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ABSTRACT

Breast cancer, particularly Invasive Ductal Carcinoma (IDC), is a primary global health concern predominantly
affecting women. Early and precise diagnosis is crucial for effective treatment planning. Several AI-based tech-
niques for IDC-level classification have been proposed in recent years. Processing speed, memory size, and accuracy
can still be improved for better performance. Our study presents ECAM, an Enhanced Channel-Wise Attention
Mechanism, using deep learning to analyze histopathological images of Breast Invasive Ductal Carcinoma (BIDC).
The main objectives of our study are to enhance computational efficiency using a Separable CNN architecture,
improve data representation through hierarchical feature aggregation, and increase accuracy and interpretability
with channel-wise attention mechanisms. Utilizing publicly available datasets, DataBioX IDC and the BreakHis,
we benchmarked the proposed ECAM model against existing state-of-the-art models: DenseNet121, VGG16, and
AlexNet. In the IDC dataset, the model based on AlexNet achieved an accuracy rate of 86.81% and an F1 score of
86.94%. On the other hand, DenseNet121 outperformed with an accuracy of 95.60% and an F1 score of 95.75%.
Meanwhile, the VGG16 model achieved an accuracy rate of 91.20% and an F1 score of 90%. Our proposed ECAM
model outperformed the state-of-the-art, achieving an impressive F1 score of 96.65% and an accuracy rate of
96.70%. The BreakHis dataset, the AlexNet-based model, achieved an accuracy rate of 90.82% and an F1 score
of 90.77%. DenseNet121 achieved a higher accuracy rate of 92.66% with an F1 score of 92.72%, while the VGG16
model achieved an accuracy of 92.60% and an F1 score of 91.31%. The proposed ECAM model again outperformed,
achieving an F1 score of 96.37% and an accuracy rate of 96.33%. Our model is a significant advancement in breast
cancer diagnosis, with high accuracy and potential as an automated grading, especially for IDC.
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1 Introduction

Breast cancer is a prevalent and serious health concern affecting women worldwide [1]. Among its
various subtypes, Invasive Ductal Carcinoma (IDC) is the most common and dangerous form of breast
cancer. IDC is the most common type of breast cancer, accounting for 80% of cases. Invasive lobular
carcinoma (ILC) is the second most common type, comprising approximately 10% of all invasive breast
cancers [2].
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Timely and accurate diagnosis of IDC is crucial for effective treatment planning and improved
patient health. Traditionally, histopathological examination (e.g., physical exams, mammography,
ultrasounds, biopsies, genetic testing) of tissue samples obtained through biopsies has been the
common standard for diagnosing IDC [3]. This process requires substantial manual effort and can vary
significantly among different observers. As breast cancer spreads rapidly, there is a crucial necessity for
innovative and early-stage development of new methods [4]. Many researchers are driven to discover
quick and accurate diagnosis methods that can prolong patients’ lives.

In the last few years, artificial intelligence, machine learning, and deep learning (DL) based
approaches have exhibited tremendous potential for analyzing medical images (MI), particularly in
classifying histopathological images. By leveraging the power of artificial neural networks and DL
algorithms, these techniques can automatically extract complex patterns and features from digitized
histopathological images, enabling accurate and efficient cancer diagnosis.

Khan et al. [5] employed GkNN-based classification with image descriptors using the same
datasets. Naik et al. [6] utilized sparse coding and dictionary learning, achieving 81.91% accuracy for
breast cancer detection and 80.52% for grading. Tao et al. [7] utilized SVM classifiers with multi-level
image features for 69.00% accuracy. Doyle et al. [8] differentiated breast cancer grades with 95.80%
and 93.30% accuracy. Maguolo et al. [9] introduced an ensemble model that combined VGG-16 and
ResNet-50, achieving 95.33% accuracy. Further details can be found in Section 2.

The proposed approach employs the Separable CNN model, which has strong image classification
performance, to grade IDC samples from the provided datasets accurately. We assess model perfor-
mance using metrics like F1 score and accuracy, comparing it to existing state-of-the-art methods.
These findings have significant implications for medical practice, offering an automated and precise
IDC grading system to aid pathologists in treatment decisions and prognosis. This research contributes
to advancing diagnostic methods for breast cancer by integrating deep learning techniques with
histopathological image analysis.

