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ABSTRACT

Automatic speech recognition (ASR) systems have emerged as indispensable tools across a wide spectrum of
applications, ranging from transcription services to voice-activated assistants. To enhance the performance of
these systems, it is important to deploy efficient models capable of adapting to diverse deployment conditions.
In recent years, on-demand pruning methods have obtained significant attention within the ASR domain due
to their adaptability in various deployment scenarios. However, these methods often confront substantial trade-
offs, particularly in terms of unstable accuracy when reducing the model size. To address challenges, this study
introduces two crucial empirical findings. Firstly, it proposes the incorporation of an online distillation mechanism
during on-demand pruning training, which holds the promise of maintaining more consistent accuracy levels.
Secondly, it proposes the utilization of the Mogrifier long short-term memory (LSTM) language model (LM),
an advanced iteration of the conventional LSTM LM, as an effective alternative for pruning targets within the
ASR framework. Through rigorous experimentation on the ASR system, employing the Mogrifier LSTM LM
and training it using the suggested joint on-demand pruning and online distillation method, this study provides
compelling evidence. The results exhibit that the proposed methods significantly outperform a benchmark model
trained solely with on-demand pruning methods. Impressively, the proposed strategic configuration successfully
reduces the parameter count by approximately 39%, all the while minimizing trade-offs.
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1 Introduction
1.1 Advancements in ASR

Recent advancements in end-to-end automatic speech recognition (ASR), which transforms
spoken language into written text, have led to the development of cutting-edge models that are suitable
for industrial applications [1–5].
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Acoustic models (AMs) play a crucial role in ASR systems, translating acoustic signals into
phonetic units. Their advancements have been foundational in constructing more robust end-to-end
ASR systems. Main techniques in this field include connectionist temporal classification (CTC) [6], a
training principle tailored for sequence-to-sequence tasks. It does not require a precise match between
the input and output, which is extremely valuable in ASR, where it can often be challenging to establish
a clear alignment between audio segments and their corresponding text representations. The recurrent
neural network transducer [7] offers an improved approach to predicting output sequences of various
lengths, capitalizing on the strengths of recurrent neural networks (RNNs). Another method is the
attention-based encoder-decoder [8,9], where an encoder digests the input sequence, and a decoder
produces the output. An attention mechanism pinpoints parts of the input sequence most pertinent to
each output step.

Furthermore, there have been advancements in decoding methods for end-to-end ASR models,
which are responsible for generating the final transcription based on model predictions. These methods
vary from simple greedy decoding, where the model selects the most likely word or phoneme at
each step, to more complex approaches like frame-synchronous beam search [10–12]. The latter
simultaneously considers multiple potential transcriptions to determine the most probable one. One
noteworthy development is the incorporation of shallow fusion with autoregressive neural language
models (LMs). In this approach, the ASR model’s predictions are combined with a separate LM to
refine the transcription. The use of beam search in this fusion process has proven to be crucial in
enhancing ASR performance [1,4,5], as depicted in Fig. 1.

Figure 1: Overview of the end-to-end automatic speech recognition system in this study

Fig. 1 provides a detailed illustration of the end-to-end ASR system used in this study. This
system incorporates the shallow fusion method, combining the AMs and LMs, and employs the beam
search method for decoding. One of the central objectives of this system is its flexibility, making it
compatible with a wide range of devices, from powerful computers to less resource-intensive gadgets.
This adaptable approach is designed to address the challenges arising from varying computational
capabilities and device specifications, making it an attractive solution for a multitude of real-world
applications.

In the domain of LMs, RNNs, such as long short-term memory (LSTM) [13–15], have played a
crucial role in enhancing the learning of long-term dependencies and mitigating challenges related to
vanishing or exploding gradients. Nevertheless, Transformers [16] have taken these strengths further
by leveraging self-attention mechanisms to facilitate inter-word interactions, thereby enabling more
intricate dependencies, and enhancing contextual understanding. However, conventional Transform-
ers have grappled with the problem of context fragmentation. To tackle this issue, Transformer-XL
[17] not only resolves the context fragmentation problem but also captures longer-range dependencies



CMC, 2023, vol.77, no.3 2835

through a recurrent mechanism and a unique positional encoding scheme, resulting in substantial
performance enhancements.

1.2 Challenges in ASR Deployment

Notwithstanding these remarkable strides, the development and effective deployment of ASR
systems for resource-constrained environments, such as mobile devices, persist as formidable chal-
lenges [18–20]. ASR systems often operate in scenarios where high-demand computational resources
may not be readily accessible, compelling the utilization of low-complexity models. Additionally, there
exists a compelling need for these systems to be adaptable across a spectrum of devices concurrently.
This necessity underscores the requirement for a transferable ASR model capable of deployment
across a spectrum ranging from high-end devices to entry-level ones, each characterized by distinct
specifications and varying maximum available model sizes. While, in theory, it might be conceivable to
train a distinct model for each device under the assumption of limitless resources. However, such an
approach would ultimately be highly inefficient.

Several prior investigations have delved into the realm of efficient deployments where a solitary
model operates across diverse conditions. One widely adopted approach to address this challenge
is the use of slimmable networks [21–23], along with on-demand pruning [24–27]. These methods
are part of the broader spectrum of pruning strategies [28–32]. Specialized training methods, such
as the “random” [24] or “sandwich rule” [22], enable on-demand pruning to be trained in a single
pass. Subsequently, the trained model can be dynamically applied during inference, streamlining
the deployment of models with varying sizes based on a single adaptable base model. Despite its
adaptability and efficiency, inherent challenges persist, including a trade-off between the number of
model parameters and corresponding performance [21–23]. Consequently, when reducing the model
parameters, ensuring consistent performance becomes a non-trivial task.

