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ABSTRACT

Influence Maximization (IM) aims to select a seed set of size k in a social network so that information can be
spread most widely under a specific information propagation model through this set of nodes. However, most
existing studies on the IM problem focus on static social network features, while neglecting the features of temporal
social networks. To bridge this gap, we focus on node features reflected by their historical interaction behavior in
temporal social networks, i.e., interaction attributes and self-similarity, and incorporate them into the influence
maximization algorithm and information propagation model. Firstly, we propose a node feature-aware voting
algorithm, called ISVoteRank, for seed nodes selection. Specifically, before voting, the algorithm sets the initial
voting ability of nodes in a personalized manner by combining their features. During the voting process, voting
weights are set based on the interaction strength between nodes, allowing nodes to vote at different extents and
subsequently weakening their voting ability accordingly. The process concludes by selecting the top k nodes with
the highest voting scores as seeds, avoiding the inefficiency of iterative seed selection in traditional voting-based
algorithms. Secondly, we extend the Independent Cascade (IC) model and propose the Dynamic Independent
Cascade (DIC) model, which aims to capture the dynamic features in the information propagation process by
combining node features. Finally, experiments demonstrate that the ISVoteRank algorithm has been improved in
both effectiveness and efficiency compared to baseline methods, and the influence spread through the DIC model
is improved compared to the IC model.
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1 Introduction

With the advent of the digital era, the study of social networks has attracted widespread interest
[1]. Especially the IM problem, which mainly involves selecting seed nodes through the influence
maximization algorithm, and then simulating the propagation through the information propagation
model [2,3]. This is particularly important for viral marketing, as such research can effectively promote
products or services by identifying influential users. Hence, the study of IM holds profound theoretical
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significance and broad application prospects. However, current research has mainly focused on the
static properties of social networks, while ignoring the dynamic historical interaction behaviors
in social networks. For instance, in many real-world scenarios, a node, despite having numerous
neighbors, maybe like a dormant node if it does not interact with its neighbors. In contrast, another
node, having the same neighbors, can be very active if it frequently interacts with its neighbors.
Actually, the latter node evidently holds a heightened capacity for information propagation, but the
traditional IM algorithms treat these two nodes equally.

Taking Fig. 1 as an example, the edge values symbolize the interaction timestamps between users.
Node A and node B have the same number of neighbors, but A only communicates with its neighbors
for one time, in contrast, B often communicates with its neighbors. It is easy to see that B has more
potential to propagate information than A. Therefore, considering only the static structure of the
network is not sufficient to find the nodes with the highest potential influence, and it is also necessary
to consider the dynamic historical interaction behavior of the nodes.
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Figure 1: An example of two nodes communicating with their neighbors

However, the interaction behavior between nodes is not random, but is influenced by the node
features reflected by their historical interaction behavior [4,5]. For instance, if two nodes have had
frequent interactions in the past, they are likely to interact more frequently in the future. Furthermore,
the historical interaction behavior between nodes also displays self-similarity, which mirrors the
tendency of nodes to repeat their behaviors [6–8]. This behavior is reflected in the consistency of
individual behavioral patterns across a time series. For example, if user A regularly contacts user B in
the morning, they are likely to continue this pattern on subsequent mornings. Overall, the node features
reflected in the historical interaction behaviors of nodes greatly influence information propagation.
For example, in the real-time evolution of Twitter networks, researchers have found that the largest
cascades tend to be generated by users with many followers and a large number of historical interaction
behaviors [9].

Evidently, the node features embodied by these dynamic historical interaction behaviors are
important in actual social networks, but are not adequately represented in traditional algorithms
and propagation models of IM. The IM problem of temporal social networks faces the following
challenges:

(1) Seed selection algorithms: traditional influence maximization algorithms have limited consid-
eration of node characteristics in temporal social networks and cannot select high-quality seed nodes;

(2) Information propagation models: traditional information propagation models do not take into
account the dynamic historical interaction behavior of nodes, and thus cannot be applied to temporal
social networks.

Therefore, the motivation of this study is to more appropriately address the above issues in
temporal social networks by considering the node features reflected by their historical interaction
behaviors. Based on this, we first propose a voting-based IM algorithm called ISVoteRank. This
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algorithm initially determines the voting ability of each node based on its node features. During
the voting process, voting weights are set based on the interaction strength between nodes, allowing
nodes to vote for their in-neighbors at different extents, and subsequently weakening their voting
ability accordingly. After the voting is completed, the top k nodes with the highest voting scores are
selected as seed nodes. Subsequently, we designed an information propagation model called DIC,
which utilizes the node features of interaction attributes and self-similarity to capture the dynamic
features of temporal social networks, including dynamic changes in the activation time, activation
probability, and activation frequency of nodes. In summary, our main contributions are as follows:

(1) We quantify the historical interaction behaviors of nodes into two node features, i.e., interac-
tion attributes and self-similarity. To distinguish the order of interactions, we classify the interaction
attributes into active interaction attributes and passive interaction attributes.

(2) We propose the node feature-aware voting algorithm ISVoteRank, which incorporates node
features into the voting process, sets the node’s personalized initial voting ability, and dynamically
adjusts the node’s voting ability in the voting process, allowing more efficient selection of seed nodes.

(3) We extend the traditional IC model to the DIC model, which combines the node features to
set the activation time, activation probability, and activation frequency changes, so as to capture the
dynamic features of the information propagation process.

(4) Experiments on four real-world temporal social network datasets demonstrate the superior
performance of the ISVoteRank algorithm in terms of effectiveness and efficiency compared to existing
baseline methods.

The remainder of this paper is organized as follows: Section 2 discusses related work. Preliminary
definitions are introduced in Section 3. Section 4 describes the ISVoteRank algorithm for selecting
seed nodes, and the DIC model for information propagation of seed nodes. Experimental results from
real-world datasets are provided in Section 5, and Section 6 concludes the paper.

2 Related Works

In this section, a brief overview of related work on solutions to the influence maximization
problem is provided, focusing on influence maximization algorithms and information propagation
models.

2.1 Influence Maximization Algorithms

One of the main challenges of the IM problem lies in its complexity, which often makes direct
calculation of the global optimum solution impractical. To address this issue, researchers have
proposed many different algorithms. This section will focus on discussing three main categories: greedy
algorithms, approximation algorithms, and heuristic algorithms.

