA) [41],
among others. The SE module performs average pooling to encode all spatial features on the channels
as global features, obtaining the global features at the channel level. Then, the Excitation operation is
performed on the global features to learn the relationship between the channels and obtain the weights
of different channels. Finally, the weights of different channels are multiplied by the original input to
get the final result. The CBAM utilizes two modules, Channel Attention Module (CAM) and Spatial
Attention Module (SAM), to implement the attention mechanism. The CAM module aggregates
spatial information through parallel max pooling and average pooling and obtains the channel’s
attention through the shared network. The SAM module uses the output feature map of the CAM
module as the input feature map and applies global maximum and average pooling to obtain two sets
of results, which are then combined using the Concat operation. Finally, it multiplies the result with the
original feature map after dimensionality reduction and sigmoid operations to obtain the final result.
The ECA uses a local cross-channel interaction strategy with an adaptive selection of convolutional
kernels. It can be combined with convolutional neural networks to achieve excellent results. These
attention mechanism modules are designed to enhance the representation of important features in an
image and to focus on critical regions of the image, improving the accuracy and robustness of the
defect detection network.

2.3 Transformer

The transformer was originally developed for NLP but has since been applied to CV due to its
remarkable success. For example, the ViT breaks down images into patches and directly feeds them
into the transformer structure for classification. Similarly, DETR combines CNN with Transformer
to treat object detection as an ensemble prediction problem, achieving impressive results. The Swin
Transformer, on the other hand, employs shifted windows to construct a hierarchical CNN structure
and has shown great performance in various tasks such as classification, detection, and segmentation.
In this paper, we propose a Swin Transformer block with 2D relative-distance-aware position encod-
ings, which is integrated into the vanilla YOLOv5 model to enhance its global perception ability.

3 Methods

In this section, the YOLO-DD model will be described in detail. The model in this paper is based
on the YOLOv5_l network. Vanilla YOLOv5 uses CSPDarknet [42] and Spatial Pyramid Pooling
(SPP) [43] as the backbone, PANet [44] as the neck, and YOLO head as the detection head. In our
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experiments, YOLOv5 was chosen as the base model because of its lightweight design and real-time
detection capabilities.

3.1 YOLO-DD

Fig. 1 shows the overall architecture. YOLO-DD consists of three parts: backbone, neck, and
YOLO head. In the proposed YOLO-DD model, the CSP1_1 in the last stage of the Darknet structure
is replaced with the novel-designed RDAT structure in the backbone. To solve the issue of data
misalignment, PatchEmbedding, and Post-processing techniques are employed. A detailed description
of the RDAT structure can be found in Section 3.2.
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Figure 1: The structure of the YOLO-DD. RDAT represents relative-distance-aware transformer. SE
represents squeeze-and-excitation

To compensate for the loss of detailed information that occurs during up-sampling and down-
sampling, IGFS is employed. Additionally, the SE module is utilized to enable the model to selectively
focus on regions with high importance, which is especially beneficial for defect detection tasks. More
information about IGFS and the SE module can be found in Section 3.3. Finally, the detection head
structure from vanilla YOLOv5 is retained for the YOLO-DD model.

For a given input image I, the backbone network outputs four feature maps of different sizes, as
shown in Eq. (1). In the original YOLOv5 neck stage, the output feature map is denoted as P, which
contains three different sizes of feature maps, as shown in Eq. (2). After that, P is fed into the SE
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module for feature focus calculation, and the output result is expressed as B, as shown in Eq. (3).

C = {C2, C3, C4, C5} (1)

P = {P3, P4, P5} (2)

B = {B3, B4, B5} (3)

3.2 Relative-Distanse-Aware Transformer (RDAT)

In the realm of defect detection, CNN networks have proven effective in extracting features and
visual structures from images. However, Transformers have shown superior performance in handling
relationships between visual elements. This is where RDAT comes in, as it can leverage the strengths
of Transformers in addressing relationships between visual elements and objects to achieve even better
results.

