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ABSTRACT

The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous
inspection of distribution lines by Unmanned Aerial Vehicle (UAV) due to the complex background of distribution
lines, variable morphology of equipment, and large differences in equipment sizes. Therefore, aiming at the difficult
detection of power equipment in UAV inspection images, we propose a multi-equipment detection method for
inspection of distribution lines based on the YOLOx-s. Based on the YOLOx-s network, we make the following
improvements: 1) The Receptive Field Block (RFB) module is added after the shallow feature layer of the backbone
network to expand the receptive field of the network. 2) The Coordinate Attention (CA) module is added to obtain
the spatial direction information of the targets and improve the accuracy of target localization. 3) After the first
fusion of features in the Path Aggregation Network (PANet), the Adaptively Spatial Feature Fusion (ASFF) module
is added to achieve efficient re-fusion of multi-scale deep and shallow feature maps by assigning adaptive weight
parameters to features at different scales. 4) The loss function Binary Cross Entropy (BCE) Loss in YOLOx-s is
replaced by Focal Loss to alleviate the difficulty of network convergence caused by the imbalance between positive
and negative samples of small-sized targets. The experiments take a private dataset consisting of four types of power
equipment: Transformers, Isolators, Drop Fuses, and Lightning Arrestors. On average, the mean Average Precision
(mAP) of the proposed method can reach 93.64%, an increase of 3.27%. The experimental results show that the
proposed method can better identify multiple types of power equipment of different scales at the same time, which
helps to improve the intelligence of UAV autonomous inspection in distribution lines.
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1 Introduction

There are large scale and high complexity in China’s power grid, which has a prominent demand
for the inspection of distribution lines. In the past, manual inspection and helicopter inspection were
mainly used for the inspection of distribution lines [1]. However, due to the complex terrain passed
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by transmission lines, a wide range of distribution lines, numerous categories of equipment, and
large quantities of equipment, the difficulty and cost of manual inspection and helicopter inspection
are increasing. Manual inspection and helicopter inspection make it very difficult to meet the daily
inspection needs of distribution lines. Through shooting and interpreting the images of the distribution
lines, Unmanned Aerial Vehicle (UAV) autonomous inspection [2–4] has the advantages of low
cost, high efficiency, wide coverage, and little influence by the geographical environment. So, UAV
autonomous inspection is used to replace inefficient manual inspection and helicopter inspection.
Equipment identification is one of the basic tasks of UAV autonomous inspection. By target detection
method, UAV automatic inspection can automatically detect power equipment, which is of great
significance to improve the automation of the operation and management of distribution lines.
Therefore, the accurate detection of power equipment in UAV automatic inspection is vital.

At present, because of belonging to the target detection methods, power equipment detection
methods for distribution lines based on UAV inspection images are mainly divided into two types:
one is the method based on traditional image processing, and the other is the method based on deep
learning. Traditional image processing methods use manually set detectors for feature extraction. It
separates the target from the background by color, texture, and other features, and then performs target
detection by modeling. Traditional methods rely on sufficient prior knowledge or image processing
experience, which cannot mine more high-level semantic information for complex and changing scenes.
Compared with traditional image processing methods, deep learning methods can obtain the intrinsic
rules and representation levels of sample data by learning a large amount of sample data [5] to discover
the feature information in image data.