This research’s findings can potentially enhance patient care and treatment outcomes in breast
cancer management. Below are our primary contributions to this work:

• We have designed an innovative classification model capable of classifying breast cancer levels
using a lightweight architecture, making this approach unprecedented in these datasets.

• Our Model efficiently forecasts breast cancer levels using histopathological microscopy images
as input, providing timely intervention and action before their condition worsens further.

• Our experiments compared three approaches, AlexNet, DenseNet121, VGG16, and our
ECAM, which had all been trained for 50 epochs on the Google Colab platform and achieved
higher accuracy.

The structure of this paper is as follows: In Section 2, we provide an overview of previous research
on breast cancer using IDC DataBiox [10] and BreaKHis [11] datasets. Section 3 outlines our Proposed
Methodology and explains the entire process in detail. The results and discussion are presented in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Histopathological analysis of breast tissue samples is crucial for accurately grading invasive ductal
carcinomas (IDCs), which helps determine the tumor’s aggressiveness. In recent years, DL-based
techniques have emerged as powerful tools for automating the classification and grading of breast
IDCs. Cruz-Roa et al. [2] developed a three-layer convolutional neural network (CNN) for IDC
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classification. Their CNN model accurately classified breast IDCs with 84.23% balanced accuracy and
71.80% F-score. Brancati et al. [12] proposed FusionNet, a convolutional autoencoder-based method
for IDC classification. The model achieved a balanced accuracy of 87.76% and an F-score of 81.54%.
FusionNet shows that leveraging autoencoders for feature extraction and classification of breast IDCs
is effective.

Nusrat et al. [13] used a hybrid ensemble model composed of DenseNet and ResNet to identify
and grade IDC breast cancer early, with an adjusted accuracy rate of 92.70% and an F1 score of
95.70%, respectively. Romano et al. [14] developed a CNN architecture that used convolutional layers
with accept-reject pooling, dropouts with fully connected layers, and IDC grading dropouts. Their
model achieved an accuracy rate of 85.41% with an F-score score of 85.28%. This study highlighted
the need to include dropout and pooling layers to guarantee accurate breast IDC grading accuracy.
Janowczyk et al. [15] utilized transfer learning with AlexNet to achieve 84.68% balanced precision and
76.48% F-score in detecting IDC tumors of the breast.

Sujatha et al. 2022 [16] use five transfer learning methods: VGG16, VGG19, InceptionReNetV2,
DenseNet121, and DenseNet201. Of these methods, DenseNet121 proved the most accurate, boasting
an accuracy of 92.64%, while InceptionReNetV2 returned the lowest accuracy rate at 84.46%.
Celik et al. [17] used pre-trained ResNet-50 and DenseNet-161 models for IDC classification. ResNet-
50 achieved 90.96% accuracy and 94.11% F-score. On the other hand, DenseNet-161 balance accuracy
was at 91.57% and an F-score of 92.38%, showing the efficacy of using trained models to detect
breast IDCs accurately. This research study highlights their benefits by showing their effectiveness at
pinpointing breast IDCs accurately. DL techniques have demonstrated promising results in accurately
classifying and grading breast IDCs in these studies.

Hao et al. [18] combined deep semantic features with GLCM texture analysis, resulting in
impressive accuracy rates on the BreaKHis dataset. They achieved 95.56% and 95.54% accuracy on
magnification-specific and independent binary classification tasks, respectively. Ashiqul et al. [19]
employed several models of convolutional neural networks, including DenseNet-201, NasNet-Large,
Inception ResNet-V3, and Big Transfer (M-r101 × 1 × 1), to detect early-stage breast cancer. The
study achieved accuracy levels of up to 90%.

Parvin et al. [20] utilized five different models, including LeNet-5, AlexNet, VGG-16, ResNet-
50, and Inception-vl, to classify images. Of these models, Inception-vl was the most effective, with an
accuracy rate of 94%. The other models achieved 89%, 92%, 91%, and 90% accuracy rates. This high-
lights its potential for advancing medical image analysis and accurately recognizing histopathological
images.

