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ABSTRACT

Autonomous driving technology has made a lot of outstanding achievements with deep learning, and the vehicle
detection and classification algorithm has become one of the critical technologies of autonomous driving systems.
The vehicle instance segmentation can perform instance-level semantic parsing of vehicle information, which is
more accurate and reliable than object detection. However, the existing instance segmentation algorithms still
have the problems of poor mask prediction accuracy and low detection speed. Therefore, this paper proposes
an advanced real-time instance segmentation model named FIR-YOLACT, which fuses the ICIoU (Improved
Complete Intersection over Union) and Res2Net for the YOLACT algorithm. Specifically, the ICIoU function can
effectively solve the degradation problem of the original CIoU loss function, and improve the training convergence
speed and detection accuracy. The Res2Net module fused with the ECA (Efficient Channel Attention) Net is
added to the model’s backbone network, which improves the multi-scale detection capability and mask prediction
accuracy. Furthermore, the Cluster NMS (Non-Maximum Suppression) algorithm is introduced in the model’s
bounding box regression to enhance the performance of detecting similarly occluded objects. The experimental
results demonstrate the superiority of FIR-YOLACT to the based methods and the effectiveness of all components.
The processing speed reaches 28 FPS, which meets the demands of real-time vehicle instance segmentation.
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1 Introduction

The development of the global economy boosts the automotive industry, and the number of
vehicles is increasing yearly. According to relevant data, cars will be over 1.446 billion globally by
2021. The growth of the automobile industry has brought many conveniences to people’s lives. On
the other hand, it has also caused many social problems, such as traffic congestion and safety. These
issues have also become one of the hot points in society. Around 1.35 million people lost their lives in
traffic accidents worldwide, according to the World Health Organization’s 2018 Global Status Report
on Road Safety. In the face of increasingly serious traffic problems, enhancing vehicle driving safety
and reducing road accidents are challenges for the entire automotive industry and related researchers.
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In recent years, with the development of computer vision technology, many countries have
launched research on autonomous driving technology [1,2]. As the critical component of the trans-
portation system, the improved autonomous driving technology will increase driving safety and reduce
the risk of human-caused road traffic accidents. Therefore, autonomous driving has become a research
focus for the global automotive industry [3–6]. Excellent environmental perception technology is
essential for self-driving cars. Current environmental perception technology includes LIDAR-based
and camera-based ones. The former is not popularized because of its high cost. On the contrary, due
to the low cost, the latter is applied to process the image information in computer vision [7].

The rapid growth of computer hardware and deep learning technology stimulates image pro-
cessing development. Convolutional neural networks (CNNs) have made excellent achievements in
computer vision, and deep learning has become one of the popular scientific research directions. As
a comprehensive subject, computer vision covers various popular research directions, such as object
detection, pattern recognition, instance segmentation, and object tracking. In autonomous driving
technology, determining the category and location of objects in front of the vehicle is a complex task
for the computer. Thus, instance segmentation combining object detection and image segmentation
can meet the requirements of autonomous driving.

As it is known, autonomous driving is challenging because the different scales of target objects,
such as pedestrians and vehicles, may appear in front of the vehicle at the same time. So, it is essential to
extract information at different scales of the detection algorithm. However, the drawback of the current
instance segmentation networks is poor instance mask prediction because the backbone network
mainly concentrates on global features and ignores local features. In addition, existing models’ loss
functions converge slowly, which prolongs the training time of segmentation models. Furthermore,
the standard NMS method also has lower detection accuracy and efficiency.

This paper proposes a real-time instance segmentation algorithm, FIR-YOLACT, by fusing
the ICIoU and Res2Net into YOLACT. The FIR-YOLACT can represent multi-scale features at
a granular level and enhance each network layer’s range of receptive fields, which is practical and
robust in various scenarios. In addition, this paper adds the Cluster NMS algorithm to the models’
bounding box regression to improve the performance of detecting similar occluded objects. The results
demonstrate that FIR-YOLACT outperforms the basic model both quantitatively and qualitatively.

The main contributions of this paper are listed as follows:

• The paper proposes a fusion of ICIoU and Res2Net for the YOLACT algorithm named
FIR-YOLACT. Compared with the original algorithm, the proposed algorithm achieves better
performance and higher accuracy while meeting the requirements for real-time instance segmentation.

