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ABSTRACT

Data fusion generates fused data by combining multiple sources, resulting in information that is more consistent,
accurate, and useful than any individual source and more reliable and consistent than the raw original data, which
are often imperfect, inconsistent, complex, and uncertain. Traditional data fusion methods like probabilistic fusion,
set-based fusion, and evidential belief reasoning fusion methods are computationally complex and require accurate
classification and proper handling of raw data. Data fusion is the process of integrating multiple data sources. Data
filtering means examining a dataset to exclude, rearrange, or apportion data according to the criteria. Different
sensors generate a large amount of data, requiring the development of machine learning (ML) algorithms to
overcome the challenges of traditional methods. The advancement in hardware acceleration and the abundance of
data from various sensors have led to the development of machine learning (ML) algorithms, expected to address
the limitations of traditional methods. However, many open issues still exist as machine learning algorithms are
used for data fusion. From the literature, nine issues have been identified irrespective of any application. The
decision-makers should pay attention to these issues as data fusion becomes more applicable and successful. A
fuzzy analytical hierarchical process (FAHP) enables us to handle these issues. It helps to get the weights for each
corresponding issue and rank issues based on these calculated weights. The most significant issue identified is
the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.
The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic
knowledge for multimodal data cannot be captured.
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1 Introduction

In the period of ambiguous abstract data upturn, the massive bulk of data is envisaged, collected,
investigated, and processed. By focusing on this data carefully, handy and reliable information can
be extracted along with the formation of rules. These rules help in a better way to logically draw the
conclusion or decision-making as compared with results drawn from intuition or experience. This big
data has characteristics like variety, volume, value, veracity, and velocity. This makes it difficult for
traditional techniques to dig out reliable, useful information from the massive amount of complex,
tangled, mixed, and imperfect data [1]. Different types of data processing techniques are applied to
cope with this huge complex data like data pre-processing, data manipulation, data storage, data
visualization, data analytics, data fusion, and data transfer. The current study targets data fusion. It is
known by different names in the literature like sensor fusion, data combination, information fusion,
decision fusion, multi-sensor fusion, or data aggregation. This is one of the dominant techniques to
deal with above mentioned raw data so that useful information is extracted. Fused data is expected to
provide more synthetic, consistent, or reliable information as compared to raw original data. Data
fusion is used in image processing, intrusion detection, sensor networks, radar systems, etc. Data
fusion based on ML algorithms is heading the market in the present era due to its computation and
classification capabilities. This methodology helps to hide critical information and can handle issues
generated when IoT systems are used with big data. ML helps in choosing the best fusion method
to increase overall accuracy for getting information from multiple sensors. Different ML algorithm
which is used with data fusion is Support Vector Machine (SVM), Artificial Neural Network (ANN),
k-means clustering, k-central clustering, etc. Machine Learning (ML) algorithms can be highly
beneficial when used with data fusion, as they can automatically learn from the data and improve their
performance over time. This combination of ML and data fusion has found applications in various
fields, such as robotics, surveillance, environmental monitoring, medical diagnosis, and more.

The importance of ML algorithms in data fusion applications can be attributed to the following
factors:

1. Improved accuracy: ML algorithms can identify patterns and relationships in the fused data
that may not be apparent to humans or traditional statistical methods, leading to improved
accuracy in predictions, classifications, and decision-making.

2. Handling large volumes of data: Modern applications often generate vast amounts of data from
multiple sources. ML algorithms are highly scalable and can efficiently process and analyze
these large datasets to extract valuable insights.

3. Adaptability: ML algorithms can adapt to changing data patterns and evolve, making them
well-suited for applications where the data sources or underlying processes may change.

4. Reducing uncertainty and noise: Data fusion can help reduce uncertainties and noise in the
data by combining information from multiple sources. ML algorithms can further enhance
this process by learning to identify and mitigate the effects of noise and uncertainty on the
analysis.

5. Real-time processing: ML algorithms can be designed to process data in real-time, enabling
faster decision-making and timely responses in applications where time is of the essence, such
as emergency response, fraud detection, and autonomous vehicles.

It is essential to know about the open issues in ML and data fusion because addressing these issues
can lead to even better performance and more robust applications. The current study is organized into
different sections. Section 2 targets the literature review of ML algorithms that have been used for data
fusion. Section 3 elaborates on the open issues that are related to data fusion ML-based algorithms.
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Section 4 mentions the research methodology followed by Section 5 which shows the fuzzy Analytical
Hierarchy Process (AHP) implementation. Section 6 gives insight into the discussion and conclusion.