Greedy algorithms offer a direct approach to the IM problem, choosing the best seed nodes
by Monte Carlo simulations. Kempe et al. first proposed a greedy algorithm [10], which iteratively
selects nodes that can maximize marginal influence to join the seed set. Greedy algorithms can
guarantee that the obtained solution is over 63% of the global optimum, due to the submodular and
monotonic properties of the IM problem. However, a major challenge of greedy algorithms lies in their
computational complexity, particularly when a large number of simulations are required. Although
greedy algorithms can provide (1-1/e) approximate solutions, their high computational complexity
limits their application in large-scale networks.
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Due to the computational complexity of greedy algorithms, many researchers have sought to
design more efficient approximation algorithms. While approximation algorithms cannot guaran-
tee finding the global optimum, they can find a relatively good solution within polynomial time.
Leskovec et al. [11] proposed a Cost Effective Lazy Forward (CELF) algorithm, considering the
cost and benefit of information spread in the network, achieving the effect of maximizing influence
under a given budget. Chen et al. [12] proposed two improved greedy algorithms, called NewGreedy
and MixedGreedy, which further optimize greedy algorithms by building subgraphs of the network.
However, the complexity of these approximation algorithms remains high and can not be applied in
large-scale social networks.

Heuristic algorithms are another approach to the IM problem. They rely on some strategy or
heuristic information, aiming to find a relatively good solution without complex calculations [13–
15]. These algorithms are particularly effective when dealing with large-scale networks. For example,
Chen et al. [16] proposed a heuristic algorithm called DegreeDiscount, which considers a node’s
degree and the influence of its neighboring nodes when selecting seed nodes. Zhang et al. [17]
introduced the VoteRank algorithm, which identifies propagators in the network based on a voting
mechanism. Subsequently, Sun et al. [18] extended VoteRank to weighted networks, proposing the
WVoteRank algorithm. Kumar et al. [19] designed the NCVoteRank algorithm, considering the
Neighborhood Coreness (NC) values of neighbors during voting. Later, Kumar et al. [20] took into
account the weights of two-level neighbors, further improving the WVoteRank algorithm. Liu et al. [21]
improved the VoteRank algorithm by combining the diversity of node voting capabilities, proposing
the VoteRank++ algorithm. However, the above voting-based methods all select seeds by iteration,
which can be time-consuming when the network size is large. In addition, the above methods only
consider the node features in static social networks, resulting in only being applicable to static social
networks and performing poorly in temporal social networks.

Recent studies have begun to focus on the IM problem in temporal social networks, and feature
selection has become increasingly important [22–25]. For example, Wang et al. [26] introduced a
pairwise factor graph (PFG) for simulating social influence, and a dynamic factor graph (DFG) to
integrate temporal information. In addition, Zhang et al. [27] proposed an influence maximization
framework, leveraging machine learning for prediction and replacement. Using past network snap-
shots, the framework predicts upcoming ones and identifies seed nodes suitable for dynamic networks
based on these predictions. Chandran et al. [28] studied time influence maximization in dynamic social
networks and proposed a seed selection method based on sliding windows.

From the above analysis, we note that for the IM problem in temporal social networks, most of
the existing work addresses the problem through dynamic networks, such as sliding windows. This
approach describes the evolution of the network through dynamic changes in the network, leading to
a high time complexity. In conclusion, IM problems are complex and challenging, requiring a deep
understanding of the network structure and node features.

2.2 Information Propagation Models

Information propagation models are the foundation of influence maximization research, used
to simulate the process of information propagation in social networks. The two most common
information propagation models are the IC model and the Linear Threshold (LT) model.

The IC model [10] is a probabilistic model that describes the process of information propagation
in networks in a simple way. In this model, each activated node has one opportunity to activate its
neighboring nodes. For any edge from an activated node to its neighbors, there is a fixed probability,
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indicating the possibility of the neighbor node being activated. However, the IC model mainly
considers the global characteristics of the network and neglects the impact of individual node behavior,
which may lead to errors when simulating the complex information propagation process in the real
world. The LT model [10] is another commonly used information propagation model. In this model,
each node is assigned a threshold. A node will be activated only when the number of activated nodes
among its neighbors exceeds the threshold. Compared to the IC model, the LT model pays more
attention to mutual influence between nodes, rather than just one-way influence. However, like the IC
model, the LT model does not fully consider nodes’ individual behavior and dynamic characteristics.
So these two models may have certain limitations when simulating the complex real-world information
propagation process, especially in temporal social networks.

In addition to the IC and LT models, there are many other information propagation models
being proposed, such as the Independent Cascade model on Temporal graph (ICT) [29], which
modifies the IC model based on static graphs to enable information propagation on temporal graphs.
Chen et al. [30] proposed the Improved Weighted Cascade Model (IWCM) in response to the problem
that the Weighted Cascade Model (WCM) for static social networks does not apply to temporal social
networks. Although these models take into account the temporal nature of information propagation,
there are limitations such as ignoring the possibility of complex interactions between nodes and
oversimplifying the complexity of information propagation.

Although current information propagation models have played an important role in understand-
ing and simulating the propagation of information in social networks, their consideration factors are
limited, especially the neglect of dynamic behavior and personalized characteristics of nodes, which
may lead to certain limitations in complex real-world information propagation processes, especially for
temporal social networks. Therefore, how to more comprehensively consider the diversity of networks
in information propagation models, such as the dynamic behavior of nodes and complex interactions,
is still an important direction of current studies, and is the problem this paper attempts to solve.

3 Preliminaries

This section introduces the relevant definitions of temporal social networks, and describes the
node features reflected by their historical interaction behavior in this network.

3.1 Temporal Social Network

Definition 1: Temporal Social Network (TSN). We define a TSN as GT (V , E, TE), where V is the
set of nodes, E is the set of edges, and TE is the time set corresponding to inter-node interactions. In
this network, |V | = n and |E| = m. Interaction times between any two nodes u and v are represented
by T(u,v), which is a subset of TE.

Distinct from conventional social networks, TSN incorporates the temporal sequence of inter-
actions of nodes. As shown in Fig. 2, the edge values symbolize the interaction timestamps between
users. For instance, given T(A,C) = {1, 2}, if user A successfully activates user C at time 2, then C is
active at and after time 2 and inactive before time 2. Subsequently, C may activate its neighbors D and
E because C has interaction times with them at and after time 2. However, if B activates C at time 4,
then C can only activate E since the interaction times between C and D are both before time 4. It is
thus clear that the relationships between nodes in a TSN are not static, but dynamic over time.
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Figure 2: Temporal social network

Based on this analysis, a key feature of TSN is the interaction behavior between nodes, which
reflects not only changes in network structure but also changes in node behavior. Therefore, it is
important for the node characteristics reflected by the historical interaction behaviors of nodes.