• The paper updates the network’s loss function and Non-Maximum Suppression (NMS) algo-
rithm to ICIoU and Cluster NMS, respectively, to improve the accuracy of prediction and detection
of similarly obscured objects.

• The paper proposes a module named Res2nEt, which fuses the Res2Net with the ECA Net
to represent the multi-scale features at a granular level and enhance each network layer’s range of
receptive fields.

This paper is organized as follows. In Section 2, this paper reviews related studies on vehicle
detection, instance segmentation, and bounding box regression. Section 3 describes the algorithm’s
overall structure and each improved section’s work. This paper indicates the experimental study on
the training and evaluation of the model in Section 4. Section 5 summarizes the work and discusses
future work.
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2 Related Word
2.1 Vehicle Detection

As one of the hotspot research topics in Artificial Intelligence (AI), vehicle detection is an essential
part of autonomous driving. Traditional vehicle detection techniques rely heavily on digital image
processing, and the image information is digitized through image segmentation, image augmentation,
and image transformation. However, with the development of transportation systems, today’s traffic
environment has become complex and changeable [8,9]. In today’s traffic system, the traditional
instance segmentation method is inadequate, so this paper focuses on vehicle instance segmentation
based on deep learning. Compared with conventional methods, the algorithm relies on CNN to extract
images’ features, which can achieve higher detection accuracy and satisfy the real-time requirements
for vehicle detection and segmentation. Also, the model is robust and can adjust to complex situations
and variable environments.

2.2 Image Instance Segmentation

Images are an essential medium for humans to acquire knowledge. Today, in the age of copious
data, images are used in various fields, such as medical, remote sensing images, and industrial fields
[10,11]. With the advancement of computer vision algorithms and hardware performance, image
instance segmentation has emerged as one of the computer vision technologies. Moreover, instance
segmentation has achieved many outstanding achievements in computer vision research [12,13].
Instance segmentation is the fusion of object detection and semantic segmentation tasks [14]. Object
detection needs to locate and recognize the target object, but it is inaccurate to represent objects with
a detection box. Because the box usually contains much background information, accurate boundary
information about the object cannot be obtained [15]. Furthermore, instance segmentation separates
the target objects at pixel level and clusters them according to their instance classes, which can more
accurately separate the target objects in the scene [16]. Therefore, instance segmentation can get more
detailed image information and have a broader application scope.

Image instance segmentation methods are generally classified into two-stage methods and one-
stage methods. The two-stage instance segmentation method consists of two steps: detection and
segmentation. According to the sequential processing order, the two-stage instance segmentation
method includes the top-down method based on detection and the bottom-up method based on
segmentation. Mask R-CNN [17] is a classical two-stage detection framework extending from Fast
R-CNN [18]. One-stage methods obtain the results directly by coalescing detection and segmentation
into a single network. And the representatives include PolarMask [19], YOLACT [20] and SOLO [21].
The current instance segmentation methods have been summarized in Table 1.

Table 1: The overview of instance segmentation methods

Type Algorithm Highlight Shortcoming

MNC [22] Cascade structure; Fast
extrapolation

–

Mask R-CNN Adding mask branch to
Faster R-CNN; Parallel
target detection and
segmentation tasks

Relying on target detection
results

(Continued)
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Table 1 (continued)

Type Algorithm Highlight Shortcoming

Two-stage methods MS R-CNN [23] Modification of mask
evaluation criteria;
Rational evaluation of
mask results

–

PointRend [24] Consider instance
segmentation as a
rendering problem in
image processing;
Refine the mask of
Mask R-CNN

Complexity of results
processing

FCIS [25] Improve the issue of not
being able to output the
target category

Very low accuracy values

SOLO Matrix NMS; Fast
speed and high
precision

Long training time

Single-stage methods Polarmask Polar coordinate
modeling for mask

Edge information loss

CenterMask [26] Local and global masks;
Balancing speed and
accuracy

Unable to satisfy the
demand for real-time
instance segmentation

YOLACT Fusion of prototype
graphs and detection
boxes; Real-time
instance segmentation

Lower precision than the
two-stage methods

2.3 Loss Function for Bounding Box Regression

Bounding box regression is an essential task in instance segmentation, and the bounding box
regression function evaluates the predicted box’s detection performance.