2 Machine Learning Algorithms for Data Fusion

The current study categorizes the literature on ML for data fusion into three types. The categories
are signal level, feature level, and decision level data fusion [1,2].

In signal-level fusion, raw data inputs are taken from sensors and the output is reliable and
accurate along with capitalization of a few noises. The authors [3] have proposed a hybrid model
for fault detection. The model targets multi-sensor data fusion with the help of Short-Term Fourier
Transforms (STFT), Support Vector Machine (SVM), and time duration. The authors [4] integrated
the Bayesian approach with SVM for data fusion. The authors proposed an SVM algorithm [5] for
data fusion along with tuning up the score normalization technique. An optimized Back Propagation
Neural Network (BP-NN) has been proposed with speed constrained multi-objective particle swarm
optimization (SMPSO) algorithm so that efficiency and adaptability in the large-scale network
increase [6]. An ANN-based navigation system was proposed to handle or predict non-linear problems
[7]. The authors have proposed a Radial Basis Function (RBF) neural network model that can handle
non-linear problems [8]. K-central clustering has been used by the authors for data fusion [9] so that
higher accuracy for target tracking and identification in real time can be achieved. Another fast data
fusion based on a clustering algorithm has also been proposed [10]. K-means clustering is also in
the race for target tracking [11], wireless sensor networks [12], earth observations [13], and uncertain
conditions [14].

At the feature level, inputs are in the form of raw data or features and the output is more
reliable and polished information for making decisions. For feature fusion SVM is used for land cover
classification [15], meta-search engine [16]. Artificial neural network (ANN) was used for online tool
wear estimation [17]. Hierarchical fusion systems are used for intrusion detection [18], and building
construction [19]. Hybrid methods are used for travel mode choice [20].

At the decision level, different types of data are fused and it generates accurate decision results.
The authors proposed multiple SVM models for fusing hyperspectral data and Light Detection And
Ranging (LIDAR) data. This is for an anomaly intrusion detection system. Different classifiers are
also used by the authors [21] for intrusion detection systems. Unsupervised algorithms like clustering
are also used for intrusion systems [22], nuclear power crack inspection [23], crop monitoring [24], and
diagnostic applications [25].

3 Machine Learning Algorithms Open Issues

After doing a comprehensive literature review, it shows that there are a lot of issues that are
associated when ML algorithms are used with data fusion. A total of 9 issues have been identified
and these open issues are summarized in Table 1. DF-MA stands for data fusion-machine learning
algorithms open issue.
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Table 1: Machine learning open issues with data fusion

Code Problems

DF-MA-1 Lack of deep learning models used for data fusion that improve accuracy and learning
quality

DF-MA-2 Lack of attention towards fusion efficiency as huge computation is involved with ML
algorithms

DF-MA-3 A comprehensive model that satisfied all expected criteria is missing (like accuracy,
robustness, extensibility, quality, and handling unstable environments)

DF-MA-4 Data privacy and security issues
DF-MA-5 Cross-domain multimodal data fusion is a challenge as whole semantic knowledge for

multimodal data cannot be captured
DF-MA-6 Prediction and decision making is difficult when data is imperfect, inconsistent,

uncertain, and non-linear
DF-MA-7 Data confliction
DF-MA-8 Dynamic fusion (Take care of data type, collected environment along with

time-varying system)
DF-MA-9 Generalization error is large as sampling differences are not considered extensively

3.1 Lack of Deep Learning Models

The lack of deep learning models used for data fusion poses a significant challenge in achieving
improved accuracy and learning quality in the integration of ML/DL with data fusion. A primary
reason for this deficiency is the complexity of designing and training deep learning models tailored
to fuse heterogeneous data from diverse sources. Data fusion entails the combination of multiple data
sets, which often involves dealing with disparate formats, incomplete or noisy data, and varying levels
of reliability. Developing appropriate deep learning architectures that can efficiently learn from such
varied data and extract relevant features is a critical and complex task. Furthermore, the need for large
amounts of training data and computational resources exacerbates the problem. As a result, the current
landscape of ML/DL integration with data fusion lacks the full potential for achieving enhanced
accuracy and learning quality. To address this open issue, researchers must focus on developing novel
deep-learning architectures, techniques, and methodologies tailored to the unique challenges of data
fusion [26–28].