3.2 Node Features

Based on the above analysis, this paper quantifies the node features reflected by their historical
interaction behaviors as interaction attributes and self-similarity. Interaction attributes reflect the
strength of node behavior in the past, while self-similarity reveals the time dependence of node behavior
in the future.

3.2.1 Interaction Attributes

Definition 2: Interaction Attributes (IA). In a temporal social network, interaction attributes
represent the interaction strength between a node and its neighbors.

Specifically, due to the importance of the temporal order of interactions in TSN, this paper
categorizes IA into two types: active interacting attributes and passive interacting attributes.

Definition 3: Active Interaction Attribute (AIA). This attribute captures the proactive behavior of
a node with its neighbors when initiating an interaction and reflects the node’s tendency to interact
with its neighbors. Eq. (1) provides a method for calculating the AIA value of node v:

AIAv =
∑

w∈out(v)

∣∣T(v,w)

∣∣ (1)

where
∣∣T(v,w)

∣∣ represents the number of interactions from node v to node w, and out (v) denotes the set
of out-neighbors of node v.

Definition 4: Passive Interaction Attribute (PIA): This attribute captures the receptive behavior
of a node in response to an interaction initiated by its neighboring node and reflects the tendency of
the node to be activated by its neighbors. Eq. (2) provides a method for calculating the PIA value of
node v:

PIAv =
∑

u∈in(v)

∣∣T(u,v)

∣∣ (2)

where |T(u,v)| represents the number of interactions from node u to node v, and in (v) denotes the set of
in-neighbors of node v.

As shown in Fig. 2, node C has an AIA value of 6, while the PIA value is 5. By breaking down the
AIA and PIA values of nodes, a better understanding and measurement of node interaction behavior
patterns in temporal social networks can be achieved.



CMC, 2023, vol.77, no.3 3101

3.2.2 Self-Similarity

Definition 5: Self-similarity. Self-similarity reflects the fact that a node’s current behavior is
influenced by the time series of its historical interaction behavior, describing the influence of past
behavior on future behavior.

Crovella et al. [31] have highlighted the significance of self-similarity in the temporal sequences
of node interactions. A common indicator to quantify the value of self-similarity in a time series is
the Hurst index, which measures the autocorrelation of the time series [32,33]. The Hurst index values
range from 0 to 1, indicating different trends [34]. When the Hurst index value ranges from 0 to 0.5,
it indicates that the time series has anti-persistent properties. In this type of time series, high and low
values alternate over the long term, showing a tendency to revert to the mean. When the Hurst index
value equals 0.5, it indicates that the time series is random and uncorrelated. In this case, the correlation
between current values and future values is negligible, making it difficult to identify clear trends. When
the Hurst index value ranges from 0.5 to 1, it indicates that the time series has persistent properties.
This means that a high value may trigger a series of high values that may persist for a long period in
the future.

To evaluate the Hurst index, this study employs the rescaled range (R/S) analysis technique [34].
This statistical method is typically used to classify time series data and measure its variability over
a specific time. For example, consider a scenario in a social network where user A has consistently
posted daily status updates at 8 am over the past week. This behavior exhibits a phenomenon of self-
similarity, suggesting a pattern or regularity in the timing of these updates. By applying the (R/S)
method to quantify this behavior and calculating the value of the Hurst index, we can gain a deeper
understanding of the persistence or long-term dependency of this activity. If the value of the Hurst
index is close to 1, it means that the behavior of user A shows persistence. In other words, the presence
of one high value (posting a daily status update at 8 am) tends to trigger a series of subsequent high
values. This finding further emphasizes the potential self-similarity and predictability of user A’s past
patterns over future patterns.

In summary, the interaction attributes and self-similarity reflect the historical interaction behavior
of nodes, and enable a more precise understanding and analysis of node behavior. Interaction attributes
reflect the strength of node behaviors in the past, and self-similarity reveals the temporal dependence
of node behaviors in the future. These two features provide a mechanism to better identify influential
nodes and predict their future behavior in complex and dynamic temporal social networks.

4 Proposed Methods

Based on the preliminary analysis, this paper proposes the ISVoteRank algorithm for selecting
seed nodes, as well as the DIC information propagation model for estimating the influence spread of
seed nodes. Fig. 3 shows the framework of our work.

As shown in Fig. 3, we proposed the ISVoteRank algorithm based on node features in temporal
social networks. More specifically, the state of each node v is denoted as (vsv, vav), where vsv denotes the
obtained voting score, and vav denotes the voting ability. For each directed edge (u, v), firstly, the voting
weight wv,u from neighbor v to node u is computed, and secondly, the voting score of node u is updated
and the voting ability of neighbor v is weakened. Finally, the top k nodes with the highest voting scores
are selected as seed nodes. Subsequently, the selected seed nodes are simulated to propagate in the DIC
information propagation model to estimate the influence spread of the seed nodes.
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Figure 3: Working framework

4.1 ISVoteRank Algorithm

In this section, we present the ISVoteRank algorithm, which is an extension of the VoteRank
algorithm [17] that incorporates multidimensional optimization and improvements to better fit the
specific characteristics of temporal social networks.

4.1.1 Initializing Voting Ability

In the original VoteRank algorithm [17], the initial voting ability of each node is set to 1. However,
in temporal social networks, each node exhibits distinct characteristics, necessitating a personalized
initialization of the voting ability.

According to the analysis in Section 3, the active interaction attribute reflects the node’s tendency
to actively interact with its neighbors, and the self-similarity reflects the influence of the node’s past
behavior on its future behavior. Therefore, here we combine these two features to set the initial voting
capacity of the node, which is calculated as follows:

vav = hurst(v) + AIAv

AIAmax

(3)

where hurst(v) is the self-similarity of node v, AIAv is the value of the active interaction attribute of
node v, and AIAmax is the value of the largest active interaction attribute in the whole network.

4.1.2 Computing Voting Score

In static social networks, the voting weights of nodes are shown in Fig. 4a, and the VoteRank
strategy [17] assumes that each node has the same voting weight for all its neighbors. However, in
temporal social networks, as shown in Fig. 4b, different interaction strengths among nodes should
lead to different voting weights among nodes.
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Figure 4: Comparison of voting weights

Therefore to address this problem, this paper overcomes this limitation by introducing personal-
ized voting weights based on node features. As shown in Fig. 4b, the voting weight from node D to
node F depends on a ratio, i.e., the number of node F’s passive interactions with node D to the number
of node F’s passive interactions with all its neighbors. Therefore, the voting weight of node v for its
neighbor u is given by Eq. (4):

wv,u = |Tu,v|
PIAv

(4)

where |T (u, v)| represents the number of interactions from node u to node v, and PIAv denotes the
Passive Interaction Attribute of node v.

