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ABSTRACT

The original whale optimization algorithm (WOA) has a low initial population quality and tends to converge
to local optimal solutions. To address these challenges, this paper introduces an improved whale optimization
algorithm called OLCHWOA, incorporating a chaos mechanism and an opposition-based learning strategy. This
algorithm introduces chaotic initialization and opposition-based initialization operators during the population
initialization phase, thereby enhancing the quality of the initial whale population. Additionally, including an
elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during
iterations. The work and contributions of this paper are primarily reflected in two aspects. Firstly, an improved
whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.
Secondly, the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory
(LSTM) networks. Subsequently, a prediction model for Realized Volatility (RV) based on OLCHWOA-LSTM
is proposed to optimize hyperparameters automatically. To evaluate the performance of OLCHWOA, a series of
comparative experiments were conducted using a variety of advanced algorithms. These experiments included
38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.
The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum
fitness function calls budget. Additionally, the China Securities Index 300 (CSI 300) dataset is used to evaluate the
effectiveness of the proposed OLCHWOA-LSTM model in predicting RV. The comparison results with the other
eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV. This
further confirms that OLCHWOA effectively addresses real-world optimization problems.
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Whale optimization algorithm; chaos mechanism; opposition-based learning; long short-term memory; realized
volatility

1 Introduction

The volatility of financial markets refers to the degree of volatility of the prices of financial assets,
which serves as a crucial risk indicator. Realized Volatility (RV) has become one of the most commonly
used volatility measures, which is widely employed to assess the Value at Risk (VaR) of investment
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portfolios and to determine the pricing of derivatives based on options. Consequently, the prediction
of RV in financial markets has become a topic of great interest to both theoretical and practical
communities.

Since RV has the characteristics of long memory and aggregation [1], the AutoRegressive Frac-
tionally Integrated Moving Average (ARFIMA) [2] and the Heterogeneous Autoregressive Model
(HAR) [3] that can capture these two characteristics have become the most widely used models for RV
prediction. Autoregressive has become the most widely used model for RV prediction. The research of
scholars using the ARFIMA model to capture the long memory of economic data started in the 1990s.
Subsequently, scholars have conducted numerous improved studies on the limitations of ARFIMA
in predicting RV. Andersen et al. [4], Giot et al. [5], and Degiannakis [6] all proposed improved
models for the defects of the ARFIMA model. Furthermore, Zhou et al. [7] and Izzeldin et al. [8]
both employed the ARFIMA model to study RV and demonstrated its excellent performance in RV
prediction. Muller et al. proposed the HAR model in 1997. Later, Barndorff-Nielsen et al. [9] proposed
improved versions of the HAR model. Meanwhile, numerous empirical studies have demonstrated the
excellent performance of the HAR model in RV prediction [10,11]. However, the HAR and ARFIMA
are both econometric models, and they both have the disadvantages of being limited to linear time
series patterns and not providing accurate forecasts.

In recent years, artificial intelligence technology has led to the application of Long Short-
Term Memory (LSTM) [12], which can capture nonlinear time series features, to the RV prediction
problem. Maknickiene et al. [13] used LSTM to predict the rate of return of the exchange rate
in 2012, and the results demonstrated that the prediction accuracy was improved compared to BP
neural networks. Chen et al. [14] used the LSTM model to predict the returns of the Chinese stock
markets in 2015. According to the results, the LSTM model’s prediction accuracy was better than the
Stochastic Volatility (SV) model. In 2018, Kim et al. [15] used a mixture of Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) and LSTM for predicting Korean stock market volatility
and the results were impressive. Recently, scholars have also attempted to solve the RV prediction
problem using LSTM. Hu et al. [16] proposed a combined model that integrates GARCH, LSTM,
and Artificial Neural Network (ANN) in 2020 for predicting copper price volatility, which was more
accurate than the other five models. The Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) and LSTM model was applied by Lin et al. [17] in 2022 to predict
the RV of the CSI300, S&P500, and STOCXX50 with good results, solving the problem of noise
associated with RV time series. Chen et al. [18] used the Principal Component Analysis (PCA) and
LSTM model to predict the volatility of Chinese and American stock index futures within the same
year, and the experimental results were more accurate than the other seven models. The results suggest
that PCA can improve the LSTM prediction performance by reducing attributes. While LSTM-based
volatility prediction is highly accurate, the determination of the hyperparameters has always presented
a challenge. In this paper, a meta-heuristic algorithm will be introduced to automate the process of
hyperparameter optimization for LSTM.

The Genetic Algorithm (GA) [19] was first proposed and achieved great success in solving
optimization problems in the 1960s, inspired by biological research. Metaheuristic algorithms have
made significant progress since the 1980s. Kirkpatrick et al. [20] proposed the Simulated Annealing
(SA) algorithm in 1982. Glover [21] proposed the Tabu Search Algorithm (TSA) in 1986. The Ant
Colony Optimization (ACO) was proposed in 1992 by Dorigo [22]. In 1995, Venter et al. [23] proposed
the concept of Particle Swarm Optimization (PSO). Storn et al. [24] introduced the Differential
Evolution Algorithm (DE) in 1997. Many new meta-heuristic algorithms have been proposed in recent
years, such as Monarch Butterfly Optimization (MBO) [25], Naked Mole-Rat Algorithm (NMR)
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[26], Moth Swarm Algorithm (MSA) [27], Harris Hawks Optimization (HHO) [28], Slime Mould
Algorithm (SMA) [29], African Vultures Optimization Algorithm (AVOA) [30], Carnivorous Plant
Algorithm (CPA) [31], and the Hunger Games Search (HGS) [32]. These algorithms have emerged
as prominent representatives and have achieved significant success in solving optimization problems
across various domains [33–39].

Mirjaliliab et al. [40] developed the Whale Optimization Algorithm (WOA) by mimicking hump-
back whales’ natural search, surround, and attack behaviors in 2016. The WOA algorithm has demon-
strated its effectiveness in optimizing diverse problem domains, such as reservoir scheduling [41],
workshop scheduling [42], rolling bearing fault diagnosis [43], turbine heat consumption prediction
[44], and residue hydrogenation reaction kinetic model parameter optimization [45]. While the basic
WOA algorithm is characterized by its simplicity and a limited number of parameters, it also has some
shortcomings. First of all, the accuracy and speed of heuristic algorithms are directly affected by the
quality of the initial population [46]. In general, the more diverse the initial population, the stronger
the algorithm’s ability to perform global searches [47]. Random initialization of the original WOA does
not produce an even distribution of the initial population throughout the whole search space, which
affects the algorithm’s efficiency in solving problems. Additionally, the algorithm has a tendency to
converge towards local extrema during the late stage of population evolution [48,49], which results in
poor convergence accuracy.

There are two primary motivations for this study. First, this paper introduces a chaos mechanism
and an opposition-based learning strategy to compensate for the limitations of the WOA. As of now,
there are several works [50–55] that use chaos and opposition-based learning strategies to improve
the WOA, among which literature [53] is the closest to the idea presented in this paper. However, the
algorithm employed differs in two ways. In the first instance, the opposition-based learning operator is
different. This paper adopts the classical opposition-based learning operator, similar to that described
in the literature [52], while the partial-opposition-based learning operator, as discussed in the literature
[53]. In the second instance, this paper introduces the Jumping rate (Jr) and discusses its parameter
sensitivity, while in literature [53], Jr is fixed at 0.5. Second, to improving the accuracy of RV prediction,
this paper proposes a prediction model based on the improved WOA-LSTM model. As of now, some
applied research has been conducted on the improved LSTM model based on WOA [56–60], but
this research takes a step further. In the first instance, the improved WOA algorithm has stronger
optimization capabilities compared to the original WOA algorithm. In the second instance, the WOA-
LSTM model is used to predict RV, thereby enhancing its usefulness.

In summary, this paper proposes an improved whale optimization algorithm called OLCHWOA,
which utilizes chaos mechanisms and opposition-based learning techniques. In addition, an RV
prediction model based on OLCHWOA-LSTM is developed. Through simulation experiments, this
study has drawn several conclusions: (1) The experimental results of 38 test functions and three
engineering design problems with constraints establish the superior performance of OLCHWOA with
statistical significance when compared to the other five algorithms; (2) The RV prediction for the CSI
300 index in mainland China indicates that OLCHWOA-LSTM Models have a competitive advantage.
As a result of our research, this paper has made two important contributions. First, the utilization of
the chaos mechanism and opposition-based learning strategy improves the global search ability of
the WOA algorithm and further advances related research. Additionally, this paper has developed an
RV prediction model based on OLCHWOA-LSTM, which enhances the RV prediction method by
introducing a novel approach for neural network-based RV prediction models.
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In the remainder of the paper, the following sections will be discussed: Section 2 introduces the
concept of OLCHWOA. The simulation experiment is presented in Section 3. Section 4 introduces the
OLCHWOA-LSTM model and discusses its prediction performance on the RV of the CSI 300 dataset.
Our conclusions are presented in Section 5.

2 Proposed Olchwoa Algorithm
2.1 Original WOA Algorithm

WOA is a novel heuristic optimization algorithm based on the mathematical modeling of the
unique hunting method of humpback whales. In nature, humpback whales swim upward in a spiral
position from the depths of the ocean and expel numerous bubbles of different sizes. Prey will be forced
toward the center of the bubble net by the surrounding bubble net, at which point the whale opens its
mouth and swallows the prey.

Since the initialized population of the WOA lacks a priori experience, it is assumed that the prey
position is set as the global optimization, and other individual whales converge towards the prey
position as a means of updating their own positions. The WOA algorithm for locating the optimal
position relies on three mechanisms, which are described as follows.

2.1.1 Encirclement Hunting

By swimming towards the nearest whale in the group, the whales narrow the circle around their
prey. The formula for updating whale positions is used in this process.

X t+1
i = X t

P − A ∗ D (1)

D = |C ∗ X t
P − X t

i | (2)

A = 2a ∗ r1 − a (3)

a = 2 − 2 ∗ t/tmax (4)

C = 2 ∗ r2 (5)

where X t+1
i is the next position of the whale, X t

p is the current optimal whale, D is the encircling step.
C is the effect of the distance between X t

p and individual X t
i . When C > 1, the degree of influence is

enhanced, and vice versa. The convergence factor, denoted as a, linearly decreases from 2 to 0 as the
number of iterations increases. r1 and r2 represent random numbers within [0,1].

2.1.2 Spiral Hunting

The whales hunt by spiraling towards the prey’s position, and this can be expressed by the
following formula:

X t+1
i = D′ ∗ ebl ∗ cos (2π l) + X t

P (6)

D′ = ∣∣X t
P − X t

i

∣∣ (7)

where D′ is the distance between X t
i and X t

p, and the constant b determines the shape of the spiral. l is
a random number within [−1,1], where l is −1 when whales are closest to the prey position, and l is 1
when whales are farthest from the prey position.

In addition, the whales swim around their prey while simultaneously conducting spiral hunting
simultaneously. The probability Pr for an individual whale choosing encircling or spiral hunting is
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50%. The behavior is as follows:

X t+1
i =

{
X t

P − A ∗ D′, Pr < 0.5
D′ ∗ ebl ∗ cos (2π l) + X t

P, Pr ≥ 0.5 (8)

2.1.3 Random Hunting

Additionally, whales can go on random hunts, which increases the search area for the whales.
Following is the formula for this process:

X t+1
i = X t

R − A ∗ D′′ (9)

D′′ = ∣∣C × X t
R − X t

i

∣∣ (10)

where X t
R is an individual whale randomly selected from the current population, D′′ is the distance

between X t
i and X t

R. A and C are defined in accordance with the definitions of the encircling hunting
mechanism, with C controlling the distance between X t

i and X t
R.

When the parameter |A|< 1, the individual whale moves away from the random individual X t
R

to surround the prey, and then tends to the optimal individual X t
p. When the parameter |A| ≥ 1, the

individual whale deviates from the prey position to search for a better prey. Therefore, the value of
parameter A determines whether the individual whale adopts Eq. (1) or Eq. (9) to update its position.
In light of the fact that parameter A is largely affected by the convergence factor a, a is an important
consideration for the exploration and development of balanced algorithms.