RDAT is composed of three parts: PatchEmbedding, the Improved Swin Transformer Block, and
Post-processing. The architecture is depicted in Fig. 2. In the vanilla YOLOv5 model, the feature
map data output by SPP is in the format of C × H × W, where C is the dimension of the feature
map and H and W are the height and width of the feature map, respectively. On the other hand, the
Improved Swin Transformer Block requires the input data to be in the format of K × C, where K
represents the size of patch embeddings and C represents the dimension of the patch embeddings.
The PatchEmbedding module can convert the original two-dimensional image into a series of one-
dimensional patch embeddings. It mainly comprises Flatten and Transpose operations, as shown in
the orange rectangular box in Fig. 2. Specifically, it flattens the feature map to combine the width and
height of the feature map into one dimension and then uses the Transpose operation to adjust the
position of the dimensions. The calculation process can be expressed in Eq. (4) as follows:

yp = Transpose (Flatten (x)) (4)

where yp represents the output of PatchEmbedding. x represents the output of SPP.

Figure 2: RDAT Block. LN means LayerNorm. W-RDAMSA and SW-RDAMSA denote window-
based multi-head self-attention using regular and shifted window partitioning configurations with 2D
relative position-aware position encoding, respectively
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The structure of the Improved Swin Transformer Block, illustrated in Fig. 2, is composed of
several components: LayerNorm (LN), Window Multi-Head Self-Attention module with 2D relative-
distance-aware position encodings (W-RDAMSA), 2D relative-distance-aware position-encoding
Multi-Head Self-Attention module with shifted window (SW-RDAMSA), residual connections and
the Multi-Layer Perception (MLP) with Gaussian Error Linear Unit (GELU) nonlinearity. The
Improved Swin Transformer Block is calculated as follows:

yw = W − RDAMSA (LN (yp)) + yp (5)

ŷl = MLP (LN (yw)) + yw (6)

ysw = SW − RDAMSA
(
LN

(
ŷl

)) + ŷl (7)

ŷl+1 = MLP (LN (ysw)) + ysw (8)

where yw and ysw represents the output features of the W-RDAMSA and SW-RDAMSA, ŷl represents
the output of the MLP module for block l, W-RDAMSA, and SW-RDAMSA denote window-based
Multi-Head Self-Attention using regular and shifted window partitioning configurations with 2D
relative position-aware position encoding, respectively.

Post-processing plays an important role in converting the data output from the Improved Swin
Transformer Block to the data format required by the YOLO network. There are two operations
involved in post-processing. The first operation is Transpose, which exchanges the position of two
dimensions. The second operation is View, which converts the one-dimensional patch embedding
format into a two-dimensional image format. The specific operation is shown in Eq. (9). Transpose
changes the data format from K × C to C × K, and the View operation changes C × K to C × H ×
W. Although RDAT uses 4 heads, they are not shown in Fig. 2 for simplicity.

y = View
(
Transpose

(
ŷl+1

))
(9)

where ŷl+1 indicates the output of the Improved Swin Transformer Block, which is also the input of
PostEmbedding. y represents the output of PostEmbedding.

In the field of CV, there are two common methods for position encoding in transformer-based
models: relative position encoding and absolute position encoding. The encoding in BETR [45] is
simple and achieves remarkable results by initializing the position embedding and then by training
the absolute position vector for each position. Swin Transformer generates weights based on the
position relationship between patches, i.e., relative position coding. However, for CV tasks [46,47],
many studies have found that position encoding using relative-distance-aware location coding [48]
is more appropriate. The attention mechanism used in RDAT is shown in the purple rectangular
box in Fig. 2. RDAT utilizes 2D relative-distance-aware position encodings to put into the attention
mechanism, which can effectively combine location information with content information and focus
on both content and location features. The attention mechanism replaces the one used in the original
Swin Transformer block and allows the model to focus on content information along with location
information. The formulation of the attention mechanism is described as follows:

Attention (Q, K, V) = SoftMax
(

QKT

√
d

+ QRT

)
V (10)

R = Rh + Rw (11)

where Q, K, V, and R represent query, key, value, and position encodings, respectively, and d indicates
the dimension of the query or key. Additionally, Rh and Rw represent the relative positions of 2D feature
maps encoded in height and width, respectively.
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3.3 Improved Neck

Semantic information can be lost during the feature fusion stage due to repeated upsampling and
downsampling operations. To mitigate the loss of information, IGFS was proposed. As the size of the
feature map becomes smaller and smaller, the information on small defects will be lost continuously.
To make up for this deficiency, the high-resolution feature maps in the backbone are introduced into
the neck to retain semantic information about small target objects. And this method can reduce the
loss of small object feature information. In the IGFS, the resolution feature C2 is first adjusted to the
same resolution size as C3 by a 3 × 3 convolution layer. The adjusted feature map is called P2. P2 is
then appended to P3 via element-wise addition. After going through the SE module, the final output
B3 is obtained. The specific calculation method is shown in Eqs. (12) and (13). PANet addresses the
issue of information loss during feature fusion by utilizing the pyramid feature hierarchy. Since C5
contains significant semantic information, simply upsampling and downsampling it during feature
fusion may lead to substantial information loss. To make the most of the strong semantic information
in C5, the features of C5 and P5 are connected and element-wise addition is performed to obtain a
new feature map. This fused feature map is then fed into the SE module to obtain the final output
feature map, B5. The operation is shown in Eq. (14).