Based on Eq. (4), the voting score of node u is further defined as follows:

vsu =
∑

v∈outu
wv,uvav (5)

where wv,u denotes the weight that node v gives to node u to vote, vav denotes the voting ability of node
v, and outu denotes the set of out neighbors of node u.

4.1.3 Weakening Voting Ability

In VoteRank [17], seed nodes are selected through iterative voting. Once a seed is selected, its
voting ability is set to 0, and the voting ability of its neighboring nodes is weakened. These settings
are implemented to prevent an excessive concentration of identified influential nodes in the network.
However, this iterative approach may be less efficient when applied to large-scale social networks.
To address this limitation, the ISVoteRank algorithm introduces a new mechanism. Once a node
completes voting for its neighbors, its voting capacity is reduced based on specific rules. When a node’s
voting capacity reaches 0, it no longer participates in the following voting process. This design aims to
overcome the drawbacks of iterative voting and also prevents excessive concentration of seed nodes.
Specifically, after node v votes for node u, the voting capacity of node v is weakened according to
Eq. (6):

vav =
{

vav − δ, if vav − δ > 0
0, otherwise (6)

where

δ = wv,u ∗ 1
AIAavg

(7)

where AIAavg is the average active interaction attribute value of the nodes in the network.
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4.1.4 Selecting Seed Nodes

Based on the above analysis, to reduce the aggregation of the selected seed nodes, the voting ability
is dynamically adjusted by combining the node features during the voting process. Therefore, in the
seed selection phase, the top k nodes with the highest voting scores can be sequentially selected as seed
nodes after one voting process. As shown in Eq. (8):

S = {u|u = [ui|ui ∈ GT , vsui > vs′, i ∈ {1, . . . , n}]} (8)

where S represents the set of seed nodes, ui is a node in GT , vsui denotes the voting score of ui, and vs′

is the k+1th higher vs value of nodes in GT .

4.1.5 Algorithm Process

The voting process of ISVoteRank is outlined in Algorithm 1. Initially, the algorithm initializes
the voting ability and score for each node in the network (lines 3–4). It then proceeds to iterate through
each edge (u, v) (line 6). During this iteration, if the voting ability of node v is greater than 0, indicating
it has the ability to vote, the algorithm calculates the weight of node v to vote for node u (line 8).
Subsequently, it updates the voting score of node u and adjusts the voting ability of node v (lines 9–
10). Finally, the algorithm selects the top k nodes with the highest scores and adds them to the seed
node set S (line 13). Following this process, ISVoteRank ensures that each node’s voting ability and
score are appropriately initialized, and dynamically adjusted based on their participation in the voting
process.

Algorithm 1: ISVoteRank
Input: GT (V , E, TE), k
Output: S
1: Initialize S ← ∅

2: for u in GT do
3: vau ← Eq. (3)
4: vsu ← 0
5: end for
6: for each out-edge (u, v) in GT do
7: if vav > 0 then
8: wv,u ← Eq. (4)
9: vsu ← Eq. (5)
10: vav ← Eq. (6)
11: end if
12: end for
13: S ← top-k nodes sorted by vsu

14: return S

The complexity analysis of ISVoteRank can be divided into three steps. In the initialization phase
(lines 2–5), the algorithm traverses all nodes, resulting in a time complexity of O(n), where n is the
number of nodes. During the voting phase (lines 6–12), the algorithm traverses all edges, resulting in a
time complexity of O(m), where m is the number of edges. The seed selection phase (line 13) involves
sorting all nodes based on their scores. This step has a time complexity of O(nlogn), where n is the
number of nodes. Overall, the total time complexity of the ISVoteRank algorithm can be approximated
as O(n + m + nlogn) or more concisely expressed as O(m + nlogn).
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It can be seen that the ISVoteRank algorithm effectively combines voting weights with the voting
process, avoiding the drawbacks of iterative voting in traditional voting algorithms, and has relatively
low time complexity, making it computationally efficient when dealing with large-scale temporal social
networks.

4.2 Dynamic Independent Cascade Model

The traditional IC model has been widely utilized in analyzing information propagation within
static social networks. However, when applied to temporal social networks, the limitations of the IC
model become apparent as it fails to effectively capture the dynamic features of such networks. This
is primarily because the IC model assumes static network connectivity patterns, where an active node
has only one chance to activate each of its inactive neighbor nodes, and the activation process does not
take into account the temporal sequence of node interactions. In contrast, real social networks exhibit
dynamic changes in connectivity.

To address this problem, this paper proposes a dynamic independent cascade model, called the
DIC model. This model incorporates node features reflected by their historical interaction behavior
into the DIC model for capturing the dynamic features of the temporal social network. These
dynamic features include changes in node activation times, activation probabilities, and activation
frequencies. Specifically, activation time is related to the evolution of historical interaction time,
activation probability is related to interaction attributes and varies with activation frequency, and
activation frequency is influenced by the self-similarity observed in the historical interaction behavior
of nodes. By integrating these factors, this model can capture changes in node behaviors based on node
features, thus capturing the dynamic characteristics of the temporal social network.

4.2.1 Activation Time

Definition 6: Activation Time. The moment when node v is successfully activated by its active
parent node u is its activation time, denoted as Actv = {t|t ∈ T(u,v) and t ≥ Actu}.

The IM algorithm for static social networks does not need to consider the activation time of the
node, while the time when the node is successfully activated in a temporal social network needs to be
considered, and the activation time of the node will change as the node interaction behaviors occur.
As shown in Fig. 5, node B is selected as the seed node with the initial activation time set to 0, and the
rest of the nodes have their initial activation time set to −1. When node B successfully activates node
C at moment 4, the activation time of node C will be updated to 4.
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Figure 5: Variation in activation time during information propagation

4.2.2 Activation Probability and Activation Frequency

In static social networks, as in Fig. 6a, active node A activates its inactive neighbor nodes B and C
with the same probability and only one activation opportunity. However, in temporal social networks,
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as in Fig. 6b, the difference in interaction strength between nodes results in different probabilities for
active node D to activate its inactive neighbor nodes E and F.