Current bounding box regression loss functions include the following categories, such as Mean
Square Error (MSE) to evaluate the degree of data variation; Smooth L1 loss for Faster R-CNN; The
Intersection over Union (IoU) loss; GIoU [27] loss and DIoU [28] loss. The IoU, a standard function,
represents the coverage between the predicted and ground truth boxes to evaluate the algorithms’
accuracy. However, it is not suitable that the two boxes do not overlap. To solve this problem,
Rezatofighi’s team proposed the GIoU function, but it still faces the issues of slow convergence and
inaccurate regression. By introducing the central point distance, Zheng presented DIoU loss with
much faster convergence than GIoU loss. Based on DIoU, Zheng proposed CIoU [29], adding three
important geometric metrics (overlap area, center point distance, and aspect ratio) to achieve faster
convergence and better performance than GIoU and DIoU.
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3 Methodology

This paper proposes an improved YOLACT algorithm of fusion ICIoU and Res2Net to achieve
higher accuracy and speed on real-time vehicle instance segmentation tasks. As illustrated in Fig. 1,
first, the paper updates the prediction head’s loss function with ICIoU instead of the original one.
Then, the original NMS algorithm is enhanced with Cluster NMS [29] to resolve the occlusion problem
of similar objects. Third, the backbone network is strengthened using the Res2Net module combined
with ECA (Res2nEt) to enhance the advanced feature capability and raise the mask AP score.
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Figure 1: Overall framework

3.1 Backbone

The network structure of the YOLACT algorithm is depicted in Fig. 2. The backbone network is
constructed based on ResNet101 and extracts the input image features to generate five feature maps.
The three feature maps are used as the middle input layer of the feature pyramid, and the another
five feature maps are generated by fusing the features at multiple scales. And then, they are sent into
two parallel branching tasks. The first branch takes the feature map through the fully convolutional
networks to generate prototype masks. The second branch not only predicts each prediction box’s class
confidence and position but also generates mask coefficients for each instance. Fast NMS selects the
region proposal after bounding box regression to obtain the final instance prediction boxes. Then,
the prototype masks and the corresponding mask coefficients are combined linearly to generate the
instance mask.

YOLACT uses ResNet-101 as the backbone network. Furthermore, the Bottleneck is the basic
unit of ResNet-101. This paper chooses the improved Res2Net module as the Bottleneck to enhance
the multi-scale representation ability. The Res2Net constructs hierarchical residual-like connections
within one single residual block to increase the range of receptive fields for each network layer [30].
The structure is shown in Fig. 3. The Res2Net replaces the 3 × 3 convolution with smaller groups of
filters. The feature map is divided into four feature map subsets with the same spatial size, and then the
output results of the four feature map subsets are gradually fused. Finally, the feature map is output
by a 1 × 1 convolution. The Res2Net will improve the ability of the backbone to extract multi-scale
information and the accuracy of the mask prediction.



3556 CMC, 2023, vol.77, no.3

P7

5×5×256

P6

9×9×256

P5

18×18×256

P4

35×35×256

P3

69×69×256

w×h

×256

w×h

×256

w×h

×ca

w×h

×4a

w×h

×ka

Class

Box

Mask

NMS

C5

18×18×2048

C4

35×35×1024

C3

69×69×512

C2

138×138×256

C5

18×18×2048

C4

35×35×1024

C3

69×69×512

C2

138×138×256

C1

275×275×128 69×69

×256

69×69

×256

69×69

×256

w×h

×256

w×h

×256

P7

5×5×256

P6

9×9×256

P5

18×18×256

P4

35×35×256

P3

69×69×256

w×

×25

×hh

566

hhh

666

w×h

×256

w×h

×ca

w×h

×4a

w×h

×ka

Classs

Boxx

MMaskk

69×6

×25

69

6

9 69×6

×256

69

6

9 69×69

×256

9 w×h

×256

w×h

×256

Backbone

FPN

Crop Threshold

Prediction Head

Protonet

Figure 2: Architectures of YOLACT
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Figure 3: Architectures of the Bottleneck and Res2Net

The improved Res2Net (Res2nEt) is incorporated with the ECA attention module (ECA Net) [31],
and the introduction of the channel attention module is exceptionally beneficial to the performance
of the convolutional neural network model. ECA Net is an improvement on SE Net [32], which
can effectively balance the performance and complexity of the model by avoiding dimensionality
reduction. Furthermore, it introduces appropriate cross-channel interaction to preserve performance
while significantly decreasing model complexity. And Fig. 4 shows the ECA module’s structure.
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Figure 4: Architectures of the Res2nEt and ECA Net

The ECA Net procedure is as follows: the input feature layer is first processed by global averaging
pooling, as given in the following equation:

y = 1
H × W

H∑
a

W∑
b

xi (a, b) (1)

In Eq. (1): xi represents the i-th feature map with input size H × W , and y represents the global
feature.