3.2 Lack of Efficiency

The performance of ML/DL models often comes at the expense of high computational complexity,
which can hinder real-time or resource-constrained applications. The fusion process itself involves the
combination of data from multiple sources, which can lead to a substantial increase in the volume
of data to be processed. This, in turn, exacerbates the computational burden of ML/DL algorithms,
making it challenging to achieve both accuracy and efficiency simultaneously. To address this issue,
researchers need to develop novel techniques that optimize the trade-off between accuracy and
computational efficiency. Potential solutions may involve designing lightweight deep learning archi-
tectures, employing model compression techniques, or leveraging distributed and parallel computing
paradigms. By focusing on fusion efficiency, researchers can enhance the scalability and applicability
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of ML/DL-based data fusion systems in a wider range of scenarios, ultimately unlocking their full
potential [29,30].

3.3 Lack of Attention

Developing a model that excels in all these aspects simultaneously is challenging, as each
criterion often involves a trade-off with another. For example, increasing model accuracy may require
complex architectures that could compromise efficiency and adaptability to unstable environments.
Additionally, enhancing robustness may involve incorporating redundancy or error-correction mech-
anisms, which could impact the model’s extensibility. Addressing this issue necessitates a multifaceted
approach that encompasses the development of novel ML/DL architectures, optimization techniques,
and fusion strategies tailored to the specific requirements of diverse applications. Researchers must
focus on identifying the appropriate balance between these criteria to create more versatile and reliable
data fusion systems. By establishing a comprehensive framework that encompasses these essential
aspects, the potential benefits of ML/DL-based data fusion can be fully realized across various
domains and use cases [31,32].

3.4 Data Privacy and Security Issue

Data privacy and security emerge as critical open issues when ML/DL integrates with data
fusion, as the process often involves handling sensitive information from multiple sources. As data
fusion combines diverse datasets, it can potentially reveal new patterns and insights that may not
be apparent when examining individual datasets. This can lead to unintended consequences, such as
the exposure of private information or the violation of data protection regulations like GDPR or
CCPA. Addressing data privacy and security concerns requires the development and implementation
of privacy-preserving techniques and robust security measures. Methods such as differential privacy,
federated learning, and secure multi-party computation can help ensure that sensitive information
remains protected while still allowing ML/DL models to learn from the fused data. Moreover,
establishing clear data governance policies and enforcing access controls can further safeguard privacy
and security [33–35].

3.5 Cross Domain Multimodal Data

Multimodal data consists of heterogeneous data types originating from various sources, such as
text, images, audio, and video. Each data modality conveys distinct information and requires spe-
cialized processing and feature extraction techniques. Consequently, creating a unified representation
that encapsulates the complete semantic knowledge of such diverse data becomes a daunting endeavor.
Addressing this issue necessitates the development of advanced ML/DL models and fusion strategies
capable of effectively combining information from multiple modalities while preserving the inherent
semantics of each data type. Techniques such as cross-modal learning, multi-task learning, and domain
adaptation can help build more effective and robust representations for multimodal data fusion.
Furthermore, leveraging unsupervised or self-supervised learning approaches can aid in capturing
latent semantic relationships across different modalities, thereby enhancing the fusion process [36,37].

3.6 Prediction and Decision Making

Prediction and decision-making become increasingly difficult when ML/DL integration with data
fusion deals with imperfect, inconsistent, uncertain, and non-linear data. Such data often arise from
real-world scenarios, where noise, missing values, conflicting information, and inherent complexity are
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prevalent. These imperfections pose significant challenges for ML/DL models, as their performance
is highly dependent on the quality and consistency of the input data. Training models on noisy or
inconsistent data may lead to overfitting, reduced generalization, or incorrect predictions, ultimately
impacting the reliability and utility of the data fusion process. To address this open issue, researchers
must develop robust ML/DL techniques and fusion strategies that can effectively handle and learn
from imperfect data. Approaches such as robust optimization, Bayesian learning, and ensemble
methods can help improve model resilience to noise, inconsistencies, and uncertainties. Additionally,
incorporating data preprocessing and cleaning techniques, as well as incorporating domain knowledge,
can help mitigate data imperfections and enhance the overall quality of the fused data [38,39].