2.2 Chaos Mechanism (CH)

The quality of the initial population has a significant impact on the optimization efficiency of
metaheuristic algorithms [61]. Currently, the majority of metaheuristic algorithms employ random
initialization to generate the initial population, which results in uneven distribution of the population
across the solution space, reducing diversity and making the algorithm prone to premature conver-
gence [62]. Chaos is a common nonlinear phenomenon distinguished by its non-repetition, ergodicity,
and dynamism [63]. Using chaos mechanisms to generate the initial whale population, rather than
random generation, can enhance the algorithm’s search efficiency during the search process [64],
facilitating a faster exploration of the search space. Chaos mapping has been employed to address
various optimization problems [65]. The logistic map is a simple and effective chaotic system whose
expression is as follows:

chi+1 = μ ∗ chi ∗ (1 − chi) , i = {1, 2, . . . , K} (11)

where μ is the control parameter, the value range is 0 < μ ≤ 4.0. When μ = 4, the logistic map is
completely chaotic. K represents the number of iterations. ch1 is a random number within the interval
[0, 1], while chi �= 0.25, 0.5 and 0.75.

Assuming that the initial whale population is composed of N individuals, the specific process of
using the Logistic chaotic initialization operator to generate the initial whale population is as follows.
The first individual is randomly generated within the upper and lower bounds. Then, Eq. (11) is used
to iterate the first individual in order to obtain the remaining N-1 individuals. Finally, Eq. (12) is used
to map variables to individual whales.

Xij = Xi, min_j + chi
j ∗

(
Xi, max_j − Xi, min_j

)
(12)

where Xi, min_j, Xi, max_j define the upper and lower bounds of the j-th dimension of the i-th individual,
respectively, Xij is the mapped whale individual.
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Fig. 1 illustrates the distribution of a random population and a logistic chaotic population in a
two-dimensional plane. Under different population sizes, it is found that the population generated
by the logistic chaotic initialization operator exhibits better uniformity compared to the population
generated by random initialization.

Figure 1: Comparison of two initialization methods in two-dimensional plane (a) Population size = 20,
(b) Population size = 200

2.3 Opposition-Based Learning Strategy (OL)

Opposition-based learning (OBL) is an enhancement strategy introduced by Tizhoosh within the
domain of swarm intelligence in 2005 [66]. At its core, OBL involves the simultaneous consideration
of feasible solutions and their corresponding opposite solutions, selecting the best solutions for
advancement to the next generation of the population. A significant limitation associated with random
initialization is that when the current solution is considerably distant from the optimal solution, it
may lead to prolonged search times or the algorithm getting stuck in local optima [67]. Interestingly,
according to probability theory, solutions that are opposite to each other have a 50% probability of
being closer to the optimal solution [68]. The integration of opposite solutions can result in significant
enhancements in search efficiency while simultaneously reducing computational expenses [69].

The Opposition-based Learning strategy of this paper introduces two types of operators called
the Opposition-based Initialization operator (OI) and the Elite Opposition-based Learning operator
(EOL) to enhance WOA’s global search ability. Their detailed descriptions are as follows.

2.3.1 Opposition-Based Initialization Operator (OI)

As shown in Section 2.2, this paper introduces the chaotic initialization operator to generate the
initial population, which ensures an even distribution of the initial population. To increase the search
efficiency, this paper attempts to introduce an Opposition-based Initialization operator (OI) to further
optimize the initial population.

The feasible solution is given by Xi = (xi1, xi2, . . . , xij), where xij∈ [lij, uij], i = 1, 2, . . . , N, j = 1, 2,
. . . , D. Each dimension’s maximum and minimum values are represented by lij and uij. The opposite
solution can be defined as Xi = (xi1, xi2, . . . , xij), which xij is obtained by Eq. (13) as follows:

xij = lij + uij − xij (13)
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After obtaining the opposing population, the fitness values are compared between the original
population and the opposing population. The individuals with the highest fitness values are then
selected to be included in the initial population. Let the fitness function be f (.). The selection operator
can be expressed as follows: The original population is compared with the opposite population in
order to select the most suitable individuals for entry into the population.

Xi =
{

X i , if f
(
X i

)
< f (Xi)

Xi , else
(14)

2.3.2 Elite Opposition-Based Learning Operator (EOL)

Based on the ideas of Wang et al. [70] and Zhou et al. [71], this paper proposes an Elite Opposition-
based Learning operator (EOL). By introducing the Jumping rate (Jr), whales have a greater chance of
jumping out of the local solutions, thereby improving the algorithm’s global search capability and thus
improving the algorithm’s ability to search globally. According to this principle, if rand (0, 1) < Jr, the
EOL will be executed. If not, the evolution will follow the original logic of WOA. There are two steps
in the process of the EOL operator.

Step 1: if rand (0, 1) < Jr, then the elite opposition-based solution is generated according to
Eq. (15) as X i = (

xi,1, xi,2, . . . , xi,D

)
.

X i,j = η
(
aj + bj

) − xi,j (15)

where η is the generalized coefficient, η ∈ (0, 1), aj and bj are the upper and lower bounds.

aj = min
(
xi,j

)
(16)

bj = max
(
xi,j

)
(17)

Additionally, if the generated elite opposition-based solution crosses the boundary [aj, bj], it is
reset according to Eq. (18).

xi,j = rand
(
aj, bj

)
(18)

Step 2: Compared with the current solution and the elite opposition-based solution, evaluate each
solution’s fitness value, and the best individual will be selected to stay in the population according to
Eq. (14). With the EOL operator, the population can be updated with the information contained in
the current population, which will increase the convergence speed and the capabilities of WOA global
exploration.

2.4 Olchwoa Algorithm

In the same way that other meta-heuristic algorithms encounter issues, WOA may also converge
to a local optimum prematurely. An improved Whale Optimization Algorithm based on chaos
mechanism and opposition-based learning (OLCHWOA) is designed to improve WOA’s global search
capability and prevent a decrease in population diversity during later iterations.

During the initialization stage, the logistic chaotic initialization operator is used first to create a
diverse population of high quality. Afterward, the opposite population is constructed using the OI
operator. Then, sort the chaotic initial population and its opposite population and select the top N
individuals with higher fitness values to enter the initial whales. This will allow the algorithm to fully
extract useful information from the solution space, as well as improve the search efficiency of the
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algorithm while ensuring the quality of the initial solution. During the loop iteration stage, the EOL
operator is applied to the current optimal group, taking into account the three hunting behaviors of
whales. By utilizing this operator, the algorithm can be enhanced in terms of its global optimization
capabilities while maintaining the diversity of the population. The flowchart of OLCHWOA is
depicted in Fig. 2.

Figure 2: Flowchart of OLCHWOA

2.5 Computational Complexity

Time complexity stands as a fundamental metric for assessing algorithmic efficiency. Assuming
a population size of P, dimensionality of D, and the number of iterations denoted as T , the time
complexity analysis for both the WOA and OLCHWOA algorithms is as follows.

The standard WOA algorithm consists of two phases: random population initialization phase
and subsequent whale position update. In the initialization phase, the time complexity of WOA
can be expressed as T1 = O(P ∗ D). In the position update phase, whales employ encircling hunting,
spiral hunting, or random hunting mechanisms. For each iteration, the computational complexity is
O(P ∗ D), and across T iterations, it accumulates to T 2 = O(T ∗ P ∗ D). Consequently, the aggregate
time complexity of WOA can be represented as TWOA = T1 + T2, resulting in a time complexity of O(P).

The proposed OLCHWOA algorithm consists of three stages: chaotic and opposition-based
learning population initialization, whale position updates, and an opposition-based search phase. In
the chaotic and opposition-based learning initialization stage, the time complexity for OLCHWOA’s
initialization is denoted as T ′

1 and is expressed as T ′
1 = O(P ∗ D ∗ 2). The whale position update stage

closely parallels that of the WOA and maintains a time complexity equivalent to T2, consistent with the
WOA. In the opposition-based search stage, which incorporates a probability parameter Jr governing
the execution of the opposition-based search strategy, the time complexity for this stage is represented
as T ′

3 = O(P ∗ D ∗ Jr). Consequently, the overall time complexity of the OLCHWOA algorithm can
be summarized as TOLCHWOA = T ′

1 + T2 + T ′
3, leading to a final time complexity of O(P). It is worth

noting that OLCHWOA shares an equivalent time complexity with WOA, signifying that the proposed
enhancement strategy in this study does not compromise the algorithm’s solving efficiency.
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3 Simulation Experiment

Generally, standard test functions and engineering design problems are used as optimization
objects to assess algorithm performance. This section presents the test functions used, the results of
the experiment, and the analysis. All experiments are implemented in the software of Python version
3.7. The computer system is 11th Gen Intel(R) Core (TM) i7-11700 processor and 32 G RAM.

3.1 Benchmark Functions

A total of 28 standard test functions were selected from the CEC 2013 benchmark [72], while 10
standard test functions were chosen from the CEC 2019 [73] to evaluate the algorithm’s performance.
As most functions have multiple local optima, it is difficult to determine their global optimum
accurately, which allows one to fully examine the algorithm’s optimization ability.

There are three categories of standard tests from CEC 2013: f 1–f 5, f 6–f 20, and f 21–f 28, which
represent unimodal, basic multimodal, and composite test functions, respectively. As the unimodal
function has only one global optimum, it is used to determine convergence speed and accuracy.
Multimodal functions are suitable for evaluating the global search capability because it has multiple
local optimal solutions. Composite test functions are created by combining, shifting, rotating, and
biasing other test functions. They have a variety of shapes, and they have several local optimization
points, which are used to evaluate whether the algorithm can achieve a balance between local search
and global exploration. The test functions in CEC 2019 are known for their high complexity and
challenging nature. Tables 1 and 2 provide detailed information on the test functions used, where D
is the dimension, Range is the search range of the function, and f min indicates the theoretical optimal
value.

Table 1: Description of the 28 CEC 2013 test functions

No. Functions D Range fmin

F1 Sphere function 10 [−100, 100] −1400
F2 Rotated high conditioned elliptic function 10 [−100, 100] −1300
F3 Rotated bent cigar function 10 [−100, 100] −1200
F4 Rotated discus function 10 [−100, 100] −1100
F5 Different powers function 10 [−100, 100] −1000
F6 Rotated rosenbrock’s function 10 [−100, 100] −900
F7 Rotated schaffers F7 function 10 [−100, 100] −800
F8 Rotated ackley’s function 10 [−100, 100] −700
F9 Rotated weierstrass function 10 [−100, 100] −600
F10 Rotated griewank’s function 10 [−100, 100] −500
F11 Rastrigin’s function 10 [−100, 100] −400
F12 Rotated rastrigin’s function 10 [−100, 100] −300
F13 Non-continuous rotated rastrigin’s function 10 [−100, 100] −200
F14 Schwefel’s function 10 [−100, 100] −100
F15 Rotated schwefel’s function 10 [−100, 100] 100
F16 Rotated katsuura function 10 [−100, 100] 200
F17 Lunacek Bi_Rastrigin function 10 [−100, 100] 300

(Continued)
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Table 1 (continued)

No. Functions D Range fmin

F18 Rotated Lunacek Bi_Rastrigin function 10 [−100, 100] 400
F19 Expanded Griewank’s plus Rosenbrock’s function 10 [−100, 100] 500
F20 Expanded Scaffer’s F6 function 10 [−100, 100] 600
F21 Composition function 1 (n = 5, rotated) 10 [−100, 100] 700
F22 Composition function 2 (n = 3, unrotated) 10 [−100, 100] 800
F23 Composition function 3 (n = 3, rotated) 10 [−100, 100] 900
F24 Composition function 4 (n = 3, rotated) 10 [−100, 100] 1000
F25 Composition function 5 (n = 3, rotated) 10 [−100, 100] 1100
F26 Composition function 6 (n = 5, rotated) 10 [−100, 100] 1200
F27 Composition function 7 (n = 5, rotated) 10 [−100, 100] 1300
F28 Composition function 8 (n = 5, rotated) 10 [−100, 100] 1400

Table 2: Description of the 10 CEC 2019 test functions

No. Functions D Range f∗/fmin

F1 Storn’s Chebyshev polynomial fitting problem 9 [−8192, 8192] 1
F2 Inverse hilbert matrix problem 16 [−16384, 16384] 1
F3 Lennard-Jones minimum energy cluster 18 [−4, 4] 1
F4 Rastrigin’s function 10 [−100, 100] 1
F5 Griewangk’s function 10 [−100, 100] 1
F6 Weierstrass function 10 [−100, 100] 1
F7 Modified Schwefel’s function 10 [−100, 100] 1
F8 Expanded Schaffer’s F6 function 10 [−100, 100] 1
F9 Happy cat function 10 [−100, 100] 1
F10 Ackley function 10 [−100, 100] 1

As a precaution and to ensure fairness, all experiments were run separately 30 times. Then, the
mean value (Mean) and standard deviation (Std) for each test were calculated. Generally, the Mean
reflects the average precision that an algorithm can achieve after a certain number of evaluations.
The Std reflects the algorithm’s stability. All algorithms used the maximum fitness function call
(Max_Fitness) as the termination condition, with specific settings provided in each section.