However, several limitations in the existing studies have been identified, including the current
methods and DL models for IDC breast cancer detection and grading, which face several challenges.
These include limited dataset diversity, robust generalization, imbalanced datasets, interpretability
issues, labor-intensive data labelling, lower accuracy, unavailability of F1 scores, or the need for
further validation and sensitivity to image variability. Furthermore, computational resources, ethical
considerations, and regulatory hurdles pose significant barriers to clinical adoption. Successful
integration into clinical workflows and long-term monitoring and validation are also crucial for
ensuring their safe and effective use in healthcare.

Our research addresses these limitations by proposing a new ensemble model that caters explicitly
to medium datasets and incorporates augmentation techniques to improve classification and grading
accuracy. By evaluating different DL architectures, we seek to enhance the understanding of their
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suitability for accurately grading breast IDCs. It improves the accuracy of the classification and
grading of breast-invasive ductal carcinomas in histopathological images.

3 Methods
3.1 Dataset and Image Preprocessing

The dataset consists of 922 histopathological microscopy images from 124 patients diagnosed with
IDC, intended for grade classification. These images have been partitioned into training, testing, and
validation sets, utilizing an 80:10:10 ratio. The dataset was prepared by dividing the images into ‘10×’,
‘20×’, ‘40×’, and ‘4×’. All Images are in RGB format, JPEG type, with a resolution of 2100 × 1574
and 1276 × 956 pixels. The Breast Cancer Histopathological Image Classification (BreakHis) dataset
consists of 7,909 microscopic images of breast tumor tissue gathered from 82 patients. They captured
at various magnification levels (40×, 100×, 200×, and 400×). Within this dataset are 2,480 benign
and 5,429 malignant samples, all in PNG format with dimensions of 700 × 460 pixels, featuring 3-
channel RGB images with 8-bit depth per channel. Collaboratively built with the P&D Laboratory
Pathological Anatomy and Cytopathology in Parana, Brazil, the dataset classifies malignancies into
four subcategories based on microscopic appearance. Each patient’s data includes multiple images
annotated with main and subcategory classes.

Fig. 1 represents our proposed work’s methodological framework. This paper’s workflow com-
prises three primary sections. The “Methods” section covers the creation of a novel dataset, training
procedures, implementation details, and architecture of our ECAM model; “Results” presents an
analysis comparing our model against cutting-edge classification techniques that include various
performance metrics; while in “Discussion,” an ablation study, statistical examination and compu-
tational difficulty examination component impacts in our proposed network are used as well as an
ablation study, statistical analysis, and computational difficulty examination to shed further insight.
Our structured approach ensures an in-depth investigation from dataset creation through model
formulation to empirical evaluation and in-depth assessment of our outcomes.

Figure 1: Proposed model flow chart
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Fig. 2 illustrates the IDC DataBioX and BreaKHis dataset sample images. Fig. 3 shows the
preprocessed images, including feature-wise center, horizontal flip, and vertical flip.

Figure 2: Sample images of IDC DataBioX and BreaKHis datasets

Figure 3: The steps of the horizontal flip, vertical flip, and feature-wise center

3.2 Training and Implementation

This study involved training a CNN model on the Google Colab platform over 50 epochs using
one 12 GB NVIDIA Tesla K80 GPU with maximum continuous use. The GPU mode was utilized for
faster execution, but the completion time of the training process depended on factors such as network
speed and dataset size.

The proposed CNN model is optimized using the Adam optimizer with a default learning rate of
0.001, as it helps experiment and fine-tune the hyperparameters to find the most suitable optimizer for
a task. Several vital parameters were used for effective training, including reduced learning rate, model
checkpoint, and early stopping. The reduced learning rate helped adjust the learning rate dynamically
based on the training progress. The validation accuracy was monitored, and it did not improve for
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five consecutive epochs with a minimum change of 0.0001; the current learning rate was reduced by
half. This process continued until the last epoch. The model checkpoint callback was used to save the
weights of the best-performing model based on validation accuracy. Early stopping was implemented
to determine the total number of epochs for training. After 50 epochs, if no performance improvement
was observed, the training process was stopped to avoid overfitting. For the hyperparameter, batch
size was set to 4 in the ECAM, as it returned satisfactory results. Larger batch sizes allow for better
parallelization but may lead to poorer generalization.