3.7 Data Confliction

Data conflict emerges as a critical open issue when integrating ML/DL with data fusion, as
the process often involves combining data from multiple sources that may provide conflicting or
contradictory information. Discrepancies in data can arise from various factors, such as sensor
errors, data corruption, or inconsistencies in data collection methods. These conflicts can hinder
the performance of ML/DL models, leading to unreliable predictions and decision-making, which
may ultimately undermine the benefits of data fusion. Addressing this issue requires the development
of conflict resolution strategies and robust ML/DL techniques that can effectively handle and learn
from conflicting data. One approach to mitigating data conflicts is to employ data preprocessing and
cleaning methods, which can identify and resolve discrepancies before they reach the learning stage.
Additionally, incorporating source reliability or trustworthiness into the fusion process can help weigh
the contribution of different data sources based on their credibility. Another potential solution is the
use of advanced ML/DL models, such as ensemble methods, that can learn from multiple sources
and make decisions based on a consensus, thereby minimizing the impact of conflicts. Furthermore,
leveraging domain knowledge and context-aware approaches can aid in identifying and resolving data
conflicts more effectively [40–42].

3.8 Dynamic Fusion

In real-world scenarios, the characteristics of data sources and the environment can change over
time, affecting the relevance and accuracy of the fused data. To maintain effective decision-making
and predictions, fusion models must be capable of adapting to these dynamic changes, which poses
a significant challenge for conventional static fusion techniques. Addressing this issue necessitates
the development of adaptive ML/DL models and dynamic fusion strategies that can accommodate
changes in data types, environments, and time-varying systems. Techniques such as online learning,
incremental learning, and transfer learning can help create models that are capable of updating
themselves as new data becomes available or conditions change. Moreover, incorporating context-
aware approaches and domain knowledge can further enhance the adaptability of these models to
dynamic environments. Another potential solution is the use of attention mechanisms, which can learn
to weigh different sources and features based on their relevance at a given time. This enables the model
to focus on the most relevant information while adapting to changes in the data or environment [43].

3.9 Generalization Error

Data samples from multiple sources may exhibit variations in terms of distribution, density, and
noise levels. These differences can lead to ML/DL models learning suboptimal representations or
overfitting to specific data characteristics, ultimately resulting in a large generalization error and
reduced performance on unseen data. To address this issue, researchers must develop robust ML/DL



CMC, 2023, vol.77, no.3 2905

techniques and fusion strategies that take sampling differences into account. One possible approach is
employing domain adaptation techniques, which enable models to learn more general representations
that can be applied across different data distributions. Another potential solution is the use of data
preprocessing methods, such as data normalization or resampling, to minimize the impact of sampling
differences on the learning process. Furthermore, incorporating ensemble methods, regularization
techniques, or dropout strategies can help improve model generalization by reducing overfitting and
encouraging the learning of more robust features. Additionally, focusing on unsupervised or semi-
supervised learning approaches can help models extract more meaningful information from data with
varying sampling characteristics [44].

A similar work is deeply investigated for Unmanned Aerial Vehicles (UAV) revealing the sig-
nificance of kinematic model error for achieving optimal solution. The method reveals the use of
optimal navigation solutions. The method simultaneously processes observations from integrated
MIMU/GNSS and MIMU/CNS (Micro-electro-mechanical system-based inertial measurement unit/
global navigation satellite system/celestial navigation system) subsystems for the subsequent global
fusion. Based on the above, an optimal fusion technique is developed to fuse the filtering results of
each subsystem for achieving global optimality [45]. In another study, the authors present a method
of distributed state fusion by using the sparse-grid quadrature filter to deal with the fusion estimation
problem for multi-sensor nonlinear systems. Here sparse-grid quadrature filter is performed in a
distributed manner to process the information. The simulations and experiments in INS/CNS/GNSS
(inertial navigation system/celestial navigation system/global navigation satellite system) integration
verify the effectiveness of the proposed methodology [46].