Target detection methods based on deep learning can be further divided into one-stage methods
and two-stage methods. The one-stage methods, such as the single-shot multi-box detector (SSD)
[6] and You Only Look Once (YOLO) series [7–12], omit the stage of candidate region generation
and directly obtain the information about target classification and location. The SSD uses Visual
Geometry Group (VGG) [13] as the baseline network, adding five convolutional layers to extract
feature maps of different scales. Then, multiple prior boxes of different sizes are set on the extracted
feature maps for detection and regression. Each detector in the YOLO series consists of the backbone
network, the neck, and the detection head. There are many one-stage methods for UAV autonomous
inspection in distribution lines. By using ResNet instead of VGG and adding a self-attention mecha-
nism, Dai et al. [14] adopted an improved SSD method, which could effectively identify the rusted
area of the equipment. However, in the ResNet backbone network down-sampling process, small
target features might be lost, and the self-attention mechanism requires a large amount of data to
establish the global relationship. Based on YOLOv3, Chen et al. [15] adopted a method combined
with Squeeze-and-Excitation Networks (SENet) for the recognition of U-ring nuts of high-voltage
insulators. This method could be used to improve the accuracy of small target recognition, but SENet
only considered channel information and ignored spatial location information. Liu et al. [16] adopted
an improved YOLOv4 algorithm for hidden trouble warnings of transmission lines. By using the K-
means clustering algorithm and Intersection over Union (IoU) loss function to determine the anchor
boxes, the detection accuracy of small targets with hidden dangers on transmission lines was improved,
but the deep and shallow features were not fully used. For the detection of insulator defects on overhead
transmission lines, based on YOLOv5, Huang et al. [17] designed a receptive field module to replace
the Spatial Pyramid Pooling (SPP) module to extract feature information and used the lightweight
module of GhostNet to build a backbone network to reduce the amount of network computation.
The two-stage methods, like Faster Region-based Convolutional Neural Network (Faster RCNN) [18],
first select the candidate regions on the input image that may contain the detection targets and then
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classify the candidate regions and regress their positions to obtain the detection results. Ni et al. [19]
adopted Faster RCNN to detect some defects in transmission lines, used Inception-ResNetv2 as the
backbone network for feature extraction, and adjusted and optimized the convolution kernel size to
improve the detection accuracy. However, the Parameters and Floating Point Operations (FLOPs)
of this method were large, which would hardly meet the real-time requirement of UAV autonomous
inspection. Compared with the one-stage methods, the two-stage methods can usually achieve higher
accuracy, while the one-stage methods have an obvious advantage in detection efficiency.

The above methods were always applied to object detection on single-category equipment or
defects of distribution lines. However, in the process of UAV autonomous inspection, multiple types
of equipment are often detected. Liu et al. [20] detected several key components of transmission lines
based on YOLOv3 but did not optimize the method, resulting in poor detection accuracy on small-
sized components like bird nests and damper defects. Zhang [21] used the two-stage method Faster
RCNN combined with multiple attention modules to improve the detection accuracy of multi-target.
However, the Parameters and FLOPs of the network were not considered, resulting in poor real-time
detection. There is still a large improvement room for the accuracy, real-time, and stability of power
equipment detection in distribution lines, because of the complex backgrounds, multiple categories,
and small size.

To solve the above problems, this paper uses the improved one-stage method YOLOx-s to propose
a multi-equipment detection method for distribution lines, which can be mounted on the UAV platform
for real-time detection. Based on YOLOx-s, the proposed method firstly adds the Receptive Field
Block (RFB-s) module in the shallow feature extraction part of the backbone network to expand
the network receptive field, which aims to improve the detection accuracy of small-sized equipment.
Then, three Coordinate Attention (CA) modules are added to make the network better obtain the
target spatial direction information. The Adaptively Spatial Feature Fusion (ASFF) module is added
to secondary fuse the feature layer in the feature fusion part of the Path Aggregation Network (PANet)
[22] so that the shallow and deep features are fully fused. Finally, aiming at the imbalance problem
between positive and negative samples, the loss function is replaced with Focal Loss to alleviate the
problem of difficult convergence of network training.

2 Multi-Equipment Detection Method for Distribution Lines
2.1 Improved YOLOx-s Network

The YOLOx-s [12] network consists of three parts. The part of the backbone network is Cross
Stage Partial Darknet (CSPDarknet), which contains the Focus module, CBS layer, Cross Stage Partial
(CSP) layer, and SPP layer. The Focus module performs down-sampling and slicing operations. The
CBS layer consists of Convolution (Conv), Batch Normalization (BN), and Sigmoid Linear Unit
(SiLU). The CSP layer is designed to optimize the computational efficiency of the network and enhance
the performance of gradient transfer. The SPP layer expands the receptive field of the network by Max
Pooling and convolution. The part of the neck uses the PANet or Feature Pyramid Network (FPN)
as the network for feature fusion. The part of the detection head adopts a Decoupled Head. It assigns
the classification task and location task of target detection to two different branches, which improves
the detection accuracy and convergence speed.

In the YOLOx-s network, the data augmentation strategy combining Mosaic [23] and Mixup
is used. The dynamic sample matching technology of Simplified Optimal Transport Assignment
(SimOTA) [24] is added in an innovative way to match positive samples for the targets of different
scales. The dynamic Top-k strategy is used to calculate the optimal transmission to reduce the network
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training time. The anchor-free target detector is used to reduce the network parameters and accelerate
the detection speed because it does not need to cluster the candidate boxes.