Softmax cross-entropy was utilized as the loss function, making it ideal for multiclass classification
problems. This loss function measures any disparity between the network output and label output; to
evaluate model performance, accuracy, precision, recall, and F1 score (β = 1) were used, these metrics
being computed on true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN) predicted by its predictions. Each case was subjected to the Softmax cross-entropy loss function at
the Grade-1, Grade-2, and Grade-3 amplification levels, according to Eq. (1) [21,22], where yi denotes
the target value. At the same time, f(x) represents the output from the activation function representing
probability for each class. The performance metrics can be formulated for these four groups as shown
in Eqs. (2)–(5).

CrossEntropy Loss = −
∑C

i=1
yi log f (x) i (1)

Accuracy = TPcount + TNcount
TPcount + TNcount + FPcount + FNcount

(2)

Preision = TPcount
TPcount + FPcount

(3)

Recall = TPcount
TPcount + FNcount

(4)

F1 = TPcount
TPcount + FPcount + FNcount

(5)

Accuracy (Eq. (2)): This metric assesses the overall correctness of the model’s predictions. It is
calculated by summing the counts of true positives (TP) and true negatives (TN) and dividing by the
total number of predictions, including TP, TN, false positives (FP), and false negatives (FN). Precision
(Eq. (3)): Precision measures the accuracy of positive predictions made by the model. It calculates the
ratio of true positives (TP) to the sum of true positives (TP) and false positives (FP). Recall (Eq. (4)):
Recall, also known as sensitivity or true positive rate, quantifies the model’s ability to identify positive
cases correctly. It is calculated as the ratio of true positives (TP) to the sum of true positives (TP) and
false negatives (FN). F1 score (Eq. (5)): The F1 score is the harmonic mean of precision and recall.
It balances the trade-off between precision and recall and is particularly useful when dealing with
imbalanced datasets. It is calculated as the ratio of true positives (TP) to the sum of true positives
(TP), false positives (FP), and false negatives (FN).

3.3 Proposed Methodology

Our ECAM model introduces a new architecture with key components to enhance breast
cancer diagnosis. The model’s architecture consists of a separable CNN, channel-wise attention, and
hierarchical feature aggregation, as shown in Fig. 4. This combination of design elements significantly
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improves the model’s performance. The model begins with an input layer image of 224 × 224 pixels
with three color channels (RGB). The ECAM consists of four convolutional Groups (CG): CG-1, CG-
2, CG-3, and CG-4. Each group comprises two convolutional blocks (CB) and one feature aggregation
node. In CG-2 and CG-4 also apply a Squeeze and Excitation (SE) block in the ECAM. The model
subsequently uses convolutional and pooling layers, with global average pooling for feature vector
creation, followed by dropout for regularization and a dense layer for producing predictions in three-
class classification tasks. The detail of the ECAM is described in Subsection 3.4.

Figure 4: The proposed ECAM model (Convolution group-n is represented by CG-n in the ECAM)

3.4 Architecture of the ECAM Model

Researchers have developed models to improve DL network performance while minimizing
learnable parameters associated with these networks. There is widespread agreement that including
nonlinearity, better capacity, and broader receptive fields in a model would result in improved
performance; however, this improvement will come at the expense of an increase in computational
complexity [23]. Adding more depth or width to a network is not a surefire way to get the best benefits
out of it. One of the biggest challenges DL engineers confront is managing shrink or explode gradients.
Additionally, important are connections between the various levels and features. We investigated and
tried many parts of DL to lower the number of factors that could be learned while improving accuracy.
Below are the following details of these models.

3.4.1 Deep Aggregation of Features

CNNs contain many layers, each of which does something different. Compounding and merging
layers are proactive measures to improve CNNs’ ability to enhance results; more than one division
layer alone is insufficient. Researchers have made different CNN designs, from deeper to broader
networks. It takes more than making it deeper or more comprehensive for the end layer to have the
best qualities [23]. The proposed approach employs a sophisticated deep-learning-based architecture
to address these issues, incorporating a hierarchical blending of data from various network levels.