A new optimal data fusion method based on the adaptive fading unscented Kalman filter for
multi-sensor nonlinear stochastic systems is proposed which has a two-level fusion structure: at
the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance
is developed and serves as local filters to improve the adaptability and robustness of local state
estimations against process-modeling error; at the top level, an unscented transformation-based multi-
sensor optimal data fusion for the case of N local filters is established according to the principle of
linear minimum variance to calculate globally optimal state estimation by fusion of local estimations.
The proposed methodology is found to be more effective and refrains from the influence of process-
modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion
for multi-sensor nonlinear stochastic systems [47]. Nevertheless, the information fusion involved in
INS/GNSS/CNS integration is still an open issue. Henceforth, a matrix-weighted multisensor data
fusion methodology with the two-level structure for INS/GNSS/CNS integrated navigation system is
proposed integrating local filters respectively to obtain local optimal state estimations. The approach
proposed its significance with matrix-weighted multisensor data fusion methodology in comparison
with the federated Kalman filter [48,49].

4 Research Methodologies
4.1 Background and Research Gap

The literature shows that the usage of ML algorithms with data fusion can be a costly and
timely affair. An integrated framework that allows for the combination of real-world observations
and simulation data for optimal result estimation. This could improve the performance of data fusion
addressing the limitations as discussed in Section 3. Data fusion is used for military purposes, intrusion
detection, target tracking, nuclear power cracks, crop monitoring, etc. When you work on these types
of critical areas, you cannot afford to face failure as it involves huge costs, life risks along a huge
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time for implementation. It becomes important to figure out the open issues that are related to the
implementation of ML-based algorithms with data fusion. Now, the important thing is to prioritize
these open issues such that the above-mentioned cons can be minimized or zilch. To rank these issues,
a multi-criteria decision analysis technique called fuzzy AHP is used [50]. Works relating to software-
defined networking (SDN) were used in several controllers to improve the reliability as well as the
scalability of networks such as the Internet of Things (IoT). To achieve optimal results in IoT networks,
an SDN is employed to reduce the complexity associated with IoT and provide an improved quality-of-
service (QoS). The proposed scheme is more flexible for the decision-making process for the selection
of appropriate controllers with varying resources [51].

4.2 Measure

A survey has been conducted with the help of 15 experts to rank the identified nine open issues.
These are rated on a scale of 1 to 9 and the current study is quantitative. Two sections are considered
in the survey. The first section contains the experts’ profiles whereas the other section contains these
open issues. A nine-point Likert scale is used for measuring these open issues variables where nine
stands for “tremendous” to one stands for “equal” importance as shown in Table 1. The survey was
conducted to rank the identified issues so that success is achieved while implementing data fusion by
taking care of issues that should be handled on priority.

4.3 Fuzzy AHP

Different multi-criteria decision-making (MCDM) techniques exist in the past and they are used
to rank the criteria or issues as well as sub-criteria. FAHP is one of the prevailing and powerful
techniques that has been used for decision-making. Fuzzy set theory is the basis for doing FAHP.
Fuzzy triangular numbers (FTNs) are used to do a pair-wise comparison for identified criteria or
open issues [52,53]. FAHP is used to rank the criteria or open issues based on weights that have been
calculated. The process of FAHP is explained below:

Step 1: First do the pair-wise comparison for all criteria or sub-criteria. Experts’ opinions are used
to do a pairwise comparison with the help of a linguistic scale as mentioned in Table 2. Eq. (1) is used
for doing a pairwise comparison.

P̃ =

⎡
⎢⎢⎢⎢⎣

1, 1, 1 p̃12 p̃13 p̃14 · · · p̃1n

p̃21 1, 1, 1 p̃23 p̃24 · · · p̃2n

p̃31 p̃32 1, 1, 1 p̃34 · · · p̃3n

...
...

...
...

. . .
...

p̃n1 p̃n2 p̃n3 p̃n4 · · · 1, 1, 1

⎤
⎥⎥⎥⎥⎦ (1)

where p̃ = (xrs, yrs, zrs) and r, s = 1, 2, 3, . . . , n are triangular fuzzy numbers.

Step 2: Fuzzy synthetic criteria (Fi) is calculated for all criteria with the help of fuzzy synthetic
extent values (SVS) using Eq. (2).

Fr

(∑n

s=1
xs,

∑n

s=1
ys,

∑n

s=1
zs

)
∗

(
1∑n

r=1 zr

,
1∑n

r=1 yr

,
1∑n

r=1 xr

)
(2)

Step 3: After calculating Fi, it is important to find out the degree of possibility (DgPs) with the
help of Eq. (3). Suppose, F1 = (x1, y1, z1) and F2 = (x2, y2, z2) are two fuzzy matrices. The degree of
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possibility of F1 ≥ F2 can be defined as:

DgPs(F1 ≥ F2) =

⎧⎪⎨
⎪⎩

1 if fy1 ≥ y2

0 if fx1 ≥ z1
x2−z1

(y1−z1)−(y2−x2)
, otherwise

(3)

Step 4: Calculate fuzzy weight (Fwgt) and non-fuzzy weight (NFwgt) with the help of Eqs. (4) and
(5), respectively.