Then, the number of cross channels k is calculated adaptively using the channel dimension C. The
adaptive function is formulated as follows:

k = ψ (C) =
∣∣∣∣ log2 (C)

γ
+ b

γ

∣∣∣∣
odd

(2)

where |t|odd denotes the nearest odd number to t; C is the channel dimension; b and γ are both constants,
b = 1, γ = 2.

Then, the channel weights are calculated by using a one-dimensional convolution with a convolu-
tion kernel size of k to obtain the interdependencies between channels. 1D convolution is formulated
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as follows:

ω = σ (C1Dk (y)) (3)

where ω is the channel weight; σ is the sigmoid function; C1D is the one-dimensional convolution; y
is the result of global average pooling, and k is the convolution kernel size. Finally, the original input
features are dotted with channel weights to obtain features with channel attention so that the network
can selectively enhance valuable features and suppress useless features.

3.2 ICIoU for Loss Function

The bounding box regression loss function measures the position difference between the predic-
tion and ground truth boxes. The loss function of YOLACT is Smooth L1, and the loss is calculated
for the length, width, and bias of the horizontal and vertical coordinates of the center point of the
prediction box [33]. The original loss function cannot accurately measure the location of the prediction
box because it lacks the calculation of the intersection over the union and the minimum bounding
rectangle. The CIoU considers three geometric factors: the Intersection over Union, the center point
distance, and the aspect ratio of the prediction box and the ground truth box. So the CIoU can measure
the performance of the bounding box regression more accurately compared with the original loss
function. The equation of CIoU is given below:

LCIoU = 1 − IoU
(
b, bgt

) + ρ2 (b, bgt)

c2
+ αv (4)

IoU
(
b, bgt

) = |b ∩ bgt|
|b ∪ bgt| (5)

α = v
(1 − PIoU) + v

(6)

v = 4
π 2

(
arctan

wgt

hgt
− arctan

w
h

)2

(7)

where ρ denotes the distance between the predicted box b and the geometric center of the ground truth
box bgt; c denotes the diagonal length of the minimum bounding rectangle of the predicted box and
the ground truth box; wgt and hgt are the width and height of the ground truth box, while w and h are
the width and height of the predicted box, respectively.

When wgt/hgt �= w/h, ν > 0, and αν > 0, the penalty term αν plays an active role in the loss
calculation. However, when wgt/hgt = w/h, then ν = 0 and αν = 0. Currently, LCIoU degenerates to
LDIoU , and the convergence speed reduces, as Fig. 5 shows.

Inspired by the CIoU algorithm, Wang et al. proposed the ICIoU algorithm [34], which takes the
ratio of the corresponding widths of the two bounding boxes of ground truth and prediction as the
geometric factor. Moreover, the penalty function is calculated based on the ratio variance between
each side of the ground truth box and the predicted box.

LICIoU = 1 − IoU
(
b, bgt

) + ρ2
(
bP, bgt

)
c2

+ αvv (8)

α = vv

(1 − IoU) + vv
(9)
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vv = 8
π 2

[(
arctan

wgt

wP
− π

4

)2

+
(

arctan
hgt

hP
− π

4

)2
]

(10)

The method improves the comprehensiveness of the loss function calculation and effectively avoids
the degradation of the CIoU algorithm to the DIoU algorithm when the aspect ratios of the actual and
predicted boxes are equal. ICIoU also increases the localization accuracy and enhances the robustness
of the loss function for calculating different box sizes.