The proposed model achieves its signature connected characteristics by combining light and deep
layers in an aggregated fashion, with layers of comparable depths being aggregated together. They
are added to the layer that is located above them. To avoid losing important data, the final feature
map includes features from further network blocks using skip-connection techniques. Eq. (6) is a
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mathematical representation of how deep features are added together across layers in this method:

Fd = A
((

Rd
d−1 (x), Rd

d−2 (x), . . . , Rn
1 (x), Ln

1 (x) , Ln
2 (x)

))
. (6)

Eq. (6) offers significant information about the ultimate feature map, named F. This feature map
contains crucial details about the depth, feature map, and aggregation node of level x in the model.
The variables L and R in Eq. (6), depict the hierarchical feature aggregation’s relationship between
diverse feature maps. Eqs. (7) and (8) further illustrate this concept:

Ld
2 (x) = C

(
Ld

1 (x)
)

, Ld
1 (x) = C

(
Rd

1 (x)
)

, (7)

Rd
m (x) =

{
Fm(x), if m = n − 1
Fm(Rd

m+1 (x)), otherwise
. (8)

Using residual connections is crucial for solving issues with gradients that either become too
small or too large. Maintaining the hierarchy of these connections is important to avoid any negative
impact on network performance [24]. Our proposed method involves performing feature aggregation
at multiple levels. During training, this method helps minimize the chances of gradients diminishing
or exploding, offering alternate short paths. This is represented by Eq. (9), which is shown here:

A (x1, . . . xd) = σ
(

BatchNorm
(∑

i
Wixi + b

))
, (9)

where σ shows nonlinear “activation that is not linear.” Wi and b in a CNN’s convolutional layer stand
for biases and weights, respectively, and BatchNorm stands for batch normalization. Our suggested
ECAM used eight convolution blocks. Models based on DL use convolutional layering as key building
blocks to improve speed and reduce delay [24]. In Fig. 5, it is shown that each CB consists of two
separate CL that use different kernel sizes (3 × 3–5 × 5). These levels help speed up performance and
reduce delay simultaneously. Alex-Net and Dense-Net used convolution layers as usual.

Figure 5: Single convolution block

Researchers have recently developed new ways to improve intelligence processing power, such as
separate or group convolutions. One effective technique is to use depth-wise separate convolutions.
This approach can significantly decrease the model’s size, time inference, and training parameters.
Depthwise ECAM involves two stages: spatial convolution (for depthwise three-dimensional) and
pointwise convolution. In Fig. 5, you can see a convolution block that uses kernels of sizes 3 × 3 and
5 × 5. This allows the use of multiscale data. The output of both separable convolution layers is merged
through element-wise addition. Next, a batch normalization layer is applied to normalize them. We
have implemented an aggregation last node to ensure seamless integration between the initial and final
blocks. The performance of this node is genuinely remarkable, seamlessly combining the multiscale
features from the separate layers. This innovative approach ensures a cohesive and synergistic fusion
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of these features, resulting in unparalleled performance. Channel-wise attention is implemented using
SE blocks.

3.4.2 Use of the Squeeze Block and Excitation Block

To improve CNN, Hong et al. [23] proposed adding a new SE Block to CNNs to improve how they
show features. A CNN offers the features of an image by using methods like convolutional neural layer
pooling and batch normalization. Each part of its structure serves a specific purpose. A recent research
focused on determining how feature maps connect to one another in space. Only a small amount of
research has been done on channel-wise data. SE focuses on information about each channel, which
helps improve performance without adding more factors that can be learned [24,25]. CNN use is
standardized, and each station’s weight is given based on importance. Note that the SE is a flexible
part that can be used or linked anywhere in a network. Starting with key elements that work for all
classes, the following levels focus on more valuable elements that work for each class.