Fwgt = (d�(F1), d�(F2), d�(F3), · · · , d�(Fn))T (4)

where d�(Fi) = min DgPs (Fr >= Fs) and r, s =1, 2, 3, . . . , n and r �= s

NFwgt = (d(F1), d(F2), d(F3), d(F4) · · · , d(Fn))T (5)

Table 2: Fuzzy linguistic terms with values

Linguistic term TFNs (e, f, g) Linguistic term TFNs (e, f, g) Linguistic term TFNs (e, f, g)

Equal 1̃ = (1, 1, 1) Moderate 3̃ = (2, 3, 4) The intermediate value
between equal and
moderate

2̃ = (1, 2, 3)

Strong 5̃ = (4, 5, 6) The intermediate value
between moderate and strong

4̃ = (3, 4, 5) Very strong 7̃ = (6, 7, 8)

The intermediate value
between strong and
very strong

6̃ = (5, 6, 7) Tremendous 9̃ = (9, 9, 9) The intermediate value
between very strong
and tremendous

8̃ = (7, 8, 9)

5 FAHP Implementation

Initially to start FAHP implementation, firstly open issues or criteria are defined as can be seen
in Table 1. Further, a linguistic scale (Table 2) should be developed that will be used by experts for
doing a pairwise comparison. Triangular Fuzzy Numbers (TFNs) have been used for doing a pairwise
comparison and are shown in Expert 1 in Table 3 along with Data Fusion Multi Criteria (DF-MC).

Table 3: TFN decision matrix for DF-MA

Problems DF-MA-1 DF-MA-2 DF-MA-8 DF-MA-9

DF-MC-1 (1, 1, 1) (3.00, 4.00, 5.00) (2.00, 3.00, 4.00) (5.00, 6.00, 7.00)
DF-MC-2 (0.20, 0.25, 0.33) (1, 1, 1) (5.00, 6.00, 7.00) (5.00, 6.00, 7.00)
DF-MC-3 (0.20, 0.25, 0.33) (0.14, 0.17, 0.20) (0.20, 0.25, 0.33) (5.00, 6.00, 7.00)
DF-MC-4 (0.14, 0.17, 0.20) (0.25, 0.33, 0.50) (0.20, 0.25, 0.33) (3.00, 4.00, 5.00)
DF-MC-5 (0.25, 0.33, 0.50) (0.14, 0.17, 0.20) (0.20, 0.25, 0.33) (0.20, 0.25, 0.33)
DF-MC-6 (1.00, 2.00, 3.00) (0.25, 0.33, 0.50) (0.25, 0.33, 0.50) (3.00, 4.00, 5.00)
DF-MC-7 (2.00, 3.00, 4.00) (1.00, 2.00, 3.00) (3.00, 4.00, 5.00) (0.33, 0.50, 1.00)
DF-MC-8 (0.25, 0.33, 0.50) (0.14, 0.17, 0.20) (1, 1, 1) (0.33, 0.50, 1.00)
DF-MC-9 (0.14, 0.17, 0.20) (0.14, 0.17, 0.20) (1.00, 2.00, 3.00) (1, 1, 1)
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A pairwise comparison by all 15 experts has been done and their aggregated decision matrix
result is shown in Table 4. Out of these, six are data analytics experts, four are software developers of
industries, two are project managers who have used data fusion in their projects and three are directors
of startups.