Figure 5: The degradation of CIoU

3.3 Cluster NMS

The YOLACT algorithm uses the Fast NMS algorithm to reduce the redundant boxes. Although
the Fast NMS algorithm will significantly increase the processing speed, it quickly causes the region
proposal of different instances with a high overlap rate to be mistakenly removed, making some
adjacent similar objects easily regarded as one instance. To address this issue, this paper introduces
Cluster NMS. Furthermore, it is defined as follows:

(1) Assuming that there are eight prediction boxes arranged in descending order according to
confidence scores, B = [B1, . . . , B8]; initialize the one-dimensional tensor a0 = [1, 1, 1, 1, 1, 1, 1, 1, 1]
and t = 1; compute the IoU matrix A = [

xij

]
N×N

with xij = IoU
(
Bi, Bj

)
and carry out upper

triangulation:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.64 0.36 0.18 0.41 0.11 0.26 0.8
0 0.88 0.42 0.21 0.87 0.23 0.16

0 0.51 0.46 0.36 0.42 0.24
0 0.23 0.25 0.65 0.27

0 0.15 0.36 0.77
0 0.42 0.29

0 0.87
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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(2) The IoU matrix A is binarized according to (12), ε takes the value 0.5, and the processed matrix
is:

aij =
{

0, if aij < ε

1, if aij ≥ ε
(12)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 1 0 0 1 0 0

0 1 0 0 0 0
0 0 0 1 0

0 0 0 1
0 0 0

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

(3) Expand the initial one-dimensional tensor a0 into the diagonal matrix P1 and left multiply A
by P1 to obtain C1:

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

C1 = P1 × A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 1 0 0 1 0 0

0 1 0 0 0 0
0 0 0 1 0

0 0 0 1
0 0 0

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

(4) Taking the maximum value g by column and if g > ε, set g = 0, otherwise g = 1, the new one-
dimensional tensor a1 consists of g; then a1 is expanded into the diagonal matrix P2 and left multiply
A by P2 to obtain C2, t = 2:

a1 = [1, 0, 0, 0, 1, 0, 0, 0] (16)

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
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C2 = P2 × A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

(5) Repeat the above operation, skipping the intermediate calculation process here, until t = 4,
when the matrix C4 is obtained:

a3 = [1, 0, 1, 0, 1, 1, 1, 0] (19)

C4 = P4 × A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 0 0 0 0 0 0

0 1 0 0 0 0
0 0 0 0 0

0 0 0 1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

(6) When t = 5, the maximum value is obtained for C4 by column for a4 = [1, 0, 1, 0, 1, 1, 1, 0],
a3 = a4. Then stop the iterative calculation, and predict boxes B2, B4, B8 are suppressed, and B1, B3,
B5, B6, B7 reprsent the final output. The algorithm flow is shown in Table 2.

Table 2: The algorithm flow of Cluster-NMS

Cluster-NMS

Input: n prediction boxes B = [B1, . . . , B8]; arranged in descending order according to confidence
scores.
Output: at = [ai]1×N, ai ∈ {1, 0}, where 1 denotes reservation and 0 denotes suppression.
Step1. Initialize a0 = [1]1×N, t = 1, ε = 0.5.
Step2. Compute the IoU matrix A = [

xij

]
N×N

with xij = IoU
(
Bi, Bj

)
, carry out upper

triangulation, A = triu (A).
Step3. Expand the initial one-dimensional tensor a0 into the diagonal matrix Pt, Pt = diag

(
a0

)
,

and left multiply A by P1 to obtain Ct, Ct = Pt × A.
Step4. Taking the maximum value g by the column of Ct and if g > ε, set g = 0, otherwise g = 1,
and the new one-dimensional tensor at consists of g, at = [g1, . . . , gn].
Step5. If at �= at−1, t = t + 1, and jump back to step 2 to continue the calculation until the two
vectors are equal.

If the Fast NMS algorithm is as the NMS algorithm, the obtained binarized one-dimensional
tensor will be a = [1, 0, 0, 0, 0, 1, 0, 0, 0], and the prediction boxes B2, B3, B4, B6, B7, B8 will be all
suppressed, so the prediction results are inaccurate. However, the prediction results of the Cluster
NMS algorithm are the same as the traditional NMS results, with the operation time shortened and
the detection speed improved.
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4 Experiment
4.1 Datasets

This paper’s experiments are mainly based on the MS COCO, a large-scale dataset that composes
80 common object classes for object detection and instance segmentation tasks. The MS COCO
consists of three data sets: the train set has about 115,000 images, the val set has 5,000 images, and the
test-dev set has about 20,000 images.