An SE block is comprised of three modules, which are labeled as follows: (a) the squeeze module,
(b) the excitation module, and (c) the scale module, as shown in Figs. 6 and 7. The SE module combines
feature maps based on 3 layers of dimensions to create a channel descriptor (H × W). Throughout
the procedure, information is embedded in the system. Performing global average pooling squeezes
the output to 1 × 1 × C, with C as the number of channels. The squeeze module output serves as
input to the excitation part, which generates per-channel execution weights. The “excited” tensor has
1 × 1 × C dimensions and is output by the squeeze module. This matrix is then passed through a
sigmoid activation layer to normalize the output between 0 and 1. The input is transformed using the
sigmoid function before being element-wise multiplied with the output. Channel-wise weights are then
applied to scale the output. In this way, new channels that have been recalibrated might be accessed.
Fig. 6 shows all components of the new block SE, while Fig. 7 illustrates the various steps performed
on the input tensor using the SE block.

Figure 6: Proposed model includes a squeeze block and excitation block

Figure 7: SE blocks carries out various operations
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Eqs. (10)–(12) demonstrate the utilization of the squeeze, excitement, and scaling modules: If the
output feature mappings U = ([u1, u2, . . . , uC]) εRH×W×C are created from the input tensor XεRH′×W ′×C′ ,
after being transformed by Ftr, then

Fsqeeze (uc) = 1
H × W

∑H

i=1

∑W

j=1
uc (i, j) , (10)

where uc ε RH×W is the result of the convolution process at the c-th element. The spatial dimension is
shown by H and W. Eq. (11) shows how the excitement module can be described.

s = Fexcitation (z, W) = σ (g (z, W)) = σ (W2Q (W1z)) . (11)

In Eq. (11), the Q symbol represents the ReLU activation function. In this equation, W1 ε R
C
r ×Cand

W2εR
C
r ×Cboth have the form R

C
r ×C . Eq. (12) illustrates the ultimate outcome of the SE block following

rescaling and activation:

X̃ = Fscale (uc, sc) = scuc, (12)

where X̃ = [X̃1, X̃2, . . . , X̃C], and Fscale (uc, sc) this represents a scalar value. sc and for mapping the
feature ucεRH×W channel-wise multiplication.

The SE block is adaptable to any DL model. We incorporated it into our suggested method and
achieved improved accuracy. The ECAM model’s layers are detailed in Table 1.

Table 1: Details of ECAM model network

Layer type Details

Input Input layer for images with dimensions (224, 224, 3)
SeparableConv2D Separable convolutional layer with various filter sizes and output

channels
Add Element-wise addition of two layers
BatchNormalization Batch normalization layer for normalization and scaling of layer

activations
Concatenate Concatenation of two or more layers along a specified axis
AveragePooling2D The average pooling layer is utilized to decrease the input space’s size.
GlobalAveragePooling2D A pooling layer is used to compute the average of all spatial locations.
Dense Fully connected (dense) layer with a specified number of units
Activation The activation layer applies a specific activation function to the

layer’s output.
Multiply Element-wise multiplication of two layers
Dropout Dropout layer for regularization, randomly setting a fraction of

inputs to zero during training.
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The ECAM model is a DL architecture designed for image classification with 1,736,870 parame-
ters. It comprises separable convolutional layers to extract features, followed by batch normalization
for regularization and scaling. The Model also includes concatenation layers to combine feature maps
from different branches. Average pooling and global average pooling layers are used for downsampling
and global feature extraction, respectively. Dense layers with activation functions are employed for
the final classification. Dropout is utilized for regularization during training. The Model has four
different output types and can do about 4.07 billion Floating Point Operations (Flops). Table 1 shows
the specifics of the plan being proposed.

4 Results

To evaluate the ECAM model objectively, its performance was assessed against that of
DenseNet121, VGG16 and AlexNet. We used a range of quality metrics, including precision, recall,
F1 score, and accuracy, to evaluate both the performance of the model and its individual class
performance. Mainly, overall accuracy did not merely rely on class-wise accuracy but instead regarded
as total instances of true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) across all classes, using Python’s sci-kit-learn library; consequently, the overall metric could
even be lower than any individual class’s lowest metric obtained. Table 2 presents the performance
comparison of various models used for classifying breast tissues from the IDC dataset. Table 3 presents
the performance comparison of various models used for classifying breast tissues from the BreakHis
dataset. Our ECAM model boasted an outstanding classification accuracy of 96.70%, and with
BreakHis 96.33% surpassing all other models in this evaluation. Precision, recall and F1 score values
for our ECAM model stood at 96.6%, and with BreakHis 96.37% respectively, while DenseNet121,
VGG16 and AlexNet provided subpar performance compared with all the others tested.