This paper makes the following improvements based on the original network YOLOx-s: (1) The
RFB-s module is added after the shallow feature layer CSP1_3, and the dilated convolution layer is
introduced to expand the receptive field. (2) The CA module is added after CSP1_3 and CSP2_1 of the
backbone network to better obtain the target spatial direction information. (3) The three feature maps
P3, P4, and P5 are fused for the first time to output three feature maps P3_out, P4_out, and P5_out
with different scales, and then the ASFF module is added for the second fusing to generate the final
fused feature maps. (4) Aiming at the imbalance problem between positive and negative samples, the
loss function is replaced with Focal Loss. The details of the improvements of the YOLOx-s network
are shown in Fig. 1, and the improvements will be introduced in detail in the following subsections.

Figure 1: Multi-equipment detection network for distribution lines based on improved YOLOx-s

2.2 Receptive Field Block (RFB-s) Module

Because small-sized targets occupy fewer pixels in the image, their limited detail information is
easy to lose and difficult to extract with the down-sampling operation in the backbone network,
resulting in low detection accuracy of small-sized targets. The RFB-s module [25] uses the idea of
dilated convolution and refers to the Inception network structure [26]. Based on the structure of human
visual Receptive Fields (RFs), the RFB-s module uses dilated convolution kernels with multiple sizes
and multiple eccentricities to construct a multi-branch structure. Among them, the high eccentricity
branch can extend the context semantic information for the low eccentricity branch, and the low
eccentricity branch can compensate for the loss of detail information caused by the convolution kernel
diffusion of the high eccentricity branch.

As shown in Fig. 2, this paper uses the RFB-s module to expand the network receptive field. The
RFB-s module uses convolution layers with different-sized kernels to extract features of different-
sized targets in the images in parallel. RFB-s module is composed of four branches. The first branch
consists of 1 × 1 convolution and 3 × 3 dilated convolution with a dilation rate of 1. The second
branch is divided into two branches, which consist of 1 × 1 convolution, 1 × 3 convolution, 3 × 3
dilated convolution with a dilation rate of 3 and 1 × 1 convolution, 3 × 1 convolution, 3 × 3 dilated
convolution with a dilation rate of 3, respectively. The third branch consists of 1 × 1 convolution, 3 ×
3 convolution, and 3 × 3 dilated convolution with a dilation rate of 5. The fourth branch is a shortcut
connection that maps the input directly to the output. For the input feature map of the previous layer,
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the first three branches are firstly processed with convolution kernels of different sizes, and then the
dilated convolution kernels with different eccentricities are used to obtain the feature maps of different
receptive fields, and finally, the output feature maps of the three branches are concatenated and fused
by 1 × 1 convolution to obtain an enhanced feature map. This enhanced feature map is added element-
by-element with the output of the last branch, and then the Rectified Linear Unit (ReLU) activation
function is used to obtain the final output of the RFB-s module.

Figure 2: Receptive Field Block (RFB-s) module structure

2.3 Coordinate Attention (CA) Module

In the CA module [27], the location information is embedded into the channel features, so that
the network can better obtain the spatial direction information of multiple type targets and make the
detection and location of multiple types of equipment more accurate. As shown in Fig. 3, the CA
module adopts a residual structure. The input feature map x is directly mapped to obtain the output
feature map x. Then the feature map x is multiplied with the attention weights gh and gw generated by
the CA module to obtain the output feature map y. The CA module is mainly composed of two steps:
coordinate information embedding and coordinate attention generation.

Coordinate information embedding: All channels of the input feature map (C × H × W) are
averaged pooling along the horizontal and vertical directions, to obtain feature maps Zh and Zw with
spatial location information of sizes C × H × 1 and C × 1 × W, respectively.

Coordinate attention generation: The generated feature maps Zh and Zw are concatenated along
the spatial dimension to obtain a feature map Z with sizes C × 1 × (H + W). Then 1 × 1 convolution
is used to compress the channel dimension from C to C/r with the compression rate of r, to obtain
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a feature map with sizes C/r × 1 × (H + W). BN layer and ReLU activation function are used for
nonlinear activation to obtain an intermediate feature map f with sizes C/r × 1 × (H + W). As shown
in Eq. (1).

f = BR
(
F1×1

(
Zh ⊕ Zw

))
(1)

where ⊕ is the concatenation operation of the features, F1×1 (·) is the convolution with a kernel size of
1 × 1, and BR (·) is a collection of BN layer and activation function ReLU.