P2 = Conv (C2) (12)

B3 = SE (P2 + P3) (13)

B5 = SE (C5 + P5) (14)

To improve the accuracy of defect detection, SE modules with an attention mechanism are
integrated into all three different scales of the feature maps before the output of the neck. The SE
module can enhance the feature expression of the input feature maps by adaptively rescaling channel-
wise features based on the importance of each channel, thus allowing the model to focus on the most
informative features for detecting defects. The attention mechanism of the SE module further improves
the feature expression by weighting the channel-wise rescaled features based on their relevance to
the defective area. This enables the model to prioritize attention to channels associated with defect
regions, improving the accuracy of defect detection. The SE module mainly consists of the Global
Average Pooling (GAP) layer, Linear layer, activation function ReLU, activation function Sigmoid,
and dot product operation Scale. The operation is shown in Eq. (15). The format of the original PANet
output data P is C × H × W. First, the feature map is compressed to C × 1 × 1 after the compression
operation by GAP. The excitation operation consists of two Linear layers. The first one incorporates
the compression parameter r, which is done to reduce the number of channels and thus the number of
parameters. After the first layer, the feature map becomes C/r × 1 × 1. The second layer recovers the
number of channels and the feature map reverts to C × H × W. The activation functions used in the
first and second layers are different, ReLU and Sigmoid, respectively. Finally, the Scale operation is
performed. The original feature map C × H × W is multiplied by the weight C × 1 × 1 to obtain the
final output B.

B = S(R(L(R(L(GAP(P))))), P) (15)

where P and B denote input and output, respectively. L(), S(), and R() indicate Linear operation, Scale
operation, and ReLU operation, respectively.
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4 Experiments

In this section, the experimental environment, configuration, data sets used, and experimental
evaluation criteria are described.

4.1 Environments

This article uses the framework of PyTorch to train the model. The computer configuration used
in this experiment includes a GeForce RTX 2080Ti GPU and an i5-7400 CPU, with 11 GB of memory
allocated to the GPU and 64 GB of memory allocated to the CPU. The operating system used for
the computer was Ubuntu 18.04 LTS. The optimization strategy chosen for training was Stochastic
Gradient Descent (SGD). The parameters used in the experiments were the initial learning rate was
set to 0.01, the momentum to 0.937, and the weight decay to 1e-4. After that, the model is trained for
300 epochs. The pre-trained weights used in the experiments are trained from the coco dataset. And
the batch size was set to 4 for the consideration of computer hardware in this work.

4.2 Dataset

In this work, the NEU-DET [49] dataset was used. It is a publicly available dataset that contains
six defect types, which include Patches (Pa), Rolled-in Scale (RS), Crazing (Cr), Inclusion (In), Pitted
Surface (PS), and Scratches (Sc). 300 images are available for each defect, for a total of 1800 images,
each with a resolution of 200 × 200. Some examples of defect images are shown in Fig. 3. In this
experiment, the data set is divided into the training set and the validation set with the radio of 8:2. It
means that the training set contains 1440 images and the validation set contains 360 images. The data
set was mosaicked and mixed up at a scale of 0.5. In addition, since the training images generated by
these two data enhancements are far from the real distribution of natural images, enhancement was
turned on for the first 210 epochs of the experimental training and turned off for the last 90 epochs.

Figure 3: Defect images in NEU-DET. (a) Cr. (b) In. (c) Pa. (d) PS. (e) RS. (f) Sc

In addition, to prove the validity of the model, a self-constructed fabric defect dataset was used
for training. A portion of the images in the ALTEX dataset was filtered and transformed by cropping
to obtain new defective images. The self-constructed dataset contains 97 fabric defect images, and the
image size is 224 ∗ 224. To prevent data leakage, the dataset was first divided in the ratio of 8:2. After
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that, the number of each image was enlarged by data enhancement such as rotation, Gaussian blur,
and size transformation. Finally, the training set contains 1241 defective images and the validation set
contains 311 defective images. Fig. 4 shows some of the enhanced defect images.