B C

A

(a) A static social network

{1,2}

E F

D

{1,4.5}

(b) A temporal social network

Figure 6: Comparison of activation probability and activation frequency in different social networks

Therefore, to capture the dynamics of the information propagation process, we first set the
activation probability in combination with the interaction attributes of the nodes. Then, when the first
activation fails but there is still interaction behavior, we judge the activation frequency based on the
self-similarity of the inactivated nodes, i.e., the Hurst index of an inactivated node is greater than 0.5,
which represents the possibility of interaction behavior of the node, and thus activation is performed
again. Detailed definitions of activation frequency and activation probability are shown below:

Definition 7: Activation Frequency. Activation frequency is a measure of the number of times a
node is activated during the propagation of information.

Definition 8: Activation Probability. Activation probability is the probability that an inactive node
v is successfully influenced by its active parent node u through the directed edge (u, v), denoted as
P∗

u,v ∈ [0, 1].

In static social networks, degree estimation is usually used to calculate the activation probability
between nodes. However, in temporal social networks, there are different interaction behaviors among
nodes, which implies the dynamics of activation probabilities among nodes. Therefore, in this paper,
the activation probability is defined by Eq. (9):

P∗
u,v = 1 − (

1 − Pu,v

)θ

, s.t. θ ∈ [
1,

∣∣T(u,v)

∣∣] (9)

where

Pu,v =
∣∣T(u,v)

∣∣
PIAv

(10)

where Pu,v denotes the probability of node u activating node v for the first time, PIAv denotes the passive
interaction attribute of node v, and

∣∣T(u,v)

∣∣ denotes the number of interactions from node u to node v.
θ denotes activation frequency. The activation probability increases with the increase of activation
frequency.

4.2.3 Information Propagation Process

In the DIC model, initially, all nodes v in the network except the seed node are set to be inactive, i.e.,
their initial activation time Actv= −1. When a seed node u is selected to start influence propagation,
the following process is set:

(1) Let the initial activation time of the seed node be Actu = 0, i.e., the seed node u is active at the
time moment 0. At this time, u activates its inactive neighbor node v with a certain probability, and u
has at least one chance to try to activate v.
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(2) When u tries to activate v, the interaction times between nodes are traversed sequentially, if the
condition Actu = {t|t ∈ T(u,v) and Actu ≤ t} is satisfied, u activates v with probability P∗

u,v.

(3) If u fails to activate v for the first time, the self-similarity of v is calculated and if hurst (v) > 0.5,
activation of v will be attempted again until all interaction times have been traversed.

(4) If v is successfully activated by u at the time moment t = {t|t ∈ T(u,v)}, its activation time Actv

is recorded, where Actv = t.

(5) The influence propagation process stops when all active nodes have tried to activate their
neighbors and no new nodes have been activated.

Algorithm 2: DIC
Input: GT (V , E, TE), S
Output: spread
1: for u in S do
2: for v in u.neighbor (u ∈ GT , u /∈ S) do
3: θ = 0
4: for t in T(u,v) do
5: θ = θ + 1
6: if Actu ≤ t then
7: P∗

u,v ← Eq. (9)
8: if random number in [0,1) < P∗

u,v then
9: add v to spread
10: Actv = t
11: break
12: else if hurst (v) > 0.5 and θ ≤ ∣∣T(u,v)

∣∣ then
13: continue
14: end if
15: end if
16: end for
17: end for
18: end for
19: return spread

Algorithm 2 illustrates the propagation process of the DIC model mentioned above. We can see
that the DIC model offers an effective approach to capturing the dynamic features of the temporal
social networks by considering node features revealed by the historical interaction behaviors during
information propagation.

5 Experiments
5.1 Experimental Settings

5.1.1 Data

We utilized four real-world datasets from SNAP, available at http://snap.stanford.edu/data/. Each
row in these datasets contains three components represented as (u, v, t), which signifies an interaction
between u and v at time t. The comprehensive details of these datasets can be found in Table 1.

http://snap.stanford.edu/data/
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Table 1: Parameters of experimental datasets

Name Nodes Temporal edges Static edges Time span/day

Email-Eu-core 986 332334 24929 803
CollegeMsg 1899 59835 20296 193
Math overflow 24818 506550 239978 2350
Ask Ubuntu 159316 964437 596933 2613

Dataset 1 [35] is based on email data from a European research institution. Dataset 2 [36] captures
private messages from a University of California online network. Dataset 3 [35] and Dataset 4 [35]
represent user interactions on Math Overflow and Ask Ubuntu, respectively.

5.1.2 Baseline Methods

Seven methods are used as baselines, which are related to voting mechanisms and other heuristics.
They are described as follows:

VoteRank [17]: As a basic voting algorithm, VoteRank sets the initial voting ability of the node to
1, and then selects the node with the highest score as the seed node through iterative voting.

WVoteRank [18]: WVoteRank is an extension of VoteRank, which incorporates the edge weights
related to the node’s nearest neighbors (one-hop neighbors) into the calculation of voting scores, and
iteratively votes to select the node with the highest score as the seed node.

NCVoteRank [19]: NCVoteRank incorporates the Neighborhood Coreness (NC) value of a node
into the calculation of its voting score, and then selects the node with the highest score as the seed
node through iterative voting.

VoteRank++ [21]: Based on the basic principles of VoteRank, VoteRank++ improves the initial
voting ability of nodes and the calculation of voting scores. Although the seed selection strategy is
improved, it still cannot guarantee good time performance.

K_shell [37]: K_shell is a method for determining the centrality of a network node by calculating
the K_shell value (or Ks value) of each node to determine the importance of the node.

DegreeDiscount [16]: DegreeDiscount is a seed node selection method based on the degree of a
node. The core idea is that when a node v’s neighboring nodes are selected as seed nodes, the degree
of node v is discounted to reduce its influence in subsequent seed selection.

Max_activity: This algorithm selects the top k nodes with the highest value of AIA as seed nodes
in this paper.

5.1.3 Parameter Settings and Preprocessing

Parameter settings: To compare the impact of these different methods on the same dataset, all
algorithms run 1000 Monte Carlo simulations in the DIC model, and take the average influence
spread value as the final result, so the observed differences are statistically significant. The activation
probability is set as shown in Section 4.1.3. The range of the seed number is set between 10 and 100.

Preprocessing: For the ISVoteRank algorithm, the Hurst index value, representing nodes’ self-
similarity, is computed offline based on the nodes’ interaction time series. This preprocessing step is
necessary for efficiently calculating the Hurst index values.
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5.2 Experimental Results

Our experiments are divided into three parts:

(1) Influence spread: comparing the effectiveness of algorithms by propagating the seed nodes’
influence selected by algorithms through the DIC model, and comparing the differences between the
DIC and IC models by propagating the seed nodes’ influence selected by the ISVoteRank algorithm;

(2) Time performance: comparing the efficiency of algorithms by comparing the running time
variation of algorithms in selecting 10 to 100 seed nodes;

(3) Average shortest path length: by comparing the average shortest distance length between the
seed nodes selected by algorithms, thus verifying that the algorithm proposed in this paper does not
perform iterative seed selection but still reduces the aggregation of seed nodes.