The experiment selects 9880 vehicle images containing five categories of cars, trucks, buses,
motorcycles, and bicycles with annotation information from the COCO 2017 as the training set.
Similarly, 870 vehicle images are selected as the val set. The COCO 2017 test-dev is used as the test set,
removing the images with annotation information to distinguish training set images and ensure the
model’s generalization capability. After training the method on the train set, the model’s performance
is evaluated on the val set. And the model is also compared with state-of-the-art models on the test-
dev set.

4.2 Ablation Studies

The ablation experiments are conducted on the train and val set to validate the model’s effec-
tiveness. So, the experiments provide the impact of progressively adding the different components,
including ICIoU loss function, Cluster NMS, and Res2nEt module, into the baseline. The experiments
are accomplished on a computer with an AMD Ryzen 9 5900HX and Nvidia GTX3080 GPU (16G).
The software is Python3.9-Conda-Pytorch 1.11. The total number of iterations is 300000, and the
batch size is 8.

4.2.1 ICIoU Loss Function and Cluster NMS

In the ablation experiments, the YOLACT instance segmentation model is used to discuss the
performance impact of ICIoU loss and Cluster NMS on the prediction box, respectively. The base
and the modified models with the ICIoU loss functions are trained separately.

The ICIoU loss function and Cluster NMS perform better in the test results. The improved loss
function ICIoU enables the prediction box to more accurately label the target object’s location and
improve the confidence score, while Cluster NMS increases the detection rate for similar occluded
objects. Fig. 6 shows the test results of our model and YOLACT.

The results show that the ICIoU loss function performs better than the CIoU loss function,
predicting the target object more accurately and improving the confidence score on the target. For
example, the confidence score of the bus on the left of the first-row images is improved after adding
ICIoU. In the second and third rows, the confidence scores of the targets on the right side are also
improved compared to the left.

The NMS algorithm has good results in detecting single target objects but has shortcomings in
the occlusion problem of similar objects. NMS removes the target object with a lower confidence score
when the overlap of two objects is high, while Cluster NMS can improve the detection rate for similar
occluded objects. As in the first row of pictures, the improved model can detect the target missed in the
middle (the part circled by the red dotted line). The second row can detect the motorcycle obscured in
the right, and the third row of pictures can detect the vehicle missing at the edge.

To demonstrate their effectiveness, the paper also designed a quantitative experimental analysis,
and the evaluation function includes average accuracy AP, inference time Time, and FPS.
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Figure 6: Comparison of our model (with ICIoU and Cluster NMS) and YOLACT (with CIoU and
Fast NMS). Our results are shown in the right column

The curves of the box AP values with the number of iterations for the base model and the added
ICIoU loss function model are shown in Fig. 7. The dotted line is the actual measured value, fitted
separately for more straightforward observation, and the solid line in the figure is the fitted one.

As shown in Fig. 7, the improved model converges more rapidly than the original base model.
Furthermore, the AP values are consistently better than the latter, indicating that the ICIoU loss
function can improve the model’s performance.

Table 3 compares the CIoU loss function with the ICIoU loss function in the box AP score under
different NMS algorithms, and Table 4 shows the results of the mask AP score.

According to the experimental results, the average accuracy of the ICIoU loss function has
improved compared with the CIoU loss function in the box AP score and the mask AP score under the
same NMS conditions, demonstrating that ICIoU loss predicts the target box more accurately. Also,
with the same loss function, the box AP score and the mask AP score of Cluster NMS are better than
the fast NMS.
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Figure 7: The average accuracy of our model and YOLACT

Table 3: The box AP score of comparison of CIoU loss and ICIoU loss on the val set

Method Loss NMS FPS Time (ms) AP AP50 AP75

YOLACT-550 LCIoU Fast NMS 36.05 27.74 40.86 63.78 43.19
Cluster NMS 35.62 28.07 41.75 63.27 45.10

LICIoU Fast NMS 36.25 27.58 40.98 64.44 42.77
Cluster NMS 35.85 27.89 42.04 64.73 45.09

Table 4: The mask AP score of comparison of CIoU loss and ICIoU loss on the val set

Method Loss NMS FPS Time (ms) AP AP50 AP75

YOLACT-550 LCIoU Fast NMS 36.05 27.74 35.40 57.45 36.29
Cluster NMS 35.62 28.07 36.00 58.37 36.50

LICIoU Fast NMS 36.25 27.58 35.53 57.89 35.72
Cluster NMS 35.85 27.89 36.02 58.10 37.17

4.2.2 Res2nEt Model

The improved Res2net module fused with the ECA module enhances the ability to extract global
and local information and represent the multi-scale features at a granular level. Thus, it can improve
mask prediction accuracy. Fig. 8 shows the results of comparing the improved models with the
baseline.