Figure 4: Defect images in self-constructed fabric defect dataset. (a, c) represent the original image. (b,
d) represent the enhanced image

4.3 Evaluation

In this paper, Recall, Precision, Average Precision (AP), mean Average Precision (mAP), and
Frames Per Second (FPS) are considered the main measures to verify the validity of the experiment.
The Intersection over Union (IoU) refers to the percentage of the area where the true box intersects
the predicted box. It is defined in Eq. (16). A detection map will be considered to be TP when the
IoU exceeds the given threshold (e.g., 0.5). Precision (P) denotes the percentage of samples recalled as
positive samples that are truly positive. The details are given in Eq. (17). Recall (R) is the percentage of
all positive samples that are correctly identified as positive samples. The R is defined in Eq. (18). The
AP value is the area of the P-R curve. The AP is shown in Eq. (19). The mAP is obtained by averaging
the average accuracy of the six defects. And the higher AP value represents higher identification
accuracy. It is calculated as in Eq. (20). The FPS indicates the number of images per second that can
be processed by the object detection model and allows evaluation of the real-time performance of the
detection method. It is calculated as shown in Eq. (21). The Params indicate the number of parameters
of the model, which can reflect the lightness of the model. Floating Point Operations (FLOPs) refer
to the number of floating point operations, which can be understood as the level of computation. It
can be used to measure the complexity of a model.

IoU = area (A) ∩ area (B)

area (A) ∪ area (B)
(16)

P = TP
TP + FP

(17)

R = TP
TP + FN

(18)

AP =
∫ 1

0

PdR (19)

mAP = 1
N

N∑
i=1

APi (20)

FPS = 1
1
n

∑n

i=1 ti

(21)
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where A and B are the ground truth and the predicted box, the area indicates the calculated area
function. TP, FP, and FN represent the number of true positives, false positives, and false negatives of
defects, respectively. In this article, IoU ≥ 0.5 represents the true positive, and IoU < 0.5 represents
the false positive. N denotes the number of defect categories in the dataset, and in this study, the NEU-
DET dataset is used which has six types of defects, so the value of N is 6. n expresses the number of
images to be detected and t indicates the time taken to detect an image. In this experiment, the value
of n is 100.

5 Results

In this section, several state-of-the-art models are compared with YOLO-DD to demonstrate the
feasibility of the designed model. Then the usability of each module in the model is demonstrated by
ablation experiments. Finally, the results of the experiment are discussed.

5.1 Comparison with State-of-the-Art Models

To verify the validity of the proposed model, comparative experiments were performed between
the proposed model and other state-of-the-art models. In real-world industrial production, defect
detection requires not only high accuracy but also real-time performance. So in this part of the
exposition, both the mAP and the FPS will be used for a comprehensive evaluation of the defect
detection model. In this experiment, the models that are compared with the proposed model are the
two-stage detection model like the Faster R-CNN, and the single-stage detection models like SSD,
YOLOv3, YOLOv5, YOLOv7, YOLOv8. The results of the evaluation of the above models on the
NEU-DET dataset and the self-constructed dataset are shown in Tables 1 and 2.

Table 1: The results of different models on the NEU-DET dataset

Cr In Pa PS RS Sc mAP FPS

Faster R-CNN 0.47 0.83 0.95 0.80 0.65 0.93 0.772 11.05
SSD 0.47 0.80 0.94 0.78 0.66 0.84 0.745 55.33
YOLOv3 0.36 0.72 0.94 0.71 0.63 0.91 0.712 83.06
YOLOv5 0.48 0.84 0.98 0.80 0.79 0.94 0.804 45.40
YOLOv7 0.40 0.76 0.92 0.66 0.63 0.93 0.720 38.16
YOLOv8 0.43 0.79 0.91 0.68 0.68 0.92 0.737 33.61
YOLO-DD 0.56 0.86 0.98 0.81 0.80 0.94 0.824 38.25

Table 2: The results of different models on the self-constructed dataset

Model mAP FPS

Faster R-CNN 0.756 11.05
SSD 0.842 55.33
YOLOv3 0.710 83.06
YOLOv5 0.849 45.40
YOLOv7 0.803 38.16

(Continued)