3.2 Experiment 1: Parameter Sensitivity Analysis

Compared to WOA, OLCHWOA and OLWOA increase the parameter Jr. The parameter Jr refers
to the calling probability of the EOL operator, which is used to balance exploration and exploitation.
When Jr = 0, the probability of the EOL operator is 0. Therefore, the OLWOA algorithm only calls
the OI operator and not the EOL operator. If Jr = 1, the probability of the EOL operator is 1. This
means that the OLWOA algorithm will call the EOL operator every time an iteration occurs.
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Furthermore, the termination criterion for the experiments in this section is to reach the maximum
number of fitness function calls. The population size P, can affect the actual number of iterations
the algorithm undergoes. To investigate the influence of parameters Jr and P on the performance of
OLCHWOA and determine their optimal values, four representative functions (unimodal function
F2, multi-modal function F6, F13, and composite function F25) from the CEC2013 were selected for
testing. These experiments were designed with five different levels of Jr = {0, 0.2, 0.5, 0.8, 1.0} and four
distinct P = {10, 20, 30, 50}. A maximum fitness function calls of 2000 was set, and each experiment
was rigorously conducted 30 times to ensure statistical robustness. Table 3 presents the experimental
results for different combinations of Jr and P.

Table 3: Sensitivity analysis of parameters Jr and P under different functions

Function
P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr

10/0.0 10/0.2 10/0.5 10/0.8 10/1.0 20/0.0 20/0.2 20/0.5 20/0.8 20/1.0

F2
Mean 1.51E+07 1.14E+07 1.13E+07 1.11E+07 1.29E+07 1.50E+07 1.10E+07 9.93E+06 1.10E+07 1.06E+07

Std 1.18E+07 7.16E+06 5.84E+06 7.21E+06 8.92E+06 1.24E+07 6.00E+06 5.53E+06 8.38E+06 6.57E+06

F6
Mean −6.84E+02 −7.39E+02 −7.54E+02 −7.60E+02 −7.56E+02 −7.40E+02 −7.60E+02 −7.39E+02 −7.72E+02 −7.43E+02

Std 1.07E+02 6.64E+01 6.88E+01 5.58E+01 6.01E+01 1.16E+02 8.02E+01 1.05E+02 5.89E+01 8.92E+01

F13
Mean −8.37E+01 −9.12E+01 −1.05E+02 −9.52E+01 −9.61E+01 −8.71E+01 −9.43E+01 −9.62E+01 −9.14E+01 −9.23E+01

Std 3.12E+01 2.68E+01 2.50E+01 2.66E+01 2.55E+01 2.56E+01 3.34E+01 2.69E+01 2.83E+01 2.59E+01

F25
Mean 1.33E+03 1.33E+03 1.33E+03 1.34E+03 1.34E+03 1.33E+03 1.33E+03 1.33E+03 1.33E+03 1.33E+03

Std 3.45E+00 7.85E+00 1.08E+01 7.10E+00 6.49E+00 1.22E+01 1.17E+01 1.31E+01 2.00E+01 7.99E+00

Rank
Mean 3(0) 3(0) 1(2) 2(2) 3(0) 3(0) 2(1) 1(3) 3(0) 3(0)

Std 3(0) 3(0) 1(3) 2(1) 3(0) 2(1) 2(1) 2(2) 3(0) 3(0)

Function
P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr P/Jr

30/0.0 30/0.2 30/0.5 30/0.8 30/1.0 50/0.0 50/0.2 50/0.5 50/0.8 50/1.0

F2
Mean 1.31E+07 1.15E+07 1.13E+07 1.26E+07 1.71E+07 1.15E+07 9.23E+06 8.10E+06 1.25E+07 1.29E+07

Std 8.51E+06 7.00E+06 7.24E+06 1.03E+07 8.74E+06 9.77E+06 5.06E+06 4.91E+06 9.64E+06 1.19E+07

F6
Mean −7.23E+02 −7.45E+02 −7.62E+02 −7.39E+02 −7.05E+02 −7.53E+02 −7.71E+02 −7.71E+02 −7.37E+02 −7.43E+02

Std 1.14E+02 7.81E+01 5.38E+01 9.74E+01 7.14E+01 7.80E+01 6.33E+01 6.34E+01 7.63E+01 7.80E+01

F13
Mean −9.55E+01 −9.69E+01 −9.99E+01 −9.95E+01 −9.33E+01 −8.20E+01 −9.19E+01 −9.53E+01 −9.32E+01 −9.36E+01

Std 2.50E+01 3.33E+01 2.45E+01 2.73E+01 2.88E+01 3.15E+01 2.59E+01 2.80E+01 2.80E+01 2.74E+01

F25
Mean 1.33E+03 1.32E+03 1.32E+03 1.33E+03 1.33E+03 1.33E+03 1.33E+03 1.32E+03 1.33E+03 1.33E+03

Std 1.39E+01 1.88E+01 2.03E+01 1.06E+01 1.60E+01 5.63E+00 1.47E+01 2.18E+01 1.73E+01 1.17E+01

Rank
Mean 2(0) 2(0) 1(4) 2(0) 2(0) 3(0) 2(1) 1(4) 3(0) 2(0)

Std 3(0) 3(0) 1(3) 2(1) 3(0) 3(0) 1(2) 1(2) 3(0) 2(1)

In the table, Mean signifies the average fitness values obtained from 30 independent runs of the
algorithm, while Std denotes the standard deviation. Notably, the experiment data highlighted in bold
font corresponds to the optimal results achieved. Additionally, the Rank column assigns rankings
to the seven comparative algorithms. These rankings are determined by sorting the algorithm’s
performance across various test functions. The numbers in parentheses indicate how many times the
algorithm achieved the best result on such test functions. Based on these counts, the numbers outside
the parentheses determine the final rankings of the seven algorithms. Ranking first also implies that
the algorithm achieved the best results on more functions. From Table 3, it can be observed that
different settings of Jr affect the algorithm’s performance on the test functions, leading to the following
conclusions.

Conclusion 1: With a fixed population size P, as Jr increases from 0.0 to 1.0, the algorithm’s
performance exhibits an initial improvement followed by a decline. This is evident when P = 10,
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Jr = 0.8 yields the best results for F2, while Jr = 0.5 is optimal for F6, F13, and F25. For P = 20/30/50,
Jr = 0.5 ranks first in both the mean and standard deviation of final convergence accuracy across
all four functions. This highlights the effectiveness of augmenting the probability of using the elite
opposition-based search operator to improve the optimization accuracy of WOA. However, the
algorithm is limited by the maximum number of fitness function calls during the search. As Jr
increases, the number of fitness function calls per iteration also increases, which reduces the overall
number of iterations. This, in turn, leads to a decrease in optimization accuracy. Therefore, Jr = 0.5 is
the most appropriate value.

Conclusion 2: With Jr fixed, as P increases from 10 to 50, the algorithm’s performance shows
a consistent improvement trend. Taking Jr = 0.5 as an example, for F2 and F6, the best results are
obtained when P = 50. For F13, P = 30 performs the best, and for F25, P = 30 and 50 exhibits the
best performance. This conclusion differs somewhat from Conclusion 1, mainly due to the simplicity
of unimodal functions, where increasing P can fully exploit the benefits of chaotic initialization and
opposition-based initialization operators, effectively improving the algorithm’s optimization accuracy.
However, multimodal and composite functions are relatively complex, making them more challenging
to optimize. As P increases, the algorithm is also constrained by the maximum fitness function calls
during the search, leading to a decrease in optimization efficiency. Therefore, P = 30 is the most
suitable value.

3.3 Experiment 2: Comparison of Olchwoa with Other Metaheuristic Algorithms

3.3.1 Performance Comparison for CEC 2013

To illustrate the merits of the proposed OLCHWOA algorithm, this section conducts comparative
analyses involving several optimization algorithms, including PSO, HHO, AVOA, WOA, OLWOA,
CHWOA, and OLCHWOA. The selection of these algorithms is grounded in three primary con-
siderations. Firstly, PSO, introduced in 1995, is a well-established heuristic algorithm known for its
enduring competitiveness. Secondly, both HHO and AVOA are distinguished by their simplicity in
principles, minimal parameter requirements, and robust global search capabilities, rendering them
highly competitive and advanced optimization algorithms that have emerged in recent years. Lastly,
WOA serves as the foundational basis for OLCHWOA. Subsequently, OLWOA and CHWOA, arising
from the incorporation of opposition-based learning and chaos mechanisms into WOA, respectively,
naturally establish a basis for comparison with OLCHWOA, which integrates both enhancement
operators. The effectiveness of each operator within OLCHWOA will be validated through ablation
experiments. Following the discussion presented in Section 3.3.1, the algorithm has established the
optimal parameter values for Jr and P. The parameter configurations for OLCHWOA and the other
six comparative algorithms are provided in Table 4.

Table 4: Parameters setting of comparison algorithms

Algorithm Year Parameter settings

PSO 1995 P = 30, c1 = c2 = 2, w = 0.4
WOA 2016 P = 30, afirst = 2, afinal = 0, p = 0.5, b = 1
HHO 2019 P = 30, s = 0.01, β = 1.5
AVOA 2021 P = 30, w = 2.5, p1 = 0.6, p2 = 0.4, p3 = 0.6

(Continued)
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Table 4 (continued)

Algorithm Year Parameter settings

OLWOA Proposed P = 30, afirst = 2, afinal = 0, p = 0.5, b = 1, Jr = 0.5
CHWOA Proposed P = 30, afirst = 2, afinal = 0, p = 0.5, b = 1, μ = 4.0
OLCHWOA Proposed P = 30, afirst = 2, afinal = 0, p = 0.5, b = 1, μ = 4.0, Jr = 0.5

In this experiment, the Max_Fitness was set to 10,000. The experimental results for the seven
compared algorithms on unimodal, multimodal, and composite functions are presented in Tables 5 to
7. Additionally, Table 8 summarizes the rankings of the seven algorithms. The following conclusions
can be clearly drawn from the results presented in Tables 5–8.