5.2.1 Influence Spread

Firstly, to observe the effectiveness of the algorithms, we calculate the influence spread of different
algorithms by varying the number of seeds from 10 to 100. The experimental results are shown in Fig. 7.

From the figure, it is worth noting that the ISVoteRank algorithm achieves a relatively higher
influence spread on all of the datasets. E.g., in Fig. 7a, when the k = 50, ISVoteRank reaches an
influence of about 1462.78, while the closest VoteRank is about 1430.12 and the worst VoteRank++
is about 1262.56, which means ISVoteRank improves by approximately 2.28% compared to the
closest algorithm and approximately 15.88% compared to the worst algorithm. More precisely, in
Fig. 7a, when the number of seeds is 40 to 80, ISVoteRank outperforms the next best VoteRank by
about 1.2%, and as the number of seeds increases, ISVoteRank and VoteRank gradually get closer,
but ISVoteRank still ranks first. It is closely followed by WVoteRank and the Max_activity, while
K_shell, NCVoteRank, DegreeDiscount and VoteRank++ underperform. In Fig. 7b, ISVoteRank
outperforms the rest algorithms in terms of effectiveness as the number of seeds increases. In Fig. 7c,
ISVoteRank is relatively better, followed by VoteRank, WVoteRank, and Max_activity. The rest
of the algorithms perform worse. In Fig. 7d, ISVoteRank performs comparable to the VoteRank,
WVoteRank, and Max_activity, followed by DegreeDiscount, and the rest of the algorithms are
relatively poor. In addition, it is seen that VoteRank++ performs worse compared to the other voting
algorithms in all datasets. The reason is that VoteRank++ considers more features of static social
networks to improve voting ability, making it less suitable for temporal social networks.

The above phenomenon can be explained as follows. First, ISVoterank, VoteRank, WVoteR-
ank, NCVoteRank and VoteRank++ are all voting strategy-based algorithms. However, VoteRank,
WVoteRank, NCVoteRank and VoteRank++ only consider the static features of the network and
ignore the node features reflected by their historical interaction behavior, which leads to poor results.
Secondly, ISVoteRank uses the interaction strength between nodes to set personalized voting weights,
which is very helpful in improving the effectiveness. Finally, when weakening the voting ability of
nodes, ISVoteRank also weakens the voting ability differently according to the interaction strength
between nodes, which is more in line with the interaction behavior of nodes. Overall, ISVoteRank
performs well, reflecting its effectiveness in the face of complex temporal social networks.
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Figure 7: The influence spread of different algorithms varies with the number of seeds

Subsequently, we compare the influence spread of ISVoteRank in DIC and IC information prop-
agation models. Since the ISVoteRank algorithm shows robust performance in the above experiments.
Therefore, we first run the ISVoteRank algorithm to generate a seed set of k = 50, and then use the seed
set as an input to the DIC and IC propagation models, respectively. The results are shown in Fig. 8.
IC_ISVoteRank means the ISVoteRank algorithm runs in the IC model and the DIC_ISVoteRank
means the ISVoteRank algorithm runs in the DIC model.

From the figure, we observe that when the data set is small, as in Fig. 8a, the influence spread of
seeds in the DIC model is about twice as much as that in the IC model; when the data set is large, as
shown in Fig. 8b, the DIC model still performs better than the IC model. From these results, the DIC
model shows a stronger information propagation ability due to its combination of node features in
temporal social networks.
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Figure 8: Comparison of influence spread of the VoteRank algorithm in different models

5.2.2 Time Performance

In this section, we compare the efficiency of different algorithms. First, when k = 50, we count the
running time of each algorithm on different datasets, and the results are shown in Table 2. Secondly,
we vary the seeds from k = 10 to k = 100, and count the running time of different algorithms varies
with the number of seeds. Fig. 9 shows the results in the form of a box plot. The abscissa represents
different algorithms, and the ordinate records the running time of the corresponding algorithm.

Table 2: Running time of the algorithms

Algorithm Email-Eu-core/s CollegeMsg/s Math overflow/s Ask Ubuntu/s

VoteRank++ 1.297 1.188 23.256 128.362
NCVoteRank 0.496 0.501 8.789 29.306
WVoteRank 0.218 0.204 4.387 30.032
VoteRank 0.223 0.197 4.388 16.289
K_shell 0.059 0.045 1.201 5.224
ISVoteRank 0.035 0.026 0.594 2.331
DegreeDiscount 0.003 0.005 0.154 2.331
Max_activity 0.004 0.003 0.114 0.377

From Table 2, we get the following observations: First, ISVoteRank is more efficient compared
to voting-based algorithms. Among them, ISVoteRank is about 0.18, 0.15, 3.79 and 13.95 s faster
than VoteRank in four data sets. This means that as the network size increases, the running time
of ISVoteRank increases less. This is because the ISVoteRank algorithm does not need to iteratively
vote to select seeds, and only votes once to select seed nodes. Secondly, compared with other non-
voting algorithms, although ISVoteRank is not as good as DegreeDiscount and Max_activity, in
Section 5.2.1, ISVoteRank’s influence spread is better than these two algorithms.
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From Fig. 9, it can be seen that ISVoteRank proposed in this paper has a significantly shorter
running time compared with other voting-based algorithms, and the running time fluctuations for
different numbers of seeds are small, reflecting its efficiency and stability. In addition, the running
time of Max_activity, K_shell, and DegreeDiscount are also shorter and comparable to ISVoteRank,
and the runtime fluctuations are relatively small, showing excellent stability.