770 CMC, 2024, vol.78, no.1

Table 2 (continued)

Model mAP FPS

YOLOv8 0.886 33.61
YOLO-DD 0.855 38.25

From Table 1, it is clear to observe that the proposed model in the paper achieves 82.4% accuracy
on mAP value, achieving the best results and far exceeding the performance of other methods. At
the same time, it achieves a speed of 38.25 FPS which can meet the actual industrial factory detection
requirements. YOLOv3 has the fastest detection speed (83.06 FPS) among all models, but the accuracy
is the lowest among them. Faster R-CNN, as a representative of the two-stage detection model, has
the slowest detection speed compared to other detection models. Besides, its accuracy is also 5.2%
lower than that of YOLO-DD. Compared with the vanilla YOLOv5, the accuracy of each category
of defects has improved. And the biggest improvement is in Cr, which improves by 8%. YOLOv7 and
YOLOv8 are not only less accurate than YOLO-DD, but also the model calculation speed will be
slower than YOLO-DD. Finally, through comparative tests, it can be concluded that the YOLO-DD
detection model can effectively detect steel defects and achieve the best detection performance.

As shown in Table 2, our model achieves a higher accuracy of 85.5% on the self-constructed
dataset. Among the models, Faster R-CNN performs the worst with the lowest mAP value and the
slowest detection speed. When compared to the original YOLOv5 model, YOLO-DD shows a 0.6%
improvement in accuracy. However, the accuracy of the proposed model in this paper is 3.1% lower
compared to the latest release of YOLOv8. Nevertheless, YOLO-DD exhibits a higher FPS, indicating
faster detection speed.

5.2 Ablation Study

For the ablation study, YOLOv5 was chosen as the base model for this experiment, which includes
CSPDarknet as the backbone, PANet as the neck, and YOLO head as the detection head. To verify
the feasibility of each improved module in the network model, combined experiments were conducted
using RDAT, IGFS, and SE block. To rationally determine whether the proposed improvements have
application value for defect detection, ablation experiments were conducted on the NEU-DET dataset
and the self-constructed dataset in this paper. And the experimental results are listed in Tables 3 and 4.
“RDAT” means replacing the last CSP1_1 in CSPDarknet with an RDAT module. “IGFS” indicates
that the Information Gap Filling Strategy is used in the neck. “SE” means the SE block used in the
neck. And “ECA” means replacing the SE block with the structure of ECA.

As shown in Table 3, it is clear to observe that the use of the RDAT structure in the backbone
can improve the accuracy from 80.4% to 81.3%. It indicates that RDAT can play the advantage of
the Improved Swin Transformer Block for defect detection with more complex backgrounds. With the
addition of IGFS as well as the attention module, the accuracy changes from 81.3% to 82.4%, a further
point improvement in accuracy. It shows that the designed improved neck structure can utilize the
information from the high-resolution feature maps to compensate for the loss of detailed information
of small defects deep in the convolutional layers. Additionally, by utilizing the SE module, the model
can focus more on the defects themselves, resulting in a 0.9% improvement in detection accuracy when
combined with the IGFS. In addition, the experimental results show a slight decrease in accuracy and
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FPS when the SE module is replaced by the ECA module. From the experimental data, the SE module
is more suitable for defect detection than the ECA module. So the SE module is used in the network
designed in this paper.

Table 3: Results of the ablation experiments on the NEU-DET dataset

RDAT IGFS SE ECA mAP FPS

0.804 45.49√ 0.813 43.28√ √ 0.817 37.54√ √ √ 0.824 38.25√ √ √ 0.820 37.63

Table 4: Results of the ablation experiments on the self-constructed dataset

RDAT IGFS SE ECA mAP FPS

0.849 45.49√ 0.854 43.28√ √ 0.848 37.54√ √ √ 0.856 38.25√ √ √ 0.858 37.63

Validation of the ablation experiments was performed on the self-constructed dataset, and the
results are shown in Table 4. The original YOLOv5 model achieved an accuracy of 84.9%. The addition
of the RDAT module improved the model’s accuracy by 0.5%, but it led to a reduction in detection
speed. Introducing the IGFS module resulted in a slightly lower accuracy compared to the original
YOLOv5 model, which may be attributed to the introduction of some noise in the shallow feature maps.
However, the inclusion of the SE module improved the model’s accuracy to 85.6%. Additionally, the
ECA module was explored as an alternative to the SE module, and it was found to enhance accuracy
by 0.2%. It is worth noting that using the ECA module comes at the expense of decreased detection
speed compared to the SE module.