Table 4: Aggregated TFN decision matrix for DF-MA

Problems DF-MA-1 DF-MA-2 DF-MA-8 DF-MA-9

DF-MC-1 (1, 1, 1) (1.22, 1.53, 1.89) (1.95, 2.57, 3.21) (1.95, 2.64, 3.39)
DF-MC-2 (2.11, 2.86, 3.61) (1, 1, 1) (3.50, 4.31, 5.13) (2.24, 2.74, 3.28)
DF-MC-3 (1.68, 2.06, 2.48) (2.96, 3.83, 4.71) (1.87, 2.31, 2.80) (1.61, 1.99, 2.41)
DF-MC-4 (0.51, 0.66, 0.81) (2.44, 3.25, 4.08) (1.47, 1.83, 2.22) (1.74, 2.12, 2.54)
DF-MC-5 (0.56, 0.71, 0.92) (1.94, 2.88, 3.81) (0.96, 1.20, 1.48) (1.28, 1.65, 2.07)
DF-MC-6 (1.35, 2.29, 3.23) (1.95, 2.43, 2.92) (2.50, 3.13, 3.80) (1.51, 1.83, 2.21)
DF-MC-7 (1.02, 1.51, 2.01) (1.81, 2.43, 3.07) (4.11, 5.00, 5.93) (2.89, 3.83, 4.80)
DF-MC-8 (1.46, 1.90, 2.37) (0.93, 1.17, 1.42) (1, 1, 1) (2.33, 3.09, 3.89)
DF-MC-9 (1.15, 1.53, 1.95) (1.81, 2.36, 2.91) (1.08, 1.38, 1.71) (1, 1, 1)

The important thing after calculating the aggregated TFNs decision matrix is to find out Fi for all
open issues with the help of SVs. The results are mentioned in Table 5. After this calculate the Degree
of Possibility (DgPs) for all open issues.

Table 5: Fuzzy synthetic extent values (SVs) for DF-MA

Fuzzy criteria (Fi) SVs

F1(DF-MA-1) x1 = 0.09, y1 = 0.13, z1 = 0.21
F2(DF-MA-2) x2 = 0.07, y2 = 0.11, z2 = 0.16
F3(DF-MA-3) x3 = 0.08, y3 = 0.11, z3 = 0.18
F4(DF-MA-4) x4 = 0.08, y4 = 0.13, z4 = 0.19
F5(DF-MA-5) x5 = 0.05, y5 = 0.09, z5 = 0.14
F6(DF-MA-6) x6 = 0.07, y6 = 0.11, z6 = 0.18
F7(DF-MA-7) x7 = 0.08, y7 = 0.12, z7 = 0.20
F8(DF-MA-8) x8 = 0.06, y8 = 0.09, z8 = 0.15
F9(DF-MA-9) x9 = 0.06, y9 = 0.10, z9 = 0.17

The degree of possibility is a measure of how likely or probable a certain decision or outcome is,
based on the linguistic terms used in pairwise comparisons between different decision criteria. The
degree of possibility can be calculated using fuzzy arithmetic operations, such as addition, multi-
plication, and comparison. This allows decision-makers to combine different degrees of possibility
to make overall decisions, taking into account the uncertainty and imprecision inherent in human
decision-making. Overall, the use of degree of possibility in fuzzy AHP allows decision-makers to
make more nuanced and realistic decisions, based on linguistic terms and fuzzy numbers, while still
maintaining a quantitative and rigorous decision-making framework. After computing the degree of
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possibility, find out the minimum DgPs, and the results are mentioned in Table 6. The minimum degree
of possibility is a threshold value that is used to determine whether a pairwise comparison between
two decision criteria is considered meaningful or not. The choice of the minimum degree of possibility
depends on the specific context of the decision-making problem and the preferences of the decision-
makers. Setting a higher minimum degree of possibility can help ensure that only the most meaningful
comparisons are included in the analysis, but it may also result in a smaller set of pairwise comparisons
and potentially less information to inform the decision-making process. Overall, the minimum degree
of possibility in fuzzy AHP is an important parameter that helps ensure the validity and reliability of
the pairwise comparisons used to make decisions, while also balancing the need for meaningfulness
and comprehensiveness.

Table 6: Degree of possibility (D) and minimum degree of possibility (MinD) for data fusion issues

Degree of possibility

DgPs (F1) DgPs (F2) DgPs (F3) DgPs (F4) DgPs (F5) DgPs (F6) DgPs (F7) DgPs (F8) DgPs (F9)
1.00 0.74 0.82 0.93 0.54 0.83 0.91 0.60 0.73
1.00 0.92 1.00 1.00 0.79 1.00 1.00 0.85 0.97
1.00 0.81 0.90 1.00 0.71 0.99 1.00 0.77 0.89
1.00 1.00 1.00 1.00 0.61 0.90 0.98 0.67 0.80
1.00 0.93 1.00 1.00 0.73 1.00 1.00 1.00 1.00
1.00 0.85 0.93 1.00 0.65 0.92 1.00 0.79 0.90
1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.71 0.83
1.00 1.00 1.00 1.00 0.83 1.00 1.00 0.89 1.00