Figure 3: Coordinate Attention (CA) module structure

The obtained intermediate feature map f is split into the horizontal attention tensor f h and the
vertical attention tensor f w along the spatial dimension. Then the channel dimension of the two spatial
tensors f h and f w is increased from C/r to C through two groups of convolutions with a kernel size of
1 × 1, to obtain the feature maps ph and pw with sizes C × H × 1 and C × 1 × W, respectively. The
Sigmoid activation function is used for nonlinear activation to obtain the feature maps gh and gw with
sizes C × H × 1 and C × 1 × W, respectively. As shown in Eqs. (2) and (3).

gh = ∂
(
FH

(
f h

))
(2)

gw = ∂ (FW ( f w)) (3)

where ∂ (·) is the Sigmoid activation function, FH (·) and FW (·) are both 1 × 1 convolution.

Finally, the output feature maps gh and gw are multiplied with the feature map x to generate a new
feature map y with coordinate attention, as shown in Eq. (4).

y = x × gh × gw (4)
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2.4 Improved Path Aggregation Network (PANet) Structure

The necks of the YOLO series networks use the PANet structure, which performs feature fusion
of three feature maps of different scales. In feature fusion, the feature maps are directly converted to
the same scale by up-down sampling and then concatenated, which cannot make full use of features
of different scales. The ASFF module [28] enables the network to learn how to filter features of other
levels in space, and only keeps the critical feature information for fusion, so that the shallow and deep
features can be fully fused, reducing the loss of target feature information caused by multiple down-
sampling.

In this paper, the ASFF module is added to the PANet structure, as shown in Fig. 4. After the
fusion of YOLOx-s neck features, the feature maps Level 1, Level 2, and Level 3 of three different
scales are obtained, in Fig. 1, they are the outputs of CSP2_1 with the inputs of P3_out, P4_out, and
P5_out. The three feature maps Level 1, Level 2, and Level 3 are ordered by scale from small to large,
the larger the scale, the smaller the number of channels. We add ASFF-1, ASFF-2, and ASFF-3 to
fuse the three feature maps of different scales. ASFF-3 is taken as an example. The channel number
of Level 1 is adjusted to be consistent with Level 3 by 1 × 1 convolution, and the scale of Level 1 is
adjusted to the same scale as Level 3 with interpolation, then X 1→3 is obtained. The channel number
of Level 2 is adjusted to be consistent with Level 3 by 1 × 1 convolution, and the scale of Level 2
is adjusted to be consistent with Level 3 with interpolation, then X 2→3 is obtained. X 3→3 represents
the original feature map Level 3. The channel numbers of three feature maps X 1→3, X 2→3, and X 3→3

are compressed by 1 × 1 convolution and then concatenated along the channel direction. The above
feature maps are processed by the Softmax activation function to obtain the fused weights α3

ij, β3
ij , and

γ 3
ij . Finally, by multiplying the feature maps X 1→3, X 2→3, and X 3→3 with the weights α3

ij, β3
ij , and γ 3

ij , and
adding them, the new fusion feature map ASFF-3 can be obtained. Similar operations can be used to
obtain ASFF-1 and ASFF-2. The defining formula of the ASFF fusion process is shown in Eq. (5).

Figure 4: Adaptively Spatial Feature Fusion (ASFF) module structure
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yl
ij = αl

ijx
1→l
ij + β l

ijx
2→l
ij + γ l

ijx
3→l
ij (5)

where yl
ij represents the fused feature map, ij represents the feature vector of the feature map, and l

represents the layer of the feature map. αl
ij, β l

ij, and γ l
ij represent the fusion weights learned from the

feature map at layer l. αl
ij + β l

ij + γ l
ij = 1 is processed by the softmax function and αl

ij, β
l
ij, γ

l
ij ∈ [0, 1].

The fusion weights can be updated by standard back-propagation, which makes the multi-scale feature
fusion of the network more adequate, to improve the model detection accuracy.

2.5 Improved Loss Function

The target area occupies a small proportion of the whole picture, and the positive and negative
samples are unbalanced, which makes the network training process difficult to converge and makes
the network performance unstable. The parameters α and λ of the Focal Loss function [29] can
control the weights between positive and negative samples and reduce the classification loss of the
network, thereby weakening the influence of the imbalance between the positive and negative samples.
Therefore, this paper introduces the loss function Focal Loss to replace the Binary Cross Entropy
(BCE) Loss. The Focal Loss function is shown in Eq. (6).