Fig. 8 shows that the improved model with the Res2nEt has higher accuracy for mask prediction
in the instance segmentation task. For example, the mask of the bicycle on the right of the first row is
more complete than that on the left, and the model for mask prediction of the motorcycle in the second
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row is also improved than the baseline. Similarly, the mask prediction of the bicycle in the third row is
also more accurate and complete.

Figure 8: Comparison of our model with the original YOLACT. Our results are shown in the right
column

To demonstrate the effectiveness of the Res2nEt, Table 5 shows the ablation experiments compar-
ing the box AP values and mask AP values in adding the Res2net module and the ECA module, with
the ICIoU as the loss function, on the val set.

Table 5 shows that when only Res2Net is available, the model improves in both box AP values
and mask AP values. While the ECA module is added, the model performs best, which proves the
effectiveness of the Res2Net module fused with the ECA.
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Table 5: The box AP score of comparison of the CIoU loss and the ICIoU loss on the val set

Method Loss Res2Net ECA AP (box) AP50 AP75 AP (mask) AP50 AP75

YOLACT-550 LICIoU × × 42.04 64.73 45.09 36.02 58.10 37.17√ × 42.37 65.18 44.76 36.39 58.81 37.87√ √ 42.56 64.18 45.22 36.73 59.12 37.51

Then, the ablation experiments are performed on the val set using the backbone ResNet101 to
prove the effectiveness of integrating the different individual components, including Culser NMS,
CIoU, ICIoU, and Res2nEt. The detailed results are shown in Table 6.

Table 6: Ablation study results on val set

Experiment Models Baseline Culser NMS CIoU ICIoU Res2nEt FPS Time AP (box) AP (mask)
1 YOLACT-

550

√ × × × × 35.85 27.90 40.45 35.80
2 √ √ × × × 35.72 28.00 40.71 36.18
3 √ √ √ × × 35.62 28.07 41.75 36.00
4 √ √ × √ × 35.85 27.89 42.04 36.02
5 √ √ × √ √ 29.44 33.96 42.56 36.73

Experiment 1 is the basic YOLACT; Experiment 2 changes the Fast NMS to the Culser NMS;
Experiment 3 replaces the loss function with CIoU based on Experiment 2; And in Experiment 4, the
ICIoU is applied as the loss function; Experiment 5 adds the Res2nEt module.

The results of the experiments show that all the components contribute towards improving the
accuracy. It can be seen from Experiment 2 that the application of Culser NMS has improved the
box AP score. Compared with Experiment 3, Experiment 4 has improved the box AP, so the ICIoU
has played a more positive role in the model. The final results of Experiment 5 show that the mask
AP score increased after integrating Res2nEt module into the baseline, proving the effectiveness of
Res2nEt. After combining all improvements into the baseline, our model obtains a box AP score of
42.56% and a mask AP score of 36.73%.

4.3 Algorithm Comparison and Analysis

In this subsection, the experiments are conducted on the MS COCO train set to compare our
method with some typical state-of-the-art methods on MS COCO test-dev in terms of accuracy (mask
AP), speed (milliseconds and FPS) and model complexity (parameters P and FLOPs). The total
number of iterations is 800000, and the batch size is 8. The results are demonstrated in Table 7.

Table 7 indicates that the MNC and FCIS have mask AP scores of 24.6% and 29.2%, respectively.
Moreover, the typical Mask R-CNN, MS R-CNN, PoinInst, and SOLO have mask AP scores of 35.7%,
38.3%, 38.3%, and 37.8%, respectively. Although they outperform our model regarding mask AP, they
require more than 75 milliseconds (ms) to detect an image during inference. Moreover, the QueryInst
and SipMask algorithms only improve the accuracy and ignore processing speed. Therefore, they are
unsuitable for real-time image processing for autonomous driving scenarios. Conversely, our model
meets the demands of real-time image processing while outperforming the original YOLACT by 3.0%
of the mask AP score, and our model is not much more complex than the original algorithm according
to the FLPOs and P.
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Table 7: Comparison of our method to other instance segmentation frameworks on MS COCO test-
dev datasets