Figure 9: The running time of different algorithms varies with the number of seeds

The above phenomena can be explained as follows. First, ISVoteRank avoids the drawback of
iterative seed selection in traditional voting algorithms and can select seeds quickly. While the rest
of the voting-based algorithms belong to the traditional voting algorithms, the iterative selection of
seed nodes takes more time. In particular, VoteRank++ takes more factors into account leading
to a long running time, especially in larger datasets, such as Fig. 9d, the average running time of
the VoteRank++ reaches about 140 s. Second, the Max_activity, K_shell, and DegreeDiscount only
consider a certain feature of the nodes. Although their running time is shorter, they cannot guarantee
the performance of the influence spread as can be seen from Fig. 7. In summary, Fig. 9 vividly reveals
the advantages of ISVoteRank in terms of running efficiency and stability.
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5.2.3 Average Shortest Path Length

As highlighted in [17], the distance between seeds plays a crucial role in maximizing influence.
When the identified seeds are widely distributed in the network, they tend to exert influence over a
larger range of nodes. Therefore, the average shortest path length between seeds, denoted as Ls, is
used as an indicator to evaluate the spread of seeds’ influence. A larger value of Ls indicates that the
selected seeds are more dispersed and have a broader range of influence. The formula of Ls is provided
in Eq. (11):

Ls = 1
|S| (|S| − 1)

∑
u,v∈S,u�=v

luv (11)

where S is a set of identified seeds and luv denotes the length of the shortest path from node u to node v.

As shown in Fig. 10, ISVoteRank outperforms VoteRank, WVoteRank, and DegreeDiscount in
terms of Ls values in each dataset. This indicates that the influential nodes selected by ISVoteRank are
more dispersed in the network, further reflecting the reasonableness of the voting strategy designed
in this paper. Although VoteRank++ and NCVoteRank perform reasonably well in each dataset, it is
worth noting that they do not perform well in terms of influence spread because the average distance
between the seed nodes selected by these algorithms is too large. While the K_shell algorithm performs
better only in Fig. 10a, Max_activity performs better only in Fig. 10b. In contrast, ISVoteRank
proposed in this paper is more stable.

The above phenomenon can be explained as follows. On the one hand, ISVoteRank sets the
voting weights according to the interaction strength between nodes during the voting process, which
can make the neighbors obtain different degrees of voting scores. On the other hand, once a node
votes, it weakens the node’s voting ability according to the voting weight, and this strategy further
distinguishes the voting scores obtained by neighbors. Combining the above strategies, the voting
algorithm proposed in this paper reduces the aggregation of seed nodes.

5.2.4 Results Analysis

From the above experiments, it can be seen that ISVoteRank proposed in this paper obtains good
performance in terms of effectiveness and efficiency, and these results are further analyzed next.

First, in terms of influence spread, i.e., effectiveness, ISVoteRank performs well, although
VoteRank and WVoteRank also perform well in Figs. 7c and 7d, their failure to consider the
node features of the temporal social network leads to poor results in other datasets. Second, in
terms of time performance, i.e., efficiency, ISVoteRank avoids the drawback of iterative seed node
selection, leading to a much better time performance than other voting-based algorithms, on par with
Max_activity, K_shell, and DegreeDiscount. Third, the experimental results of the average shortest
path length of seed nodes further reflect that although ISVoteRank only selects seed nodes at once,
the design of the algorithm in the voting process still reduces the aggregation of seed nodes, no less
than VoteRank. Overall, ISVoteRank performs well for considering node features reflected by their
historical interaction behavior and the optimization of the voting process. These results reflect the
superiority of ISVoteRank, which provides an effective and efficient solution to the IM problem in
temporal social networks.
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Figure 10: The average shortest path length of seeds selected by different algorithms varies with the
number of seeds

6 Conclusion

In conclusion, this study presents an innovative approach to the IM problem within temporal
social networks by incorporating node features, specifically interaction attributes and self-similarity
derived from nodes’ historical interaction behavior. This incorporation has led to the proposition of
the node-feature-aware voting algorithm ISVoteRank and the DIC model. The ISVoteRank algorithm
optimizes the voting mechanism by using node features, avoiding the inefficient iterative strategy of
traditional voting-based algorithms, and allowing the algorithm to efficiently select high-quality seed
nodes. The DIC model captures the dynamic changes of node activation time, activation probability
and activation frequency during information propagation. Experiments on four real-world temporal
social network datasets demonstrate that ISVoteRank has superior performance in terms of efficiency
and effectiveness compared to existing baseline methods. Overall, this research offers a practical and
innovative solution to the IM problem in temporal social networks. However, it is worth noting that
this work has some limitations, such as limited consideration of the community structure of social
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networks. Since the community structure reflects more intensive interaction patterns among users,
users in the same community often have similar interests and opinions, which will inevitably affect the
speed and scope of information propagation. In view of this consideration, in future research work, we
will further explore temporal social networks more deeply in combination with community structure
to enhance the robustness and applicability of the proposed models and algorithms.

Acknowledgement: Not applicable.

Funding Statement: This work is supported by the Fundamental Research Funds for the Universities of
Heilongjiang (Nos. 145109217, 135509234), the Youth Science and Technology Innovation Personnel
Training Project of Heilongjiang (No. UNPYSCT-2020072), and the Innovative Research Projects for
Postgraduates of Qiqihar University (No. YJSCX2022048).

Author Contributions: Study conception and design: W. Zhu, Y. Miao; data collection: Y. Miao, S.
Yang; analysis and interpretation of results: Y. Miao, Z. Lian, L. Cui; draft manuscript preparation:
W. Zhu, Y. Miao. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: All of the datasets used are available at http://snap.stanford.edu/
data/.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. S. Singh, D. Srivastva, M. Verma and J. Singh, “Influence maximization frameworks, performance,

challenges and directions on social network: A theoretical study,”Journal of King Saud University-Computer
and Information Sciences, vol. 34, no. 9, pp. 7570–7603, 2022.

[2] F. Kazemzadeh, A. A. Safaei and M. Mirzarezaee, “Influence maximization in social networks using
effective community detection,” Physica A: Statistical Mechanics and its Applications, vol. 598, pp. 127314,
2022.

[3] S. Banerjee, M. Jenamani and D. K. Pratihar, “A survey on influence maximization in a social network,”
Knowledge and Information Systems, vol. 62, pp. 3417–3455, 2020.

[4] C. Fan, J. L. Guo and Y. L. Zha, “Fractal analysis on human behaviors dynamics,” arXiv preprint
arXiv:1012.4088, 2010.

[5] B. Fu, J. Zhang, H. Bai, Y. Yang and Y. He, “An influence maximization algorithm for dynamic social
networks based on effective links,” Entropy, vol. 24, no. 7, pp. 904, 2022.

[6] Q. Liu, X. Zhao, W. Willinger, X. Wang, B. Y. Zhao et al., “Self-similarity in social network dynamics,”
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), vol. 2,
no. 1, pp. 1–26, 2016.

[7] B. Saxena and V. Saxena, “Hurst exponent based approach for influence maximization in social networks,”
Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 5, pp. 2218–2230, 2022.

[8] W. Wang, S. Shi and X. Fu, “The subnetwork investigation of scale-free networks based on the self-
similarity,” Chaos, Solitons & Fractals, vol. 161, pp. 112140, 2022.