FL (ρt) =
{−αt (1 − ρt)

λ ln (ρt) , y = 1
−ρt

λ ln (1 − ρt) , y = 0
(6)

where αt ∈ [0, 1] is the proportionality coefficient between the positive and negative samples, λ is
the weight coefficient of sample classification, and ρt represents the probability that the anchor t is
predicted to be the true label. In this paper, the parameters αt is set to 0.25 and λ is set to 2.

3 Experimental Results and Analysis
3.1 Experimental Dataset

In this paper, we use the private dataset of distribution lines from the State Grid Jiangxi Electric
Power Research Institute of China. The dataset contains about 8,000 high-definition images collected
by the UAV during the autonomous inspection of the distribution lines. The image size is mainly 2,736
× 1,824 px. The types of power equipment involved in the dataset, such as Transformers, Isolators,
Drop Fuses, and Lightning Arrestors, are labeled. There are about 1,500 pieces of each type. Among
them, the size of the Transformers is large, and the proportion of the size in the original image is about
one-tenth. The size of the three types of Isolators, Drop Fuses, and Lightning Arrestors is small, and
the proportion of the size in the original image is less than about one percent. In the experiment, the
ratio of the training set and test set is 8:2. As shown in Fig. 5, typical power equipment samples in the
dataset are shown. Due to the change of angle, scene, and distance of the images taken by the UAV,
each type of power equipment presents different shapes.

3.2 Experimental Environment Setting

In this paper, the deep learning PyTorch framework is used. The experimental platform is
Windows10 operating system, the CPU is Intel(R)Core(TM) i5-10400F @2.90 GHz, the memory
capacity is 32 GB, and the GPU is a single NVIDIA GeForce GTX 1080Ti.

3.3 Training Parameter Setting

During the experiment, the network training batch is 300. Limited by the performance of the GPU,
the two-stage mode training is used. In the first stage, the network is trained for 150 batches on the
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premise of freezing the backbone network. During this stage, because the backbone network is frozen,
the feature extraction network is not changed, and only the network is fine-tuned, which occupies
less GPU memory. In the second stage, the backbone network is unfrozen, and the network is trained
again for 150 batches. During this stage, the feature extraction network changes, which occupies a
large amount of GPU memory, and all the parameters of the network are changed. Network freezing
training can improve training efficiency and protect the weight of the network.

In this paper, the experimental training parameters are set as follows: the input size of the training
images is 640 × 640, the initial learning rate is 0.0001, the learning rate is adjusted by Cosine Annealing,
and the Batch Size is 4.

Transformers Isolators

Drop Fuses Lightning Arrestors

Figure 5: Power distribution line dataset

3.4 Experimental Results and Analysis

3.4.1 Evaluation Indicators

In this paper, Precision (P), Recall (R), mean Average Precision (mAP), and F1-Score (F1) are used
as evaluation indicators to verify the effectiveness of the proposed method. Among them, Precision is
the accuracy rate, and Recall is the recall rate. F1 is defined as the harmonic average of P and R. AP
is obtained by integrating the P − R curve, which is plotted with R as the horizontal axis and P as the
vertical axis. The mAP is the average of the sum of AP for each category. The calculating formulas of
each evaluation indicator are shown in Eqs. (7) to (11).

P = TP
TP + FP

× 100% (7)

R = TP
TP + FN

× 100% (8)

AP =
∫ 1

0

P (R) dR (9)

mAP = 1
n

∑n

i=1
APi (10)

F1 = 2 × P × R/(P + R) (11)
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where TP represents the number of positive samples predicted correctly, FP represents the number
of positive samples predicted incorrectly, FN represents the number of negative samples predicted
wrongly, n represents the number of target categories, P (R) is the expression of P − R curve function,
and APi represents the average accuracy of the target class i.

3.4.2 Comparison Experiments

To better evaluate the effectiveness of the proposed method on multi-equipment detection of
distribution lines, the classical target detection methods are trained and tested on the same dataset
in the experimental stage.