MinD 1.00 0.74 0.82 0.93 0.54 0.83 0.91 0.60 0.73

Table 6 displays the Degree of Possibility (DgPs) and Minimum Degree of Possibility (MinD) for
nine data fusion issues (F1 to F9). The Degree of Possibility is a measure of how likely a particular issue
is to occur, with 1.00 representing certainty and values closer to 0 representing increasing uncertainty.
The Minimum Degree of Possibility represents the lowest observed DgPs value for each issue.

From the Table 6, the following observations could be made:

1. All data fusion issues have a Degree of Possibility of 1.00 in at least one instance, which means
that each issue is highly likely to occur in certain situations.

2. The Minimum Degree of Possibility (MinD) ranges from 0.54 to 1.00, indicating that some
issues have a relatively low likelihood of occurring in certain scenarios (e.g., F4 with MinD of
0.54), while others are highly likely to occur in all situations (e.g., F1 with MinD of 1.00).

3. Data fusion issues F1, F7, and F9 have relatively low Minimum Degrees of Possibility,
suggesting that they might be less critical or frequent concerns compared to the other issues.

4. Data fusion issues F2, F3, F5, and F6 have relatively high Minimum Degrees of Possibility,
which indicates that these issues are more likely to be encountered and could be considered
more important to address.

Use Eqs. (4) and (5) to compute Fwgt and NFwgt for all open issues so that they can be prioritized
and managers solve the issue by considering their priority level so that projects will not face failure.
These are ranked with the highest weight is ranked highest and the lowest weight is ranked lowest. The
ranking results are mentioned in Table 7.
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Table 7: Weights and ranking of DF-MA

Criteria/Problems Normalized weights Ranking of criteria

DF-MA-1 0.141 1
DF-MA-2 0.104 6
DF-MA-3 0.116 5
DF-MA-4 0.131 2
DF-MA-5 0.076 9
DF-MA-6 0.117 4
DF-MA-7 0.128 3
DF-MA-8 0.084 8
DF-MA-9 0.103 7

From Table 7, the following observations were noted:

1. The highest priority criterion is DF-MA-1 with a normalized weight of 0.141, indicating that
it is the most important criterion to consider.

2. The least important criterion is DF-MA-5 with a normalized weight of 0.076, suggesting that
it should be the lowest priority in decision-making.

3. The remaining criteria have varying levels of importance, with DF-MA-4 and DF-MA-7 being
relatively more important, while DF-MA-8 and DF-MA-9 are less important.

6 Discussion and Conclusion

It is difficult to predict when machine algorithms give birth to data fusion and what factors are
needed to ensure efficient, reliable, and high-quality data fusion. Therefore, it is vital to figure out the
open issues related to data fusion when using ML algorithms. This research has identified nine issues.
It is crucial to prioritize them to ensure the success of data fusion and the accuracy and reliability of
the results. FAHP has helped prioritize the open issues. Table 7 shows the data of weights of the issues.
The highest weight is ranked highest and the lowest weight is ranked lowest. Based on weights, the
issues appear in descending order. The results are DF-MA-1 > DF-MA-4 > DF-MA-7 > DF-MA-6
> DF-MA-3 > DF-MA-2 > DF-MA-9 > DF-MA-8 > DF-MA-5. It shows the most important use
of ‘deep learning models that can improve accuracy and learning quality’ (weight = 0.141) followed
by ‘data privacy & security issue’ and ‘data confliction.’ When handling ranked open issues, take care
when ‘data is imperfect, inconsistent, uncertain and non-linear’ followed by ‘A comprehensive model
that satisfied all expected criteria is missing’ and ‘data fusion efficiency.’ The lowest three open issues
identified using FAHP are ‘Generalization error is large as sampling differences are not considered
extensively’ (weight = 0.103), ‘Dynamic fusion’ (weight = 0.084), and ‘Cross-domain multimodal data
fusion is a challenge as whole semantic knowledge for multimodal data cannot be captured’ weighting
0.076. The decision-makers must pay attention to the issues mentioned while doing data fusion. In
the future, FAHP + TOPSIS, DEMATEL, and ELECTRE can be used to overcome the vagueness
generated by experts’ opinions.
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