Table 2: Evaluation of the PM relative to other competitive models based on overall quality standards

Metrics AlexNet DenseNet121 VGG16 ECAM model

Precision 0.871 0.965 0.907 0.966
Recall 0.868 0.956 0.908 0.967
F1 0.869 0.957 0.901 0.966
Accuracy 0.868 0.956 0.912 0.967

Table 3: Evaluation of the ECAM model relative by using BreakHis dataset to other competitive
models based on overall quality standards

Metrics AlexNet DenseNet121 VGG16 ECAM model

Precision 0.907 0.931 0.929 0.963
Recall 0.908 0.926 0.912 0.963
F1 0.907 0.927 0.913 0.963
Accuracy 0.908 0.926 0.924 0.963
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Figs. 8 and 9 present the learning curves of our ECAM model applied on IDC DataBiox and
BreakHis dataset, respectively. The graphs show that the training and validation curves are closely
aligned, indicating that the training data accurately represents the validation data during testing. This
alignment also suggests that the model is robust and could be applied to real-world scenarios with
confidence. Fig. 10 shows the confusion matrix, and RoC curve of ECAM model on IDC DataBiox.
Figs. 11 and 12 provides values insight into the learning performance of DenseNet121, VGG16 and
AlexNet during training iterations cycles, offering practical perspectives into their performance during
this training phase.

Figure 8: The ECAM model’s learning curve, including its training and validation accuracy, as well as
the training and validation loss, are being examined by using IDC DataBiox dataset

Figure 9: Learning curve of ECAM model with BreakHis dataset. Training and validation accuracy.
Training and validation loss of an ECAM model
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Figure 10: Confusion matrix, and RoC curve of ECAM model by using IDC DataBiox dataset

Figure 11: The ECAM model’s learning curve on the IDC DataBiox dataset is being examined, along
with its training accuracy and F1 score compared to other models Densenet121, VGG16 and AlexNet

Table 4 details the computational complexity of classification models using metrics such as
trainable parameters and floating-point operations (FLOPs). The ECAM model and its reference
models employ 0.3651 million parameters representing the lowest value out of all reference models; in
comparison, AlexNet uses more parameters but requires the least number of FLOPs; DenseNetv121
and VGG16 requires the highest total FLOP count among these classification models.
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Figure 12: Learning curve of ECAM model on BreakHis dataset. Training accuracy and F1 score of
ECAM model compared with other competitive Densenet121, VGG16 and AlexNet

Table 4: An evaluation of computational complexity across architectures

Model Parameters (M = 106) FLOPs (G = 109)

AlexNet 71,931,652 2.22 G
DenseNet121 9,919,812 6.12 G
VGG16 9,908,627 6.71 G
ECAM model 1,736,870 4.07 G

5 Conclusions

This study introduces a novel DL model and conducts a comparative investigation into IDC clas-
sification using various pre-trained deep learning models, including DenseNet121, VGG16, AlexNet,
and our ECAM model featuring deep feature aggregation and channel-wise attention. After being
assessment using preferred quality metrics, our model achieved remarkable performance with an
accuracy rate of 96.6% on the IDC dataset and 96.3% on the BreakHis dataset, as measured by the
desired quality metrics. Especially, the F1 score soared to an impressive 96%, underscoring the model’s
proficiency in accurately categorizing grades of breast cancer histopathology images. To measure
its suitability for real-time applications, we conducted a thorough comparative analysis, scrutinizing
factors such as inference time, model depth, memory utilization, and the number of parameters.

The paper utilized two medium-sized public datasets to conduct experiments. However, in order
to verify the model’s generalization capabilities, cross-dataset experiments with a larger dataset are
required. Moreover, it is crucial to conduct further testing with noisy data to evaluate the effectiveness
of the model, considering potential variations in data during collection and preparation.
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In our future work, our main focus will be on enhancing the accuracy of classification. Addition-
ally, we intend to analyze the effect of other deep models on the performance of the ensemble model
when dealing with large datasets. Moreover, we plan to consider all the historical data of the patient
to provide more accurate inferences.
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