5.3 Analysis of Experimental Results

The accuracy curves of each model in the training process are shown in Fig. 5a. It can be observed
that the YOLO-DD model (red line) exhibits significant accuracy improvement after approximately
100 epochs and maintains a stable lead after 160 epochs. Ultimately, the YOLO-DD model achieves
an accuracy of 75.76%. Moreover, the accuracy curve of the YOLO-DD model appears to be relatively
smooth, indicating a relatively stable model. As depicted in Fig. 5a, YOLOv8 maintains the lead from
50 epochs to 150 epochs. However, beyond 150 epochs, the model’s accuracy experiences a significant
decline, with a final training accuracy of only 70.6%. The YOLOv7 model starts converging around 50
epochs and eventually reaches a model accuracy of 75.45%, which differs by only 0.31% from YOLO-
DD. Conversely, the SSD model represented by the orange line demonstrates the lowest accuracy
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among all models, reaching a final accuracy of only 68%. Faster R-CNN with a blue line in Fig. 5a,
as a representative of the two-stage detection network, can not achieve the best results on the NEU-
DET dataset. From Fig. 5a, it can be observed that the accuracy curve of the Faster R-CNN wobble
amplitude is the largest among all models throughout the training process. That means the model is
not stable enough.

Figure 5: Accuracy curves of each model during the training process. (a) Comparison of results on
NEU-DET dataset. (b) Comparison of results on self-constructed fabric dataset

For the self-constructed fabric defect dataset, the training results are shown in Fig. 5b. Due to
the limited size of the dataset, all models exhibit significant fluctuations during training. However,
YOLO-DD demonstrates a smoother curve compared to the other models, indicating its superior
stability. YOLO-DD shows convergence after approximately 50 epochs and maintains a relatively
stable performance, achieving a final training accuracy of 82.62%. On the other hand, YOLOv3
exhibits slower convergence and lower accuracy compared to the other models. Both SSD and Faster
R-CNN have the slowest convergence rates, requiring around 220 epochs to converge. Notably, the
SSD model surpasses YOLO-DD in terms of final training accuracy. YOLOv8 achieves the highest
training accuracy among all models, although its convergence rate is relatively slower. YOLOv7
consistently performs less accurately than YOLOv5 throughout training. In summary, YOLOv8 and
SSD demonstrate the best performance on the self-constructed fabric defect dataset, followed by
YOLO-DD, which exhibits faster convergence and relatively higher model accuracy.

5.4 Analysis of Detection Results

To validate the effectiveness of the YOLO-DD model, it performs defect detection and visualiza-
tion on six different types of defects and compares the results with other state-of-the-art models. Fig. 6
shows the detection results of seven different models for a defect Cr. Faster R-CNN predicts a large
number of overlapping rectangular boxes, indicating redundant detection. The detection results of
SSD and YOLOv8 are similar, predicting three defects, but lacking confidence in accurately estimating
the defect sizes. While YOLOv5, YOLOv3, and YOLOv7 predict only two defects and miss one.
In contrast, YOLO-DD successfully predicts three defects, demonstrating the effectiveness of the
proposed model. These results further confirm the feasibility and validity of the YOLO-DD model.
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Figure 6: Defect results for Cr on the NEU-DET dataset. (a) Original image. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3.
(e) The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) Detection results of
YOLOv7. (h) Detection results of YOLOv8

The defect results of In are shown in Fig. 7. It can be observed that Faster R-CNN detects five
defects, making it the best detection among all models. SSD, YOLOv3, and YOLOv5 all detect only
three defects. All of them are missed. For SSD, the rectangular box does not completely enclose the
defects, making it the worst detection of all models.YOLO-DD, YOLOv7, and YOLOv8 all detected
four defects, with the YOLOv7 model combining two defects into one defect detection, and the
remaining two models showing one defect not detected. Compared with the original YOLOv5 model,
YOLO-DD improves the ability to predict small defects.