Table 5: Performance comparison of seven algorithms on unimodal functions

Run Times = 30, P = 30, and Max_Fitness = 10000
OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F1
Mean −1.37E+03 −1.34E+03 −1.37E+03 −1.33E+03 1.04E+04 3.22E+03 −1.36E+03
Std 2.44E+01 5.13E+01 3.32E+01 4.97E+01 4.84E+03 2.52E+03 8.70E+01

F2
Mean 5.45E+06 9.03E+06 6.01E+06 6.77E+06 1.44E+08 2.12E+07 6.11E+06
Std 3.62E+06 4.78E+06 3.53E+06 3.33E+06 9.56E+07 1.56E+07 3.26E+06

F3
Mean 2.87E+09 4.91E+09 2.64E+09 4.06E+09 1.80E+12 5.08E+10 1.92E+07
Std 2.44E+09 3.64E+09 2.79E+09 2.36E+09 4.54E+12 1.14E+11 2.78E+07

F4
Mean 1.54E+04 2.12E+04 1.55E+04 2.03E+04 4.40E+06 1.65E+04 1.55E+04
Std 3.16E+03 8.64E+03 3.75E+03 1.14E+04 1.12E+07 1.86E+03 2.11E+03

F5
Mean −9.32E+02 −8.59E+02 −9.26E+02 −9.08E+02 4.52E+03 1.38E+03 −9.15E+02
Std 2.90E+01 1.26E+02 2.83E+01 4.92E+01 2.82E+03 2.11E+03 5.81E+01

Rank
Mean 1(4) 3(0) 3(0) 3(0) 3(0) 3(0) 2(1)
Std 2(1) 3(0) 2(1) 3(0) 3(0) 2(1) 1(2)

Table 6: Performance comparison of seven algorithms on multimodal functions

Run Times = 30, P = 30, and Max_Fitness = 10000

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F6
Mean −8.24E+02 −7.93E+02 −7.99E+02 −7.90E+02 3.24E+02 −5.41E+02 −8.16E+02
Std 3.78E+01 6.32E+01 5.68E+01 5.44E+01 4.83E+02 1.93E+02 2.92E+01

F7
Mean −7.13E+02 −7.04E+02 −6.97E+02 −6.99E+02 6.15E+02 −5.70E+02 3.31E+03
Std 3.02E+01 3.31E+01 3.69E+01 4.19E+01 3.16E+03 3.53E+02 3.01E+03

F8
Mean −6.79E+02 −6.80E+02 −6.79E+02 −6.80E+02 −6.79E+02 −6.79E+02 −6.79E+02
Std 1.64E-01 1.11E-01 1.77E-01 9.11E-02 1.80E-01 1.14E-01 1.38E-01

F9
Mean −5.92E+02 −5.91E+02 −5.92E+02 −5.91E+02 −5.87E+02 −5.90E+02 −5.91E+02
Std 1.04E+00 1.35E+00 1.19E+00 1.10E+00 1.62E+00 1.37E+00 1.29E+00

F10
Mean −4.32E+02 −4.40E+02 −4.54E+02 −4.36E+02 8.24E+02 1.75E+02 −4.52E+02
Std 6.98E+01 5.16E+01 2.98E+01 4.95E+01 5.49E+02 3.28E+02 3.35E+01

F11
Mean −3.40E+02 −3.26E+02 −3.38E+02 −3.26E+02 −1.89E+02 −2.76E+02 −3.49E+02
Std 1.82E+01 2.82E+01 2.70E+01 2.58E+01 4.97E+01 4.25E+01 1.84E+01

(Continued)
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Table 6 (continued)

Run Times = 30, P = 30, and Max_Fitness = 10000

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F12
Mean −2.18E+02 −2.16E+02 −2.26E+02 −2.08E+02 −9.23E+01 −1.75E+02 −2.24E+02
Std 2.50E+01 2.50E+01 2.97E+01 2.83E+01 5.43E+01 3.82E+01 2.03E+01

F13
Mean −1.24E+02 −1.13E+02 −1.19E+02 −1.04E+02 3.07E+01 −6.87E+01 −1.23E+02
Std 2.18E+01 3.09E+01 2.04E+01 2.79E+01 6.42E+01 3.77E+01 1.65E+01

F14
Mean 1.04E+03 1.12E+03 1.10E+03 1.02E+03 2.66E+03 1.58E+03 8.73E+02
Std 2.87E+02 3.24E+02 3.16E+02 3.29E+02 2.39E+02 2.74E+02 2.85E+02

F15
Mean 1.38E+03 1.45E+03 1.27E+03 1.50E+03 2.64E+03 1.57E+03 1.70E+03
Std 2.52E+02 2.84E+02 3.32E+02 3.46E+02 3.88E+02 3.27E+02 2.54E+02

F16
Mean 2.03E+02 2.01E+02 2.03E+02 2.00E+02 2.05E+02 2.01E+02 2.01E+02
Std 1.27E+00 3.36E-01 1.07E+00 3.47E-01 1.56E+00 3.34E-01 3.68E-01

F17
Mean 3.77E+02 3.94E+02 3.78E+02 3.97E+02 6.73E+02 4.32E+02 3.64E+02
Std 2.36E+01 2.51E+01 1.58E+01 2.87E+01 9.78E+01 3.38E+01 2.72E+01

F18
Mean 4.83E+02 4.99E+02 4.82E+02 4.98E+02 7.86E+02 5.15E+02 4.74E+02
Std 1.85E+01 2.45E+01 1.69E+01 2.21E+01 1.17E+02 3.02E+01 3.03E+01

F19
Mean 5.09E+02 5.12E+02 5.11E+02 5.11E+02 2.25E+05 5.10E+03 5.09E+02
Std 5.20E+00 8.95E+00 5.29E+00 6.69E+00 5.11E+05 7.20E+03 1.11E+01

F20
Mean 6.04E+02 6.03E+02 6.04E+02 6.03E+02 6.05E+02 6.04E+02 6.04E+02
Std 3.34E-01 2.84E-01 3.81E-01 3.63E-01 9.15E-02 4.06E-01 3.84E-01

Rank
Mean 1(5) 4(1) 2(4) 3(3) 5(0) 5(0) 1(5)
Std 1(5) 4(0) 2(3) 4(1) 3(2) 4(1) 1(3)

Table 7: Performance comparison of seven algorithms on composition functions

Run Times = 30, P = 30, and Max_Fitness = 10000

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F21
Mean 1.10E+03 1.08E+03 1.09E+03 1.09E+03 1.78E+03 1.25E+03 1.10E+03
Std 6.21E-01 5.21E+01 4.30E+01 5.25E+01 3.32E+02 8.95E+01 3.52E+01

F22
Mean 2.34E+03 2.26E+03 2.33E+03 2.31E+03 3.74E+03 2.96E+03 2.52E+03
Std 3.50E+02 3.42E+02 4.36E+02 4.07E+02 2.68E+02 2.94E+02 3.00E+02

F23
Mean 2.73E+03 2.62E+03 2.67E+03 2.62E+03 4.02E+03 3.08E+03 2.75E+03
Std 3.15E+02 3.37E+02 3.17E+02 3.16E+02 2.02E+02 3.60E+02 2.29E+02

F24
Mean 1.22E+03 1.23E+03 1.22E+03 1.23E+03 1.25E+03 1.23E+03 1.23E+03
Std 2.42E+01 1.16E+01 2.52E+01 1.71E+01 9.25E+00 5.07E+00 5.15E+00

F25
Mean 1.31E+03 1.32E+03 1.30E+03 1.33E+03 1.35E+03 1.33E+03 1.30E+03
Std 3.00E+01 2.30E+01 2.73E+01 5.54E+00 4.58E+00 5.93E+00 3.62E+01

F26
Mean 1.39E+03 1.39E+03 1.38E+03 1.40E+03 1.51E+03 1.47E+03 1.39E+03
Std 1.65E+01 2.71E+01 2.66E+01 2.92E+01 4.71E+01 6.24E+01 2.22E+01

F27
Mean 1.89E+03 1.91E+03 1.87E+03 1.93E+03 2.25E+03 2.01E+03 1.86E+03
Std 9.17E+01 1.00E+02 1.05E+02 9.58E+01 1.54E+02 8.16E+01 6.31E+01

F28
Mean 2.23E+03 2.21E+03 2.20E+03 2.30E+03 2.87E+03 2.47E+03 1.92E+03
Std 1.16E+02 2.14E+02 2.08E+02 1.19E+02 2.43E+02 1.19E+02 1.66E+02

Rank
Mean 2(1) 1(3) 1(3) 2(1) 3(0) 3(0) 1(3)
Std 1(4) 3(0) 3(0) 3(0) 2(2) 2(1) 2(1)
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Table 8: Total number of rankings of seven algorithms on the standard benchmark functions

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

Mean 10 4 7 4 0 0 9
Std 10 0 4 1 4 3 6
Rank 1(20) 6(4) 3(11) 4(5) 5(4) 7(3) 2(15)

Conclusion 1: On unimodal functions, the OLCHWOA algorithm distinctly excels. This is
supported by OLCHWOA achieving the highest rank on four test functions (F1, F2, F4, and F5)
in terms of mean values, as well as one test function (F1) in terms of standard deviation. These
results underscore OLCHWOA’s capacity to achieve optimal performance across a significant range
of unimodal functions.

Conclusion 2: On multimodal functions, both the OLCHWOA and AVOA algorithms exhibit
the best performance in terms of algorithm convergence accuracy, with a relatively greater advantage
over other algorithms. In terms of algorithm stability, OLCHWOA surpasses AVOA, as evidenced by
OLCHWOA obtaining the first rank in mean and standard deviation values for five test functions,
while AVOA only secures the first rank in these categories for five and three functions, respectively.

Conclusion 3: Regarding composite functions, the OLCHWOA algorithm ranks second in mean
values and first in standard deviation. This is prominently observed in OLCHWOA, ranking first
in mean values for one test function (F24), second for three test functions (F21, F25, F26), and
first in standard deviation for four test functions (F21, F25, F26, F28). These outcomes confirm the
algorithm’s ability to produce commendable results when faced with the most complex benchmark
problems.

Conclusion 4: Among the three types of functions, the OLCHWOA algorithm demonstrates the
highest performance, followed by the AVOA and OLWOA algorithms. This is primarily evident in
OLCHWOA ranking first in mean values for all 28 test functions and first in standard deviation for
10 of them, placing it in a leading position, as detailed in Table 8. Additionally, Table 8 underscores
that OLWOA obtains an overall superior ranking when compared to CHWOA, signifying that the
opposition-based search operator exerts a more significant influence than the chaotic initialization
operator in enhancing the standard WOA algorithm. This observation implies that OLCHWOA
achieves a well-balanced outcome and exhibits a heightened potential for approaching the theoretical
optimal solutions of these test functions. This is largely attributed to the contributions of the
opposition-based search operator.

3.3.2 Comparison of Olchwoa and Other Algorithms under Different P Values

The sensitivity analysis in Section 3.2 discusses the impact of the population size P only on
the OLCHWOA algorithm. To verify whether the algorithm proposed can still maintain its relative
advantage as the P increases compared to other algorithms, this section selects eight representative test
functions from CEC2013 for a comprehensive examination. Specifically, considering the scenarios of
P = 50 and P = 100, maintaining all other parameters identical to those outlined in Section 3.3.1. The
results of these experiments are outlined in Tables 9 and 10. After conducting a meticulous analysis,
the following conclusions have been drawn:
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Conclusion 1: When P = 50, OLCHWOA outperforms the other six algorithms. This superiority
is underscored by OLCHWOA achieving values that closely approach the global optimum on seven
functions (F4, F7, F9, F13, F19, F24, and F26). The comprehensive ranking, based on both the mean
and standard deviation, secures the top position.

Conclusion 2: When P = 100, OLCHWOA maintains a remarkable performance by attaining
optimal values in five functions (F4, F7, F9, F24, and F26), with its comprehensive ranking, based on
mean and standard deviation being first and second, respectively.

Conclusion 3: Combining the results from Section 3.3.1 when P = 30, it can be observed that as
the population size increases, OLCHWOA’s solution accuracy hardly decreases. Notably, its perfor-
mance remains consistently competitive relative to the other comparative algorithms. OLCHWOA
demonstrates efficient global search capabilities, and its effectiveness remains unhindered with the
augmentation of the population size.