[9] E. Bakshy, J. M. Hofman, W. A. Mason and D. J. Watts, “Everyone’s an influencer: Quantifying influence
on twitter,” in Proc. of the 4th ACM Int. Conf. on Web Search and Data Mining, New York, NY, USA, pp.
65–74, 2011.

[10] D. Kempe, J. Kleinberg and É. Tardos, “Maximizing the spread of influence through a social network,” in
Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, USA,
pp. 137–146, 2003.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/


3116 CMC, 2023, vol.77, no.3

[11] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen et al., “Cost-effective outbreak detection
in networks,” in Proc. of the 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New
York, NY, USA, pp. 420–429, 2007.

[12] W. Chen, Y. Wang and S. Yang, “Efficient influence maximization in social networks,” in Proc. of the 15th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 199–208,
2009.

[13] Y. Hua, B. Chen, Y. Yuan, G. Zhu and J. Ma, “An influence maximization algorithm based on the mixed
importance of nodes,” Computers, Materials & Continua, vol. 59, no. 2, pp. 517–531, 2019.

[14] C. Guo, L. Yang, X. Chen, D. Chen, H. Gao et al., “Influential nodes identification in complex networks
via information entropy,” Entropy, vol. 22, no. 2, pp. 242, 2020.

[15] Q. Li, L. Cheng, W. Wang, X. Li, S. Li et al., “Influence maximization through exploring structural
information,” Applied Mathematics and Computation, vol. 442, pp. 127721, 2023.

[16] W. Chen, C. Wang and Y. Wang, “Scalable influence maximization for prevalent viral marketing in large-
scale social networks,” in Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, New York, NY, USA, pp. 1029–1038, 2010.

[17] J. X. Zhang, D. B. Chen, Q. Dong and Z. D. Zhao, “Identifying a set of influential spreaders in complex
networks,” Scientific Reports, vol. 6, no. 1, pp. 27823, 2016.

[18] H. L. Sun, D. B. Chen, J. L. He and E. Ch’ng, “A voting approach to uncover multiple influential spreaders
on weighted networks,” Physica A: Statistical Mechanics and its Applications, vol. 519, pp. 303–312, 2019.

[19] S. Kumar and B. S. Panda, “Identifying influential nodes in social networks: Neighborhood coreness based
voting approach,” Physica A: Statistical Mechanics and its Applications, vol. 533, pp. 124215, 2020.

[20] S. Kumar and A. Panda, “Identifying influential nodes in weighted complex networks using an improved
WVoteRank approach,” Applied Intelligence, vol. 52, no. 2, pp. 1838–1852, 2022.

[21] P. Liu, L. Li, S. Fang and Y. Yao, “Identifying influential nodes in social networks: A voting approach,”
Chaos, Solitons & Fractals, vol. 152, pp. 11309, 2021.

[22] W. Zhu, Y. Miao, S. Yang, Z. Lian and L. Cui, “An influence maximization algorithm based on improved
K-shell in temporal social networks,” Computers, Materials & Continua, vol. 75, no. 2, pp. 3111–3131, 2023.

[23] L. Q. Qiu, J. F. Yu, X. Fan, W. Jia and W. W. Gao, “Analysis of influence maximization in temporal social
networks,” IEEE Access, vol. 7, pp. 42052–42062, 2019.

[24] W. Jia, R. Ma, W. Niu, L. Yan and Z. Ma, “Topic relevance and temporal activity-aware influence
maximization in social network,” Applied Intelligence, vol. 52, no. 14, pp. 16149–16167, 2022.

[25] A. Javadpour, S. Kazemi Abharian and G. Wang, “Feature selection and intrusion detection in cloud
environment based on machine learning algorithms,” in Proc. of the ISPA Int. Conf. on IUCC, Guangzhou,
China, pp. 1417–1421, 2017.

[26] C. Wang, J. Tang, J. Sun and J. Han, “Dynamic social influence analysis through time-dependent factor
graphs,” in Proc. of the 2011 Int. Conf. on Advances in Social Networks Analysis and Mining, Kaohsiung,
Taiwan, pp. 239–246, 2011.

[27] L. Zhang and K. Li, “Influence maximization based on snapshot prediction in dynamic online social
networks,” Mathematics, vol. 10, no. 8, pp. 1341, 2022.

[28] J. Chandran and V. M. Viswanatham, “Dynamic node influence tracking based influence maximization on
dynamic social networks,” Microprocessors and Microsystems, vol. 95, pp. 104689, 2022.

[29] A. B. Wu, Y. Yuan, B. Y. Qiao, Y. S. Wang, Y. L. Ma et al., “Research on algorithms for maximizing
influence of large-scale time series diagrams,” Chinese Journal of Computers, vol. 42, no. 12, pp. 2647–2664,
2019.

[30] J. Chen and Z. Y. Qi, “Research on social network influence maximization algorithm based on time
sequential relationship,” Journal on Communications, vol. 41, no. 10, pp. 211–221, 2020.

[31] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evidence and possible causes,”
IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 835–846, 1997.



CMC, 2023, vol.77, no.3 3117

[32] K. Lyudmyla, B. Vitalii and R. Tamara, “Fractal time series analysis of social network activities,” in Proc.
of the 2017 4th Int. Scientific-Practical Conf. Problems of Infocommunications, Kharkov, Ukraine, pp. 456–
459, 2017.

[33] M. Resta, “Hurst exponent and its applications in time-series analysis,” Recent Patents on Computer
Science, vol. 5, no. 3, pp. 211–219, 2012.

[34] T. Kleinow, “Testing continuous time models in financial markets,” Ph.D. dissertation, Humboldt Univer-
sity of Berlin, Berlin, Germany, 2002.

[35] A. Paranjape, A. R. Benson and J. Leskovec, “Motifs in temporal networks,” in Proc. of the 10th ACM Int.
Conf. on Web Search and Data Mining, New York, NY, USA, pp. 601–610, 2017.

[36] P. Panzarasa, T. Opsahl and K. M. Carley, “Patterns and dynamics of users’ behavior and interaction:
Network analysis of an online community,” Journal of the American Society for Information Science and
Technology, vol. 60, no. 5, pp. 911–932, 2009.

[37] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik et al., “Identification of influential spreaders
in complex networks,” Nature Physics, vol. 6, no. 11, pp. 888–893, 2010.


	Maximizing Influence in Temporal Social Networks: A Node Feature-Aware Voting Algorithm
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Proposed Methods
	5 Experiments
	6 Conclusion
	References