Table 1 shows the performance comparison between the proposed method and other classical
target detection methods. In terms of mAP, F1, and R, the proposed method is better than Faster
RCNN [19], SSD [20], YOLOv5s [21], and YOLOx-s on the dataset of distribution lines. The mAP of
the proposed method can reach 93.64%, F1 can reach 0.902, and R can reach 88.25%. The proposed
method reduces the missed detection and false detection of power equipment in distribution lines.

Table 1: Multi-equipment testing performance comparison

Methods mAP (%) F1-Score Recall (%)

Faster RCNN 78.57 0.758 75.49
SSD 82.43 0.786 77.78
YOLOv5s 89.02 0.861 86.94
YOLOx-s 90.37 0.887 86.44
The proposed method 93.64 0.902 88.25

Table 1 shows that the average performance indicator of YOLOx-s is better than the other classical
methods, so the proposed method is only compared with YOLOx-s in Tables 2 and 3.

Table 2: Performance indicators of sub-equipment types between the proposed method and YOLOx-s

Methods mAP (%) F1-Score Recall (%)

YOLOx-s The proposed
method

YOLOx-s The proposed
method

YOLOx-s The proposed
method

Transformers 95.17 98.47 0.937 0.951 92.42 94.03
Drop fuses 90.80 94.88 0.903 0.910 87.12 89.37
Isolators 91.63 94.71 0.892 0.916 88.10 89.42
Lightning
arrestors

83.87 86.53 0.819 0.832 78.12 80.17

Table 2 shows the performance indicators between the proposed method and YOLOx-s on multi-
type equipment image detection. The mAP of the Transformers is increased by 3.3%, the F1 is
increased by 0.014, and the R is increased by 1.61%. The mAP of the Drop Fuses is increased by
4.08%, the F1 is increased by 0.007, and the R is increased by 2.25%. The mAP of the Isolators is
increased by 3.08%, the F1 is increased by 0.024, and the R is increased by 1.32%. The mAP of the
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Lightning Arrestors is increased by 2.66%, the F1 is increased by 0.013, and the R is increased by
2.05%. The mAP, R, and F1 of the four types of power equipment are increased. Among them, the
R of small-sized equipment Drop Fuses and Lightning Arrestors have increased significantly, both
increasing by more than 2%.

Table 3: mAP comparison of adding different modules to YOLOx-s

Methods Transformers Drop fuses Isolators Lightning arrestors

YOLOx-s 95.17 90.80 91.63 83.87
RFB-s-YOLOx-s 96.21 91.88 93.03 83.85
CA-YOLOx-s 97.10 92.87 92.50 84.79
ASFF-YOLOx-s 96.79 92.26 92.50 84.20
Focal-YOLOx-s 93.68 91.63 92.79 85.90
RFB-s-ASFF-YOLOx-s 96.30 93.08 93.05 84.32
CA-ASFF-YOLOx-s 98.44 94.43 93.72 85.89
ASFF-RFB-s-CA-YOLOx-s 98.87 94.60 93.90 85.03
The proposed method 98.47 94.88 94.71 86.53

Table 2 shows that the performance indicators of the proposed method are significantly better
than that of the baseline network YOLOx-s for multi-type equipment detection in distribution lines.
There, the effect of adding different modules to YOLOx-s on mAP is discussed next.

As shown in Table 3, after adding the RFB-s module to the backbone network, the mAP of the
four types of equipment targets is increased, and the most obvious of these is a 1.4% increase in
Isolators, which verifies that the added RFB-s module can effectively expand the network receptive
field and improve the problem of shallow feature loss caused by the feature extraction process of
the backbone network. After adding three CA modules, the mAP of the four types of equipment
is increased, and the most obvious of these is a 2.07% increase in Drop Fuses, which verifies that
the added CA module can make the network better obtain spatial direction information, thereby
improving the accuracy of object detection. After adding the ASFF module, the mAP of the four types
of equipment is increased, and the most obvious of these is a 1.62% increase in Transformers, which
verifies that the added ASFF module can fully fuse the multi-scale feature maps. After replacing the
Focal Loss function, the mAP of the large-sized equipment Transformers is not increased, but the mAP
of the small-sized equipment Isotators, Lightning Arrestors, and Drop Fuses are increased, and the
most obvious of these is a 2.03% increase in Lightning Arrestors, which verifies that the replacing Focal
Loss function can alleviate the imbalance problem between positive and negative samples. By adding
the above modules into the baseline network YOLOx-s, the multi-equipment detection accuracy of
UAV automatic inspection in distribution lines can be effectively improved.