It is evident from Fig. 8 that the detection results of YOLOv3 are poor. The defects cannot be
accurately marked out, especially in places where the features are not very obvious, resulting in missed
defects. Although YOLOv5 predicts three boxes, two of them are overlapping, and it fails to detect
light-colored defects. The Faster R-CNN model detects the most number of defects, but it cannot adapt
to the shape of the defects and the defect content overflows the rectangular box. YOLOv7, YOLOv8
and SSD both mark four defects, but they have overlapping boxes like YOLOv5. On the other hand,
YOLO-DD only marks three rectangular boxes, but it detects essentially all defective areas, including
areas where features are not obvious, thus showing its high detection ability.
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Figure 7: Defect results for In on the NEU-DET dataset. (a) Original image. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3.
(e) The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) Detection results of
YOLOv7. (h) Detection results of YOLOv8

Figure 8: Defect results for Pa on the NEU-DET dataset. (a) Original image. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3.
(e) The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) Detection results of
YOLOv7. (h) Detection results of YOLOv8
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The YOLOv5, YOLOv7, and YOLO-DD detections of PS defects are similar, as shown in Fig. 9.
All three models successfully detect all defects. YOLOv3 is the only one of all models that shows a
missed detection and has the worst results. Both Faster R-CNN and SSD models detected four defects,
appeared to have overlapping detection regions for the same Pa defect, and did not accurately identify
the size of the PS defect. YOLOv8 detects the correct number of defects but does not correctly label
the size of defects using rectangular boxes.

Figure 9: Defect results for PS on the NEU-DET dataset. (a) Original image. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3.
(e) The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) Detection results of
YOLOv7. (h) Detection results of YOLOv8

Fig. 10 shows the detection results for the RS defect. It can be observed that Faster R-CNN has
mislabeled the background region as defects and some of the predicted boxes overlap with each other.
SSD, YOLOv3, YOLOv7, and YOLOv8 all missed some defects, with YOLOv3 detecting only one
defect, the worst result of all the models. For SSD and YOLOv8, the defects are split into multiple
boxes rather than detected as a whole. In contrast, both YOLOv5 and YOLO-DD can detect the most
complete number of defects and can detect the whole defect without splitting it into multiple boxes.

Fig. 11 displays the results of Sc detection, demonstrating that the proposed model in this paper
achieves the best detection performance among all the models tested. YOLOv3 has the worst detection
effect among all models, only detecting three large defects. For small defects, as shown in the lower left
corner of Fig. 11a, Faster R-CNN, SSD, YOLOv7, and YOLOv8 failed to detect them. In comparison
to these two models, YOLO-DD can detect some small defects that were previously missed. The SSD
and YOLOv3 models demonstrate the worst detection performance, where even slightly smaller defects
were undetected.
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Figure 10: Defect results for RS on the NEU-DET dataset. (a) Original image. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3.
(e) The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) Detection results of
YOLOv7. (h) Detection results of YOLOv8

Figure 11: Defect results for Sc on the NEU-DET dataset. (a) Original image. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3.
(e) The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) Detection results of
YOLOv7. (h) Detection results of YOLOv8
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Fig. 12 illustrates the predictions of the different models for the self-constructed dataset. The
Faster R-CNN predicts two boxes, one of which is predicted to be too large and contains many regions
without defects. SSD, YOLOv3, YOLOv7, and YOLOv8 only detect one type of defect and miss the
defects in the upper left region. Only YOLOv5 and YOLO-DD succeeded in detecting all defects and
accurately labeling their precise locations.

Figure 12: Self-constructed dataset defect detection results. (a) Original picture. (b) The detection result
of the Faster R-CNN. (c) The detection result of the SSD. (d) The detection result of the YOLOv3. (e)
The detection result of YOLOv5. (f) The detection result of YOLO-DD. (g) The detection results of
YOLOv7. (h) The detection results of YOLOv8

6 Conclusion

This paper presents YOLO-DD, a defect detection model based on YOLOv5. A module called
RDAT, which is based on an Improved Swin Transformer Block is designed to provide global sensing
of target defects in the backbone of the network. To address the problem of information loss caused
by upsampling and downsampling, IGFS and SE modules are introduced in the neck to improve the
overall performance of the network. YOLO-DD achieves 82.41% mAP on the NEU-DET dataset,
which is 2.0% improvement over the vanilla YOLOv5, with an FPS of 38.25. On the self-constructed
fabric defect dataset, YOLO-DD outperforms YOLOv5, indicating that the structure meets the real-
time requirements and achieves higher accuracy.

In the future, we consider introducing semi-supervised or even unsupervised learning for industrial
defect detection to make up for the challenges of difficult access to industrial data sets. In addition, we
will concentrate on the compression of the model for a lighter model to be used in the defect detection
factory.
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