Table 9: Performance comparison of seven algorithms for CEC2013 with P = 50

Run Times = 30, P = 50, and Max_Fitness = 10000

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F2
Mean 7.70E+06 7.94E+06 6.49E+06 6.18E+06 1.32E+08 1.99E+07 3.64E+06
Std 5.25E+06 5.24E+06 4.39E+06 4.04E+06 9.08E+07 1.59E+07 2.73E+06

F4
Mean 1.39E+04 1.68E+04 1.66E+04 1.92E+04 1.44E+06 1.63E+04 1.41E+04
Std 2.74E+03 6.70E+03 5.67E+03 8.67E+03 1.70E+06 1.92E+03 3.91E+03

F7
Mean −7.13E+02 −6.90E+02 −7.04E+02 −6.85E+02 1.65E+03 −6.52E+02 6.39E+03
Std 2.95E+01 4.25E+01 3.68E+01 4.12E+01 6.69E+03 9.11E+01 3.13E+03

F9
Mean −5.92E+02 −5.92E+02 −5.92E+02 −5.92E+02 −5.87E+02 −5.90E+02 −5.91E+02
Std 1.25E+00 1.49E+00 1.18E+00 1.22E+00 1.24E+00 1.32E+00 1.25E+00

F13
Mean −1.32E+02 −1.18E+02 −1.16E+02 −1.13E+02 3.25E+00 −7.17E+01 −1.30E+02
Std 1.74E+01 1.80E+01 2.17E+01 2.61E+01 4.90E+01 3.83E+01 1.81E+01

F19
Mean 4.86E+02 5.08E+02 5.10E+02 5.11E+02 5.21E+04 3.16E+03 5.03E+02
Std 1.11E+02 3.98E+00 5.42E+00 8.14E+00 1.12E+05 4.98E+03 2.20E+00

F24
Mean 1.22E+03 1.23E+03 1.22E+03 1.23E+03 1.25E+03 1.23E+03 1.22E+03
Std 1.83E+01 5.40E+00 2.07E+01 1.60E+01 5.80E+00 1.31E+01 1.40E+01

F26
Mean 1.39E+03 1.40E+03 1.40E+03 1.39E+03 1.51E+03 1.48E+03 1.40E+03
Std 1.92E+01 2.46E+01 1.60E+01 2.45E+01 5.70E+01 6.22E+01 8.71E-01

Rank
Mean 1(7) 4(1) 3(2) 3(2) 5(0) 5(0) 2(3)
Std 1(3) 3(1) 3(1) 4(0) 4(0) 3(1) 2(2)

Table 10: Performance comparison of seven algorithms for CEC2013 with P = 100

Run Times = 30, P = 100, and Max_Fitness = 10000

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F2
Mean 5.73E+06 5.03E+06 6.71E+06 7.09E+06 1.03E+08 2.08E+07 6.14E+06
Std 3.96E+06 3.93E+06 4.63E+06 4.08E+06 7.69E+07 1.56E+07 3.28E+06

F4
Mean 1.35E+04 2.08E+04 1.60E+04 2.11E+04 3.83E+08 1.58E+04 1.74E+04
Std 5.85E+03 8.57E+03 3.75E+03 7.76E+03 1.03E+09 2.96E+03 6.36E+03

(Continued)
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Table 10 (continued)

Run Times = 30, P = 100, and Max_Fitness = 10000

OLCHWOA CHWOA OLWOA WOA PSO HHO AVOA

F7
Mean −7.14E+02 −6.93E+02 −7.05E+02 −6.87E+02 1.73E+05 −6.30E+02 1.87E+03
Std 2.55E+01 3.80E+01 3.20E+01 5.79E+01 9.45E+05 1.75E+02 5.28E+03

F9
Mean −5.92E+02 −5.92E+02 −5.92E+02 −5.91E+02 −5.86E+02 −5.90E+02 −5.91E+02
Std 1.24E+00 1.35E+00 1.37E+00 1.36E+00 3.11E+00 1.19E+00 9.58E-01

F13
Mean −1.23E+02 −1.04E+02 −1.19E+02 −1.07E+02 5.24E−01 −9.98E+01 −1.48E+02
Std 2.67E+01 2.68E+01 2.56E+01 2.57E+01 4.76E+01 2.99E+01 1.11E+01

F19
Mean 5.08E+02 5.09E+02 5.09E+02 5.11E+02 1.94E+04 1.75E+03 5.04E+02
Std 4.56E+00 7.79E+00 4.94E+00 5.91E+00 2.97E+04 2.33E+03 5.02E+02

F24
Mean 1.22E+03 1.22E+03 1.22E+03 1.23E+03 1.25E+03 1.23E+03 1.23E+03
Std 2.53E+01 2.15E+01 2.12E+01 1.05E+01 6.36E+00 3.95E+00 1.23E+03

F26
Mean 1.39E+03 1.39E+03 1.39E+03 1.40E+03 1.48E+03 1.44E+03 1.40E+03
Std 2.32E+01 2.98E+01 2.70E+01 2.88E+01 4.95E+01 6.25E+01 1.40E+03

Rank
Mean 1(5) 2(4) 3(3) 5(0) 5(0) 5(0) 4(1)
Std 2(2) 3(0) 3(0) 3(0) 3(0) 1(3) 2(2)

3.3.3 Convergence Analysis

To illustrate how the improved strategy impacts algorithm convergence speed more intuitively,
Fig. 3 compares the average convergence curves of seven algorithms in different test functions. In
view of space constraints within this paper, this section focuses on eight representative test functions.
Specifically, F1 and F5 represent the convergence curves for unimodal functions. F6, F13, F15,
and F20 illustrate the convergence curves for multimodal functions, while F24 and F26 depict
the convergence curves for composite functions. The algorithm parameter settings align with those
established in Section 3.3.1. The insights gleaned from Fig. 3 are as follows:

Conclusion 1: From the perspective of solution accuracy, as the number of fitness calls increases,
OLCHWOA consistently gravitates towards the global optimum and ultimately attains higher conver-
gence accuracy in comparison to the other six comparative algorithms across F1, F5, F6, F13, F20,
and F24. This observation underscores the robust ability of the OLCHWOA to effectively escape local
optima across the three categories of test functions. Concurrently, the OLWOA algorithm, similar to
OLCHWOA, also demonstrates commendable convergence accuracy. This parallel suggests that the
incorporation of opposition-based learning greatly enhances the global search capability of WOA.

Conclusion 2: From the perspective of the initial population’s quality, OLCHWOA exhibits lower
initial fitness values in the average convergence curves for the eight test functions, surpassing the
original WOA and CHWOA. This suggests that the introduced chaotic initialization operator and
opposition-based initialization operator in this paper effectively improve the quality of the initial
population.
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Figure 3: Convergence graphs of eight functions
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Conclusion 3: From the perspective of convergence speed, OLCHWOA exhibits slower con-
vergence speed, which is particularly evident in complex functions such as F13, F15, and F20.
Additionally, CHWOA demonstrates the fastest convergence on functions F1, F6, F13, and F15,
while OLWOA exhibits the fastest convergence on function F5. AVOA showcases the most rapid
convergence on functions F20 and F26, while OLCHWOA converges most swiftly on function F24.
This observation suggests that the introduction of the chaotic initialization operator and opposition-
based initialization operator, as detailed in this paper, has the potential to enhance convergence speed,
especially on simpler test functions. However, their effectiveness is limited when faced with more
complex problem sets. Per the “no free lunch theorem” [74], improving an algorithm’s performance in
terms of both convergence speed and solution accuracy simultaneously presents a significant challenge.
The proposed OLCHWOA algorithm significantly improves solution accuracy while sacrificing some
convergence speed, which is one of the limitations of this algorithm.

3.3.4 Wilcoxon Rank Sum Test

This paper compares the seven algorithms using the Mean and Std in Section 3.3. However, the
results of only 30 independent runs cannot convincingly support the superiority of the OLCHWOA
algorithm since there is still a certain probability that the algorithm performs better by chance. For this
reason, this section applies the Wilcoxon rank sum test to measure the significance of the differences
between different algorithms at the statistical level [75]. The study takes into account the results
obtained by seven algorithms independently solving 28 test functions for 30 independent runs as
samples and tests them under the condition of a confidence level of 0.05 to determine if there were
any significant differences between the results obtained by OLCHWOA and the other six algorithms.
A significance threshold of p < 0.05 was applied. If the p-value exceeds this threshold, the optimization
outcomes of the two algorithms are considered indistinguishable. Table 11 presents the results of the
Wilcoxon rank-sum test. Results with p-values greater than 0.1 are shown in bold.

Table 11: Wilcoxon rank and p-value

Function WOA CHWOA OLWOA PSO HHO AVOA

F1 4.31E-159 5.54E-77 3.73E-14 0.00E+00 0.00E+00 1.08E-258
F2 1.09E-05 0.00E+00 1.31E-10 0.00E+00 0.00E+00 8.86E-191
F3 4.20E-06 0.00E+00 1.99E-246 0.00E+00 0.00E+00 0.00E+00
F4 8.88E-49 3.48E-02 3.31E-71 0.00E+00 0.00E+00 0.00E+00
F5 1.61E-22 2.48E-137 7.84E-02 0.00E+00 0.00E+00 2.10E-263
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 0.00E+00 4.02E-72 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F9 0.00E+00 1.78E-246 2.52E-80 0.00E+00 0.00E+00 0.00E+00
F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.34E-217
F11 2.52E-210 1.04E-85 9.80E-52 0.00E+00 0.00E+00 0.00E+00
F12 0.00E+00 0.00E+00 4.83E-88 0.00E+00 0.00E+00 0.00E+00
F13 0.00E+00 6.88E-277 6.22E-02 0.00E+00 0.00E+00 0.00E+00
F14 0.00E+00 4.14E-04 1.48E-68 0.00E+00 0.00E+00 0.00E+00
F15 9.74E-140 2.03E-43 9.90E-01 0.00E+00 3.92E-290 0.00E+00

(Continued)



2954 CMC, 2023, vol.77, no.3

Table 11 (continued)

Function WOA CHWOA OLWOA PSO HHO AVOA

F16 0.00E+00 0.00E+00 1.04E-45 0.00E+00 0.00E+00 0.00E+00
F17 0.00E+00 0.00E+00 1.98E-10 0.00E+00 0.00E+00 0.00E+00
F18 0.00E+00 0.00E+00 1.13E-07 0.00E+00 0.00E+00 1.60E-149
F19 6.12E-01 2.37E-59 3.45E-68 0.00E+00 0.00E+00 1.06E-48
F20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.87E-166 0.00E+00
F21 0.00E+00 0.00E+00 1.69E-269 0.00E+00 0.00E+00 3.17E-24
F22 3.15E-14 0.00E+00 2.43E-107 0.00E+00 0.00E+00 0.00E+00
F23 0.00E+00 0.00E+00 2.92E-22 0.00E+00 0.00E+00 8.83E-119
F24 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F25 0.00E+00 0.00E+00 6.96E-08 0.00E+00 0.00E+00 3.12E-05
F26 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F27 0.00E+00 8.22E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F28 0.00E+00 0.00E+00 1.44E-307 0.00E+00 0.00E+00 0.00E+00

As indicated in Table 11, both OLCHWOA and OLWOA exhibit p-values exceeding 5% for F5,
F13, and F15, while OLCHWOA and WOA attain p-values exceeding 5% for F19. Nevertheless, for the
remaining test functions, all obtained p-values are below 0.05. This statistical analysis underscores that
OLCHWOA differs significantly from and outperforms the compared algorithms in these instances.
Using the experiments presented in Sections 3.3.1, 3.3.3, and 3.3.4, it is concluded that the OLCHWOA
combined with chaos mechanism and opposition-based learning strategy has higher convergence
accuracy, improved ability to jump out of local optimal solutions and better stability than six other
optimization algorithms.

3.4 Experiment 3: Comparisons between Olchwoa and Other Whale Variants

To provide a comprehensive evaluation of the merits and drawbacks of OLCHWOA, it was
compared with four recent WOA variants, including ACWOA [76], RDWOA [77], TBWOA [78], and
MEWOA [79]. These algorithms have been published in reputable journals and are widely recognized
as benchmarks. Table 12 presents the average convergence accuracy and stability for 10 CEC2019
functions. The experimental results for these four WOA variants are sourced from reference [80], while
the experiments for OLCHWOA are based on our simulation results. To ensure a fair comparison, this
paper replicated the experimental conditions mentioned in the reference (Max_fitness = 15000).