3.4.3 Visual Analysis

This paper selects typical scenes with complex backgrounds, multi-type equipment, and occluded
targets for testing and verification. Key equipment types in the scenes include Transformers, Isolators,
Drop Fuses, and Lightning Arrestors.

As shown in Fig. 6, the images contain multi-type equipment with a different number of targets,
and partial equipment is occluded. Among them, Faster RCNN has a poor detection effect, and there is
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false detection of the Transformers and missed detection of the Lightning Arrestors. SSD has missed
detection, and the occluded Drop Fuses are not detected. YOLOv5s and YOLOx-s have no missed
detection and false detection, and the occluded Drop Fuses can also be detected. And the confidence
of the detection results of YOLOx-s is relatively higher than that of YOLOv5s. The proposed method
has no missed detection and false detection, and the detection confidence is overall high in the five
groups of comparative experiments. In general, the detection effect of the proposed method is the best.

Original image Faster RCNN SSD

YOLOv5s YOLOx-s The Proposed Method

Figure 6: Side-shot equipment detection results

As shown in Fig. 7, the long-distance shooting targets are disturbed by background information
and occluded by obstacles, resulting in less obvious target features. The small-sized targets occupy a
small number of pixels in the image, which increases the difficulty of detection. Among them, for Faster
RCNN, only the large-sized equipment Transformers can fully be detected in the images taken from
a long distance, while part of small-sized equipment such as Drop Fuses, Lightning Arrestors, and
Isolators cannot be detected, and the detection confidence is low, so the detection effect is not good.
SSD has missed detection, and all four types of equipment have missed detection. So the detection
effect is poor. YOLOv5s has false detection of Drop Fuses, Isolators, and missed detection of two rear
Isolators. The detection effect of YOLOx-s is good. The equipment that is not detected by the previous
methods is detected, and there is no missed detection or false detection. The proposed method has no
missed detection and false detection, and the detection confidence is overall high in the five groups of
comparative experiments. In general, the detection effect of the proposed method is the best.

3.4.4 Discussion

(1) Compared with other target detection methods, YOLOx-s has higher detection accuracy and
detection efficiency. According to the results in Table 1, YOLOx-s is superior to other target detection
methods. Therefore, the proposed method uses YOLOx-s as the baseline network. According to the
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results in Tables 2 and 3, the proposed method has a significant improvement in the four types of power
equipment. However, due to the addition of the RFB-s module, the CA module, and other modules,
the Parameters, FLOPs, and Latency of the proposed method are increased by about 40%.

(2) In Figs. 6 and 7, the detection accuracy of the proposed method is better than that of other
target detection methods on the images with different shooting angles and distances, which reflects the
robustness of the proposed method. However, the proposed method still has some limitations, such as
the confidence of the small-sized targets is not very high.

(3) Although the proposed method needs to be further optimized, compared with YOLOx-s, the
mAP of the proposed method on the power equipment detection of distribution lines is increased
to 93.64%, an increase of 3.27%. In summary, the proposed multi-equipment detection method for
distribution lines based on our improved YOLOx-s can better realize the multi-equipment detection
of UAV autonomous inspection in distribution lines, and the method has good accuracy and stability.

Original image Faster RCNN SSD

YOLOv5s YOLOx-s The Proposed Method

Figure 7: Long-distance shooting equipment detection results

4 Conclusion

In the images of UAV autonomous inspection in distribution lines, due to the complex back-
grounds, various shapes, and different sizes of the power equipment, most target detection methods are
prone to miss detection and false detection. This paper proposes a multi-equipment detection method
for UAV autonomous inspection in distribution lines based on improved YOLOx-s, which uses the
advantages of the RFB-s module, the CA module, the ASFF module, and the Focal Loss function to
improve the detection accuracy. Through the analysis of experimental results, the proposed method
has the advantages of higher detection accuracy, better recall rate, fewer missed detections, and fewer
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false detections, which can provide theoretical reference value and practical application prospects for
the multi-equipment detection of distribution lines based on UAV automatic inspection.

Although the proposed method has a good effect on the power equipment detection of distribution
lines, further research is needed. The used dataset has fewer types of power equipment. In the future,
our method will detect more types of power equipment more accurately and faster. In the process of
UAV image shooting, due to the influence of environment, shooting angle, and other factors, targets
will overlap and polymorphic, resulting in missed detection and false detection of power equipment,
which still needs further research.
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