Method Backbone Time FPS P FLOPs AP AP50 AP75

MNC ResNet101 – – – – 24.6 44.3 24.8
FCIS ResNet101 – – – – 29.2 49.5 –
Mask R-CNN ResNet101 116 9 62.79 152.71 35.7 58.0 37.8
MS R-CNN ResNet101 116 9 79.02 151.17 38.3 58.8 41.5
PointInst [35] ResNet101 75 13 – – 38.3 60.3 40.0
SOLO ResNet101 86 12 54.91 442.13 37.8 59.5 40.4
QueryInst [36] ResNet101 166 6 191.51 1065.17 42.8 65.6 46.7
SipMask [37] ResNet101 65 15 – – 38.1 60.2 40.8
YOLACT ResNet101 30 33 53.78 85.41 29.8 48.5 31.2
Our model ResNet101 35 28 54.46 88.83 32.8 52.2 34.6

In addition, Table 8 compares our model with other instance segmentation methods on the Pascal
SBD test set. The experimental results show that our method performs best on the Pascal SBD dataset.

Table 8: Experimental results of different methods on the Pascal SBD test set

Method mAPvol mAP0.5 mAP0.7

ESE-50 [38] 32.6 39.1 10.5
ESE-20 [38] 35.3 40.7 12.1
SDS [39] 41.4 49.7 25.3
Hypercolumns [40] – 56.5 37.0
DeepSnake [41] 54.4 62.1 48.3
MNC – 63.5 41.5
DIN [42] 55.4 52.0 44.8
YOLACT – 72.3 56.2
Our model – 74.2 59.1

Meanwhile, the improved model also enhances the original model’s small-scale object detection
capability, as shown in Fig. 9.

From Fig. 9, the improved model is superior to small-scale objects. For example, the car, the
bicycle, and the smaller car are all detected correctly.

The proposed model is tested on the MS COCO test-dev datasets and compared with the original
YOLACT algorithm on small, medium, and large targets. The results are listed in Tables 9 and 10.

The data from Tables 9 and 10 indicates that the improved algorithm increases by 4.2% in the box
AP and 3.0% in the mask AP compared to the original YOLACT algorithm, while it achieves 1.8%
and 1.1% improvement in the small object’s box AP and mask AP, respectively.
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Figure 9: Comparison of our model with the original YOLACT. Our results are shown in the right
column

Table 9: The box AP score of comparison of our method and YOLACT on the MS COCO test-dev
datasets

Box AP AP50 AP75 APs APM APL

YOLACT-550 32.3 53.0 34.3 14.9 33.8 45.6
Our model 36.5 56.2 39.0 16.7 38.6 51.7

Table 10: The mask AP score of comparison of our method and YOLACT on the MS COCO test-dev
datasets

Mask AP AP50 AP75 APs APM APL

YOLACT-550 29.8 48.5 31.2 9.9 31.3 47.7
Our model 32.8 52.2 34.6 11.0 34.6 52.4
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5 Conclusions and Future Work

This paper proposes the FIR-YOLACT vehicle instance segmentation algorithm to tackle the
current problems, such as slow convergence and long training time. The proposed algorithm utilizes
the Cluster NMS algorithm for bounding box regression to improve the accuracy of predicting and
detecting similarly obscured objects. Additionally, the original loss function is replaced with ICIoU to
prevent the degradation of the CIoU algorithm and strengthen the model’s robustness. To extract
richer image information and increase the mask accuracy scores, this paper makes the backbone
network incorporate the Res2net module fused with ECA Net. The experimental results demonstrate
that FIR-YOLACT performs significantly better than the original model, with a 4.2% and 3.0%
increase in box AP and mask AP scores, respectively. Moreover, FIR-YOLACT achieves a processing
speed of 28 FPS, indicating its excellent performance in balancing accuracy and processing speed.

However, the proposed method still has some shortages to be further improved. For example, the
model does not consider the impact of complex weather scenarios and needs optimization for inter-
frame timing information in the video dataset. In the future, we plan to deploy the model on a low-cost
mobile platform and employ Tensor RT technology to improve the speed of the model detection and
extend the proposed approach to video instance segmentation detection. We will explore practical
methods to optimize the model to improve the system’s real-time detection performance and find new
application scenarios in the times of new energy smart vehicles.
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