Table 12: Performance comparison for CEC2019

OLCHWOA MEWOA TBWOA RDWOA ACWOA WOA

F1
Mean 2.48E+06 1.00E+00 2.14E+06 4.07E+01 1.00E+00 1.49E+07
Std 6.11E+06 2.91E-10 5.52E+06 1.24E+02 2.15E-08 1.59E+07

F2
Mean 2.46E+05 4.93E+00 2.57E+03 5.00E+00 5.00E+00 7.67E+03
Std 1.76E+04 1.55E-01 3.34E+03 1.10E-01 1.65E-16 2.90E+03

(Continued)
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Table 12 (continued)

OLCHWOA MEWOA TBWOA RDWOA ACWOA WOA

F3
Mean 3.34E+00 4.21E+00 3.43E+00 4.67E+00 6.40E+00 5.05E+00
Std 9.03E-01 1.28E+00 1.30E+00 1.60E+00 1.67E+00 1.18E+00

F4
Mean 2.98E+02 5.78E+01 5.39E+01 7.00E+01 8.05E+01 5.90E+01
Std 1.40E+02 1.40E+01 1.91E+01 1.59E+01 1.51E+01 2.05E+01

F5
Mean 1.61E+00 2.30E+00 3.94E+00 5.89E+00 4.83E+01 2.73E+00
Std 3.18E-01 6.03E-01 1.75E+00 2.01E+00 2.22E+01 8.44E-01

F6
Mean 9.18E+00 7.92E+00 8.67E+00 9.44E+00 1.03E+01 8.47E+00
Std 1.24E+00 1.27E+00 2.03E+00 1.67E+00 1.53E+00 1.83E+00

F7
Mean 8.62E+01 1.31E+03 1.17E+03 1.63E+03 1.86E+03 1.46E+03
Std 1.68E+02 2.94E+02 3.24E+02 3.27E+02 2.98E+02 3.05E+02

F8
Mean 1.00E+00 4.43E+00 4.66E+00 4.65E+00 4.86E+00 4.69E+00
Std 6.73E-04 2.92E-01 3.51E-01 2.27E-01 2.21E-01 2.63E-01

F9
Mean 2.91E+00 1.44E+00 1.47E+00 1.52E+00 2.58E+00 1.44E+00
Std 7.44E-01 1.56E-01 1.87E-01 1.30E-01 8.00E-01 2.24E-01

F10
Mean 2.06E+01 2.09E+01 2.12E+01 2.15E+01 2.14E+01 2.13E+01
Std 2.94E+00 1.40E-01 1.30E-01 1.19E-01 1.96E-01 1.39E-01

Rank
Mean 1(5) 2(4) 2(1) 3(0) 2(1) 3(0)
Std 1(5) 2(2) 4(0) 2(2) 3(1) 4(0)

As shown in the table, OLCHWOA, MEWOA, and ACWOA consistently achieved the highest
average rankings in terms of mean convergence accuracy. OLCHWOA obtained five first-place
rankings, MEWOA obtained four first-place rankings, and ACWOA obtained one first-place ranking.
Similarly, when considering standard deviation, these algorithms also emerged as frontrunners, with
5, 2, and 1 instances ranking first, respectively. The OLCHWOA algorithm consistently obtained the
highest average ranking, indicating its superior global search capability compared to the other four
recent WOA variants, especially when it comes to solving complex optimization problems.

3.5 Experiment 4: Application of Engineering Problems

Given the intricacies presented by constraints in real-world optimization challenges, traditional
algorithms often struggle to find solutions. This section evaluates OLCHWOA’s performance in
three specific scenarios: the pressure vessel design problem, the three-bar truss design problem, and
the welded beam design problem. Table 13 succinctly outlines the dimensions and the number of
constraints. For more detailed information, please refer to references [79,80].

Table 13: Description of the 3 engineering design problems

No. Function D Const.

F1 Pressure vessel design 5 4
F2 Welded beam design 4 7

(Continued)
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Table 13 (continued)

No. Function D Const.

F3 Three-bar truss design problem 2 3

3.5.1 Pressure Vessel Design Problem

The objective of the pressure vessel design problem is to find the design solution with the
minimum cost. Here, x1, x2, x3, x4, and f (x) represent the shell thickness, head thickness, vessel
internal radius, cylindrical section length, and minimum cost, respectively. To evaluate OLCHWOA’s
optimization results in the pressure vessel design problem, a comparison was made with ten algorithms
selected from reference [79]. OLCHWOA’s simulation results were obtained from our experiments,
and the algorithm parameters were set consistent with Section 3.3.1. The maximum fitness function
calls for the experiments was set to 15,000, following the conditions outlined in the reference. The
experimental results in Table 14 show that OLCHWOA outperformed other algorithms, achieving the
best optimization results.

Table 14: Comparison of results on the pressure vessel design problem

Algorithm x1 x2 x3 x4 f (x)

CPSO 8.13E-01 4.38E-01 4.21E+01 1.77E+02 6.06E+03
MVO 8.13E-01 4.38E-01 4.21E+01 1.77E+02 6.06E+03
GSA 1.13E+00 6.25E-01 5.60E+01 8.45E+01 8.54E+03
EOMSA 1.15E+00 5.66E-01 5.94E+01 3.78E+01 5.88E+03
HPSODE 8.13E-01 4.38E-01 4.21E+01 1.77E+02 6.06E+03
AFA 8.13E-01 4.38E-01 4.21E+01 1.77E+02 6.06E+03
HGSO 1.27E+00 6.25E-01 6.55E+01 1.00E+01 7.43E+03
WOA 8.13E-01 4.38E-01 4.21E+01 1.77E+02 6.06E+03
EWOA 8.11E-01 4.25E-01 4.21E+01 1.77E+02 5.86E+03
MEWOA 1.13E+00 3.09E-01 5.70E+01 5.11E+01 5.60E+03
OLCHWOA 9.75E-01 2.43E-03 6.01E+01 3.42E+01 2.45E+03

3.5.2 Three-Bar Truss Design Problem

The objective of this problem is to minimize the volume of its members while satisfying stress
constraints for the bars. This endeavor entailed a meticulous comparison that involved the careful
selection of 7 algorithms from reference [79]. Here, x1, x2, and f (x) represent the cross-sectional
areas of the two bars and the minimum volume, respectively. Similar to Section 3.5.1, the simulation
results of OLCHWOA were obtained from our experiments. The experimental results in Table 15 show
that algorithms such as DEPSO, WOAmM, MEWOA, and OLCHWOA obtain approximate optimal
solutions. This suggests that these algorithms faced challenges despite having only three constraint
conditions.
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Table 15: Comparison of results on the three-bar truss design problem

Algorithm x1 x2 f (x)

DEPSO 7.89E-01 4.08E-01 2.64E+02
WOAmM 7.89E-01 4.06E-01 2.64E+02
MBA 7.89E-01 4.09E-01 2.64E+02
CS 7.89E-01 4.09E-01 2.64E+02
DEDS 7.89E-01 4.08E-01 2.64E+02
Ray & Sain 7.95E-01 3.95E-01 2.64E+02
MEWOA 7.89E-01 4.07E-01 2.64E+02
OLCHWOA 7.63E-01 4.86E-01 2.64E+02

3.5.3 Welded Beam Design Problem

The objective of optimizing this problem is to minimize the cost. Here, x1, x2, x3, x4, and f (x)
respectively represent the length of the steel connecting rod, the thickness of the weld, the height of
the steel rod, the thickness of the steel rod, and the minimum cost. The optimization results obtained
by OLCHWOA in the welded beam design problem proposed in this paper were compared with those
of eight algorithms from reference [80]. The results are presented in Table 16. It was observed that
e-mPSOBSA and CLPSO achieved the best results, while the OLCHWOA ranked third, providing
solutions that are highly competitive among the eight algorithms.

Table 16: Comparison of results on the welded beam design problem

Algorithm x1 x2 x3 x4 f (x)

e-mPSOBSA 2.06E-01 3.47E+00 9.04E+00 2.06E-01 1.72E+00
CLPSO 2.05E-01 3.49E+00 9.05E+00 2.06E-01 1.73E+00
PSO 1.57E-01 6.08E+00 9.24E+00 2.18E-01 2.11E+00
HS 2.44E-01 6.22E+00 8.29E+00 2.44E-01 2.38E+00
GA 2.49E-01 6.17E+00 8.18E+00 2.53E-01 2.43E+00
GSA 1.82E-01 3.86E+00 1.00E+01 2.02E-01 1.88E+00
SSO 3.26E-01 2.51E+00 7.14E+00 3.99E-01 2.56E+00
ABSA 2.19E+04 5.05E+00 6.77E+00 3.83E-01 2.64E+00
OLCHWOA 1.67E-01 4.99E+00 9.17E+00 2.05E-01 1.77E+00

4 Application of Olchwoa Algorithm in RV Forecasting
4.1 Lstm Model

In this paper, the LSTM model serves as the benchmark model for RV prediction. LSTM utilizes
memory units to store information and gate structures to discard unnecessary information, resulting
in an extended memory. Unlike traditional neural networks, LSTM is composed of memory blocks.
Fig. 4 shows the detailed structure of a memory block, which consists of a memory unit ct, input gate
it, forgetting gate gt, and an output gate ot. According to Eqs. (19)–(24), the three gates it, gt , ot and
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the memory unit ct can be calculated, where xt represents the input at time t, ht represents the hidden
state, U and W denote the weight matrix, b denotes the bias term, σ (·) is a sigmoid function.

gt = σ
(
Ugxt + Wght−1 + bf

)
(19)

it = σ (Uixt + Wiht−1 + bi) (20)

c̃t = tan h (Ucxt + Wcht−1 + bc) (21)

ct = gt ∗ ct−1 + it ∗ c̃t (22)

ot = σ (Uoxt + Woht−1 + bo) (23)

ht = ot ∗ tan h(ct)1 (24)

Input Gate it Output Gate

Forget Gate

xt

ht-1

Ct

gt

ot

Wg

WoWi
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xt ht-1

ht-1 ht-1
xt xt

tC ht

Figure 4: Structure of LSTM

4.2 Rv Prediction Model Based on OLCHWO-LTSM

The OLCHWO-LTSM model is designed to evaluate the effectiveness of the OLCHWOA in
optimizing the LSTM-based RV prediction model. Fig. 5 depicts the execution flow diagram for
the RV prediction model based on OLCHWO-LTSM. The diagram includes the following modules:
Data Processing Module, Model Training Module, Parameter Optimization Module, and Evaluation
Module.

Data Processing Module: Firstly, the dataset is split into a training and a testing set. The first 90%
of the data is used to train the LSTM model, while the remaining 10% is used to test and validate the
algorithm’s predictive performance. Prior to inputting variables, data normalization is performed.

Model Training Module:To enhance the model’s ability to make nonlinear predictions, the LSTM
architecture utilizes a three-layer structure. This configuration includes a single LSTM hidden layer
along with two fully connected layers, as visually represented in Fig. 5.

Parameter Optimization Module: Within this module, the OLCHWOA algorithm is strategically
utilized to coordinate the optimization of four crucial hyperparameters inherent to the LSTM model.
These parameters include the number of nodes within the LSTM layer (ls1), the number of nodes
in the fully connected layer (ls2), the dropout parameter of the LSTM (dp), and the proportion of
the validation set (vs). In essence, this optimization endeavor aims to identify the optimal parameter
configuration, thereby improving the predictive capacity of the LSTM model. The parameter search
intervals specified for these hyperparameters of interest are as follows: ls1∈ [1, 200], ls2∈ [1, 200], dp ∈
[0.01, 0.9], and vs.∈ [0.01, 1]. It is worth noting that the remaining parameters governing the operation
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of the LSTM model adhere to a uniform standardization. This involves setting a fixed batch size of
512, running 50 iterations, using the Adam optimizer, and employing the Mean Squared Error (MSE)
as the loss function.

Evaluation Module diligently deploys the fine-tuned LSTM model to facilitate the prediction of
RV values.

Figure 5: RV prediction framework based on OLCHWOA-LSTM

4.3 Experimental Settings

4.3.1 Data

The China Securities Index 300 (CSI 300) futures were introduced on April 16, 2010, and have
since become the most actively traded stock index futures product in the Chinese market. This article
focuses on high-frequency data of the CSI 300 Index, covering the period from January 04, 2010, to
March 20, 2020, which comprises a total of 2,480 trading days. The specific calculation of RV data is
based on Anderson et al. [81]. The process is shown below.

Using a sampling frequency of 5 min per trading day and obtaining the opening and closing prices
every 5 min, 48 high-frequency returns can be obtained for a single trading day. In total, there would be
119,040 high-frequency returns. Price series are expressed as Pt,d, t = 1,2,3, . . . ,2480, d = 0,1,2,3, . . . ,
48, where Pt,0 represents the opening price at 9:30 on trading day t, and Pt,d represents the closing price
at the d-th 5-minute mark. Rt indicates the daily return, which is calculated using the closing prices of
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the two adjacent trading days. Here is the formula.

Rt = 100
(
ln Pt,48–ln Pt−1,48

)
(25)

where t = 1,2,3, . . . ,2480. Likewise, the high frequency return Rt,d for the 5-min period d-th on day t is
calculated as indicated by the following formula:

Rt,d = 100
(
ln Pt,d–ln Pt−1,d

)
(26)

where t = 1,2,3, . . . ,2480, and d = 0,1,2,3, . . . ,48.

The RV on day t can be estimated by the following formula:

RVt =
nt∑

d=1

R2
t,d (27)

Jumpiness is a concept that pertains to the substantial shifts in volatility observed when significant
information emerges within financial markets, often resulting in pronounced jumps. Drawing upon
this notion of jumpiness, this study introduces continuous volatility denoted as C and jump volatility
denoted as J as inputs into the LSTM model. Additionally, volatility exhibits asymmetric characteris-
tics, indicating that positive and negative news in the market have varying effects on volatility. Negative
news tends to increase volatility. Based on this perspective, two predictive variables are introduced: the
absolute value of volatility on down days, denoted as rdM, and the absolute value of daily volatility,
denoted as rdabs.

To evaluate the performance of the OLCHWOA-LSTM model in predicting RV for the CSI 300
Index, the previous period’s realized volatility (RV ), continuous volatility (C), jump volatility (J), the
absolute value of the down day’s volatility (rdM,), and the absolute value of the daily volatility (rdabs) are
used as inputs. The model is designed to forecast RV for the next trading day based on a time series of
five variables spanning the past 22 trading days. The data is sourced from the RESET HF Database,
and Table 17 provides descriptive statistics for each indicator.

Table 17: Descriptive statistics for predicting RV variables

RV C J rdM rdabs

Count 2480 2480 2480 2480 2480
Mean 1.502114 1.464648 0.037466 −0.50453 1.009737
Std 2.796084 2.758009 0.251641 0.968206 1.070257
Min 0.072593 0.072593 0 −9.15418 0.000809
25% 0.484657 0.464516 0 −0.64843 0.290943
50% 0.85225 0.833211 0 0 0.688767
75% 1.511152 1.469376 0 0 1.374019
Max 48.02688 48.02688 6.503556 0 9.154182

4.3.2 Evaluation Metrics

For the purpose of better reflecting the predicted value error, this paper uses four commonly used
evaluation metrics, namely Mean Absolute Error (MAE), Mean Square Error (MSE), Heteroscedas-
ticity adjusted MAE (HMAE), and Heteroscedasticity adjusted MSE (HMSE). The formulas for
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calculating the four evaluation indicators are as follows:

MAE = 1
T

∑∣∣∣V̂t − RVt

∣∣∣ (28)

MSE = 1
T

∑(
V̂t − RVt

)2

(29)

HMAE = 1
T

∑∣∣∣1 − V̂t/RVt

∣∣∣ (30)

HMSE = 1
T

∑(
1 − V̂t/RVt

)2

(31)

where V̂t is the predicted value of RV at moment t, RVt is the true value, and T is the number of
samples.

4.4 Environment, Comparison Models and Their Parameter Settings

In this section, the TensorFlow2.2 version is used to build the deep learning framework of LSTM,
and the rest of the computer configuration is the same as in Section 3. ARFIMA and HAR are used
as comparison models in this paper. The following is a brief introduction to their principles.

HAR is based on the heterogeneous market hypothesis. In order to present volatility generated
by different traders, the HAR model uses daily RV, weekly RV, and monthly RV to show volatility
generated by short-term, medium-term, and long-term traders, respectively. The model uses 1-day, 5-
days, and 22-days as the trading time scales for each of the three investors. This model is described by
the following formula:

RVt+1 = β0 + βDRV1 + βW RV5 + βMRV22 (32)

where RV1, RV5, and RV22 denote daily RV, weekly RV, and monthly RV, respectively.

The ARFIMA model takes into account both long-term and short-term memory of time series.
The specific formula is as follows:

ϕp (L) (1 − L)d (Xt − μ) = θq (L) at (33)

where μ is the series mean, |d|< 0.5, (1-L)d is the fractional difference factor, order p and q are short
memory factors, and order d indicates long-term memory.

The HAR and ARFIMA models are the most classic RV prediction models and are considered
reasonable as comparative models. They are implemented using the HARModel package and forecast
package in the R language. LSTM is the basic model for RV prediction. To evaluate the performance
of OLCHWOA in RV prediction, the PSO-LSTM model, HHO-LSTM model, WOA-LSTM model,
OLWOA-LSTM model, CHWOA-LSTM model, and OLCHWOA-LSTM model were compared.

Table 18 lists the parameter settings of the above 9 models, which are set according to the results of
the training set experiments. The HAR model contains four parameters: beta0, beta1, beta5, and beta22,
which represent the average level of volatility and the impact of three different frequencies of market
participants on RV, daily, weekly, and monthly, respectively. The results of parameter estimation show
that all four coefficients are significant at the 1% confidence level. The ARFIMA model contains eight
parameters. The difference term d is a score between −0.5 and 0.5, which is used to capture long-term
memory and can be obtained by calculating the Hurst exponent, and its formula is d = Hurst-0.5. AR1
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to AR5 are the autocorrelation coefficients of the model, while MA1 and MA2 are the moving average
coefficients, and these eight parameters are determined by the AIC criterion. LSTM model parameters
ls1, ls2, dp, and vs have the same meanings as those in Section 4.2. Additionally, P and Max_Fitness
have the same meanings as those described in Section 3.2. There are several types of LSTM models
that are based on three-layer network structures, but their optimal parameters vary.

Table 18: Parameters setting of nine models

Model Parameters

HAR beta0 = 0.18, beta1 = 0.29, beta5 = 0.50, beta22 = 0.09
ARFIMA d = 0.34, AR1 = 0.02, AR2 = −0.66, AR3 = 0.12, AR4 = 0.24, AR5 = 0.13,

MA1 = −0.02, MA2 = −0.81
LSTM ls1 = 10, ls2 = 100, vs = 0.03, dp = 0.05
PSO-LSTM ls1 = 180, ls2 = 112, vs = 0.06, dp = 0.11, P = 15, Max_Fitness = 1000
HHO-LSTM ls1 = 27, ls2 = 15, vs = 0.05, dp = 0.03, P = 15, Max_Fitness = 1000
WOA-LSTM ls1 = 42, ls2 = 7, vs = 0.12, dp = 0.10, P = 15, Max_Fitness = 1000
OLWOA-LSTM ls1 = 9, ls2 = 147, vs = 0.03, dp = 0.06, P = 15, Max_Fitness = 1000
CHWOA-LSTM ls1 = 34, ls2 = 96, vs = 0.07, dp = 0.13, P = 15, Max_Fitness = 1000
OLCHWOA-LSTM ls1 = 32, ls2 = 6, vs = 0.06, dp = 0.08, P = 15, Max_Fitness = 1000

4.5 Experimental Results

Table 19 shows the experimental results of the nine comparison models mentioned in Section 4.4
on the RV dataset. According to Table 19, the following conclusions can be drawn:

Conclusion 1: The OLCHWOA-LSTM model has the best performance. This is demonstrated by
the fact that the OLCHWOA-LSTM model outperforms the HAR model, ARFIMA model, LSTM
model, PSO-LSTM model, HHO-LSTM model, WOA-LSTM model, OLWOA-LSTM model, and
CHWOA-LSTM model in indicator MSE by 26.19%, 25.58%, 19.05%, 15.31%, 15.71%, 6.76%, 6.73%,
and 5.11%, respectively. MAE, HMSE, and HMAE also exhibit varying degrees of improvement.
Consequently, the improved algorithm has advantages not only on standard test functions, but also in
practical application problems.

Conclusion 2: Models optimized for LSTM parameters based on heuristic algorithms generally
outperform classical models such as HAR and ARFIMA. It appears that the four metrics of OLWOA-
LSTM, CHWOA-LSTM, and OLCHWOA-LSTM all outperform HAR and ARFIMA.

Conclusion 3: ARFIMA and HAR perform better than standard LSTMs. It is evident from
this example that LSTM models require parameter optimization. It is impossible to exploit LSTM’s
nonlinear prediction capabilities without optimization. This further demonstrates the necessity of
conducting this study.



CMC, 2023, vol.77, no.3 2963

Table 19: Comparison of forecast results on four metrics

Model MSE MAE HMSE HMAE

HAR 9.32E-01 4.82E-01 7.35E-01 6.29E-01
ARFIMA 9.25E-01 4.71E-01 6.91E-01 5.94E-01
LSTM 8.50E-01 5.44E-01 1.04E+00 7.17E-01
PSO-LSTM 8.13E-01 5.04E-01 7.66E-01 6.43E-01
HHO-LSTM 8.16E-01 5.17E-01 9.63E-01 6.86E-01
WOA-LSTM 7.38E-01 4.82E-01 6.93E-01 6.01E-01
OLWOA-LSTM 7.38E-01 4.88E-01 8.79E-01 6.66E-01
CHWOA-LSTM 7.25E-01 4.71E-01 6.66E-01 5.86E-01
OLCHWOA-LSTM 6.88E-01 4.58E-01 5.75E-01 5.59E-01

4.6 Discussion

The OLCHWOA-LSTM model presented is an interesting study that deepens understanding of
how LSTM technology contributes to research on RV. Research in the past has focused on optimizing
LSTM hyperparameters using an exhaustive method [82–84], which had the shortcomings of being
time-consuming and yielding poor results. This limitation has just been addressed in this study.
Moreover, the OLCHWOA-LSTM model is highly competitive in predicting RV problems. There are
two main reasons for this.

First, the OLCHWOA-LSTM model can capture the nonlinear characteristics of RV and,
therefore, statistically significantly outperforms HAR and ARFIMA, which are currently the most
commonly used models in the industry. For RV prediction, ARFIMA can capture long-term memory
and aggregation characteristics, while HAR can capture both aggregation and market heterogeneity
characteristics. Compared to HAR and ARFIMA, the OLCHWOA-LSTM model can effectively
capture the long memory and aggregation characteristics of RV by leveraging the inherent capabilities
of LSTM. Furthermore, it can also account for the heterogeneity and asymmetry of RV through its
input variables. Additionally, the LSTM model is capable of capturing nonlinearity in the time series
of RV. The OLCHWOA-LSTM model not only exhibits the characteristics of ARFIMA and HAR
models, but it also offers the advantages of nonlinear feature acquisition and asymmetric capture,
making it statistically significant.

Second, the OLCHWOA-LSTM model is statistically significantly superior to other machine
learning models as a result of its hyperparameter optimization. RV prediction is essentially a time
series prediction problem, and the LSTM model is specifically designed to handle it. By automating
the hyperparameter optimization process, OLCHWOA further enhances the benefits of LSTM when
dealing with time series data.

5 Conclusions and Future Works

This paper proposes a streamlined and efficient enhancement to the Whale Optimization Algo-
rithm (WOA), called OLCHWOA in this manuscript. This improvement incorporates several new
operators, including a chaotic initialization operator based on logistic sequences, an opposition-
based initialization operator, and an elite opposition-based learning operator based on the parameter
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Jr. These operators are introduced into the original WOA algorithm. The proposed algorithm
offers several advantages: (1) The chaotic initialization and opposition-based initialization operators
enhance the diversity of the OLCHWOA population in the early stages, endowing the algorithm with
strong exploration capabilities and contributing to improved search efficiency. (2) The opposition-
based search operator enables the algorithm to maintain robust local exploitation capabilities even in
the later iterations, allowing it to attain superior solution accuracy in optimization tasks and a greater
probability of finding the global optima of complex functions. (3) OLCHWOA is straightforward to
implement and delivers satisfactory performance. The introduced enhancement strategies improve the
algorithm’s search efficiency without compromising its time complexity. (4) Extensive experiments
and diverse application scenarios validate the reliability of the OLCHWOA algorithm. Four sets
of experiments were conducted to investigate the performance of OLCHWOA in solving complex
optimization problems. The results indicated that Jr = 0.5/P = 30 represents the most competitive
parameter setting. Firstly, the impact of different combinations of parameters, including the jump rate
Jr and the population size P, on the performance of OLCHWOA are discussed. Secondly, the proposed
OLCHWOA algorithm is evaluated on 28 CEC2013 standard test functions and 10 CEC2019 standard
test functions. It was compared with various types of heuristic algorithms, including traditional PSO,
WOA, recently proposed HHO and AVOA, partially improved algorithms of WOA like OLWOA,
CHWOA, and variants of WOA algorithms such as ACWOA. Simulation results demonstrated that
OLCHWOA outperformed the other compared algorithms significantly in terms of convergence
accuracy and stability. Furthermore, to assess the algorithm’s capability to solve real-world complex
optimization problems, OLCHWOA was experimented with three constrained engineering design
problems. The results indicated that the proposed algorithm also exhibited superiority and applicabil-
ity. Lastly, OLCHWOA was used to perform hyperparameter auto-tuning for the LSTM model and
applied to the RV prediction problem. Experimental results based on the CSI 300 dataset demonstrated
that the OLCHWOA-LSTM model achieved the highest accuracy and robustness in RV prediction.
This illustrates the high competitiveness and efficient search capability of our algorithm in solving
practical problems under similar conditions.

Nevertheless, OLCHWOA still exhibits certain limitations. Firstly, although the proposed algo-
rithm exhibits a high global search capability, it does not consistently achieve top performance across
all functions in CEC2013 and CEC2019. It struggles to converge to the optimum in certain high-
dimensional functions. Furthermore, the use of the opposition-based learning strategy in OLCHWOA
enables it to maintain strong exploitation capabilities in subsequent iterations. Nevertheless, this
strategic inclusion increases the frequency of fitness function invocation per iteration, which slows
down convergence, especially when dealing with complex composite functions.

In future investigations, our team will focus on three specific domains to further enhance the
performance of OLCHWOA: (1) The jump rate Jr in this paper was set as a fixed value, but it may
not necessarily be the optimal choice. Therefore, the adaptive adjustment mechanism of parameter Jr
will be considered. (2) OLCHWOA exhibits a slower convergence rate, and research on enhancing its
convergence speed will be prioritized. (3) While OLCHWOA has demonstrated success in continuous
function optimization, additional validation is required to evaluate its effectiveness in addressing
discrete optimization challenges.
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[49] X. Liang, Z. Zhang and L. Pekař, “A whale optimization algorithm with convergence and exploitability
enhancement and its application,” Mathematical Problems in Engineering, vol. 2022, pp. 2904625, 2022.

[50] B. Yin, C. Wang and F. Abza, “New brain tumor classification method based on an improved version of
whale optimization algorithm,” Biomedical Signal Processing and Control, vol. 56, pp. 101728, 2020.

[51] X. Meng, C. Jia, C. Cai, F. He and Q. Wang, “Indoor high-precision 3D positioning system based on visible-
light communication using improved whale optimization algorithm,” Photonics, vol. 9, no. 2, pp. 93, 2022.

[52] M. Tubishat, M. Abushariah, N. Idris and I. Aljarah, “Improved whale optimization algorithm for feature
selection in arabic sentiment analysis,” Applied Intelligence, vol. 49, pp. 1688–1707, 2019.

[53] Z. Movahedi and B. Defude, “An efficient population-based multi-objective task scheduling approach in
fog computing systems,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1–31, 2021.

[54] H. Chen, W. Li and X. Yang, “A whale optimization algorithm with chaos mechanism based on quasi-
opposition for global optimization problems,” Expert Systems with Applications, vol. 158, pp. 2020.

[55] Y. Mousavi, A. Alfi and I. B. Kucukdemiral, “Enhanced fractional chaotic whale optimization algorithm
for parameter identification of isolated wind-diesel power systems,” IEEE Access, vol. 8, pp. 140862–
140875, 2020.

[56] Z. Zhi, Z. Huaqin and P. Yue, “Rolling bearing fault diagnosis based on IWOA-LSTM,” Journal of
Vibration and Shock, vol. 40, no. 7, pp. 274–280, 2021.

[57] L. Libang, Y. Song, W. Zhijian, H. Xinxin Z. Wenlei et al., “Prediction of coke quality based on improved
WOA-lSTM,” CIESC Journal, vol. 73, no. 3, pp. 1291–1299, 2022.

[58] Y. J. Yu, Y. N. Jiang and C. Y. Li, “Prediction method of insulation paper remaining life with mechanical-
thermal synergy based on WOA-LSTM model,” Transactions of China Electrotechnical Society, vol. 37, no.
7, pp. 3162–3171, 2022.



2968 CMC, 2023, vol.77, no.3

[59] Q. Zhang, T. Gao, X. Liu and Y. Zheng, “Public environment emotion prediction model using LSTM
network,” Sustainability, vol. 12, no. 4, pp. 1665, 2020.

[60] S. George and A. K. Santra, “An improved long short-term memory networks with Takagi-Sugeno fuzzy
for traffic speed prediction considering abnormal traffic situation,” Computational Intelligence, vol. 36,
no. 3, pp. 964–993, 2020.

[61] G. Chen, G. H. Zeng, B. Huang and J. Liu, “HHO algorithm combining mutualism and lens imaging
learning,” Computer Engineering and Applications, vol. 58, no. 10, pp. 76–86, 2022.

[62] X. R. Bi, M. Qi and S. F. Gong, “Whale optimization algorithm combined with dynamic probability
threshold anda adaptive mutation,” Microelectronics & Computer, vol. 36, no. 12, pp. 78–83, 2019.

[63] R. Tang, S. Fong and N. Dey, “Metaheuristics and chaos theory,” in Kais AMAN, Rijeka, 2018.
[64] C. Rim, S. Piao, G. Li and U. Pak, “A niching chaos optimization algorithm for multimodal optimization,”

Soft Computing, vol. 22, no. 2, pp. 621–633, 2018.
[65] F. S. Gharehchopogh and A. A. Khargoush, “A chaotic-based interactive autodidactic school algorithm

for data clustering problems and its application on COVID-19 disease detection,” Symmetry, vol. 15, no. 4,
pp. 894, 2023.

[66] H. R. Tizhoosh, “Opposition-based learning: A new scheme for machine intelligence,” in Int. Conf. on
Computational Intelligence for Modelling, Control and Automation and Int. Conf. on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, pp. 695–701, 2005.

[67] F. Kutlu Onay, “A novel improved chef-based optimization algorithm with Gaussian random walk-based
diffusion process for global optimization and engineering problems,” Mathematics and Computers in
Simulation, vol. 212, pp. 195–223, 2023.

[68] H. Salehinejad, S. Rahnamayan and H. R. Tizhoosh, “Opposition-based differential evolution,” in 2014
IEEE Congr. on Evolutionary Computation (CEC), IEEE, pp. 1768–1775, 2014.

[69] T. J. Choi, J. Lee, H. Y. Youn and C. W. Ahn, “Adaptive differential evolution with elite opposition-based
learning and its application to training artificial neural networks,” Fundamenta Informaticae, vol. 164,
no. 2–3, pp. 227–242, 2019.

[70] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu and M. Ventresca, “Enhancing particle swarm optimization using
generalized opposition-based learning,” Information Sciences, vol. 181, no. 20, pp. 4699–4714, 2011.

[71] X. Y. Zhou, Z. J. Wu, H. Wang, K. S. Li and H. Y. Zhang, “Elite opposition-based particle swarm
optimization,” Acta Electronica Sinica, vol. 41, no. 8, pp. 1647–1652, 2013.

[72] J. Liang, B. Qu, P. Suganthan and A. Hernández-Díaz, “Problem definitions and evaluation criteria for the
CEC 2013 special session and competition on real-parameter optimization,” in Technical Report, Com-
putational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China, Nanyang Technological
University, Singapore, 2013.

[73] K. V. Price, N. H. Awad, M. Z. Ali and P. N. Suganthan, “Problem definitions and evaluation criteria
for the 100-digit challenge special session and competition on single objective numerical optimization,” in
Technical Report, Nanyang Technological University, Singapore, 2018.

[74] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[75] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz and A. H. Gandomi, “The arithmetic optimization
algorithm,” Computer Methods in Applied Mechanics and Engineering, vol. 376, pp. 113609, 2021.

[76] M. A. Elhosseini, A. Y. Haikal, M. Badawy and N. Khashan, “Biped robot stability based on an a–C
parametric whale optimization algorithm,” Journal of Computational Science, vol. 31, pp. 17–32, 2019.

[77] H. Chen, C. Yang, A. A. Heidari and X. Zhao, “An efficient double adaptive random spare reinforced
whale optimization algorithm,” Expert Systems with Applications, vol. 154, pp. 113018, 2020.

[78] Y. Hassouneh, H. Turabieh, T. Thaher, I. Tumar H. Chantar et al., “Boosted whale optimization algorithm
with natural selection operators for software fault prediction,” IEEE Access, vol. 9, pp. 14239–14258, 2021.

[79] Y. Shen, C. Zhang, F. Soleimanian Gharehchopogh and S. Mirjalili, “An improved whale optimization
algorithm based on multi-population evolution for global optimization and engineering design problems,”
Expert Systems with Applications, vol. 215, pp. 119269, 2023.



CMC, 2023, vol.77, no.3 2969

[80] S. Nama, A. K. Saha, S. Chakraborty, A. H. Gandomi and L. Abualigah, “Boosting particle swarm
optimization by backtracking search algorithm for optimization problems,” Swarm and Evolutionary
Computation, vol. 79, pp. 101304, 2023.

[81] T. G. Andersen, T. Bollerslev, F. X. Diebold and P. Labys, “Modeling and forecasting realized volatility,”
Econometrica, vol. 71, no. 2, pp. 579–625, 2003.

[82] Y. Liu, “Novel volatility forecasting using deep learning–long short term memory recurrent neural
networks,” Expert Systems with Applications, vol. 132, pp. 99–109, 2019.

[83] A. Vidal and W. Kristjanpoller, “Gold volatility prediction using a CNN-LSTM approach,”Expert Systems
with Applications, vol. 157, pp. 113481, 2020.

[84] C. Zhang, J. Li, X. Huang, J. Zhang and H. Huang, “Forecasting stock volatility and value-at-risk based
on temporal convolutional networks,” Expert Systems with Applications, vol. 207, pp. 117951, 2022.


	An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction
	1 Introduction
	2 Proposed Olchwoa Algorithm
	3 Simulation Experiment
	4 Application of Olchwoa Algorithm in RV Forecasting
	5 Conclusions and Future Works
	References