To further enhance the adaptability of ASR systems in resource-limited environments, LSTM-
based models have demonstrated promise due to their recurrent architecture [33], enabling effi-
cient processing of variable-length sequences with fewer parameters and reduced computational
demands compared to Transformers. Notably, the Mogrifier LSTM [34], an advanced iteration of
the conventional LSTM, augments the model’s expressive capabilities without introducing substantial
complexity. Its performance has exhibited great potential, frequently surpassing that of vanilla LSTMs
and Transformer-XLs, all while preserving a comparable computational complexity [33,34].

1.3 Contributions

This study proposes the incorporation of an online distillation mechanism during the on-demand
pruning training phase. This is devised to ensure the stability of model accuracy, primarily by minimiz-
ing the disparity between the pruned model’s predictions and the original model’s output probabilities,
consequently yielding more robust results. Additionally, this study introduces the Mogrifier LSTM
LM as the target for pruning within the ASR framework. Given the characteristics of the Mogrifier
LSTM, it emerges as an ideal candidate for an on-demand pruning strategy tailored for deployment
in resource-constrained environments.

To substantiate the efficacy of the proposed methods, this study conducts a series of experiments
on the ASR system employing the Mogrifier LSTM LM, which is trained using the suggested joint
on-demand pruning and online distillation approach. The experimental outcomes, as observed on
the LibriSpeech test-other subset, clearly demonstrate that our proposed methods surpass a baseline
model trained solely through on-demand pruning techniques. Moreover, our research verifies that the
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proposed configuration can reduce the model parameters by approximately 39%. This reduction is
accomplished with minimal trade-offs, underscoring the potential efficiency of our approach in terms
of computational resources, all the while maintaining the model’s performance at a satisfactory level.

2 Related Works

In this section, this study delves into prior research studies that bear relevance to our proposed
approach of joint on-demand pruning and online distillation. Section 2.1 offers an overview of the
evolution of LMs in the context of ASR. Sections 2.2 and 2.3 expound upon the various pruning
strategies and introduce the underlying distillation mechanisms, respectively. Finally, in Section 2.4,
we scrutinize previous works that have sought to integrate these two methods.

2.1 LMs in End-to-End ASR

LMs have been employed in tandem with AMs within end-to-end ASR systems, with the
overarching goal of enhancing transcription accuracy. LMs play a crucial role in aiding ASR systems
in generating the most likely linguistic hypotheses for sentences. In practical application, LMs are
constructed as probabilistic models, which may encompass n-gram models or neural network LMs.
Various types of LMs can be seamlessly integrated into end-to-end ASR configurations. The most
basic form of integration is commonly referred to as LM shallow fusion.

Conventional n-gram LMs operate under the Markov assumption but face challenges, including
difficulties in recognizing unfamiliar n-grams and limitations associated with small n values [35]. To
overcome these issues, deep neural networks (DNNs) are introduced, utilizing complex vector repre-
sentations to represent words [36,37]. However, as the length of sequences increased, DNNs exhibited
constraints. This led to the emergence of RNNs, capable of handling longer sequences [38]. The
bidirectional variant of RNNs, which considers both preceding and succeeding contexts, demonstrated
superior performance, albeit encountering issues such as gradient vanishing or explosion [39–41].
The introduction of LSTM cells addressed these gradient problems [13–15,42]. While LSTM models
outperformed traditional RNNs, they did require lengthier training times [43].

The introduction of attention mechanisms marked developments in the field, leading to the emer-
gence of the Transformer model. This model incorporates positional encoding, further establishing
its importance [16,44–46]. Within the family of Transformer-based models, BERT stands out for its
excellence in natural language processing, thanks to its bidirectional encoding. On the other hand,
GPT-2, known for its multi-layer decoding, excels in language modeling tasks [47,48]. Transformer-
XL has its unique advantages, particularly in specific applications, due to its ability to retain past
states [17].

2.2 Pruning Strategies

2.2.1 Conventional Pruning

Pruning strategies play a crucial role in the realm of neural network optimization, offering a
suite of techniques aimed at removing redundant connections through iterative fine-tuning processes
[28–32]. These refined models effectively reduce the number of parameters while preserving the
accuracy of the original model, making them indispensable in resource-constrained scenarios.

Han et al. [28] introduced a method to tackle the demanding computational and memory
requirements frequently associated with neural networks. Their achievement lies in the identification
and subsequent pruning of redundant network connections. This approach results in a significant
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reduction in parameters while upholding the model’s accuracy, effectively streamlining neural network
architectures, and mitigating the resource-intensive nature of deep learning.

Wu et al. [29] contributed to this field by introducing BlockDrop, an ingenious strategy charac-
terized by dynamic layer selection during inference. This approach effectively reduces computational
overhead while concurrently preserving high accuracy levels. The substantial acceleration of inference
up to 36% attained through their approach underscores its importance in the context of neural network
optimization.

Liu et al. [30] challenged traditional notions surrounding network pruning. Their proposition
shifts the focus from preserving specific important weights to emphasizing the significance of the
pruned architecture itself in achieving an efficient final model. This fresh perspective redefines the
approach to network pruning, illuminating alternative avenues for attaining computational efficiency.

Collectively, these previous studies underscore the dynamic landscape of pruning strategies in
neural network optimization, providing solutions to the challenges posed by burgeoning computa-
tional demands across diverse environments. Nonetheless, the adoption of these approaches in specific
settings necessitates thoughtful consideration of associated expenses, particularly in the context of the
expanding array of devices and applications.

2.2.2 On-Demand Pruning

Conversely, on-demand pruning can be dynamically applied during inference, obviating the
necessity for further fine-tuning. Through the utilization of on-demand pruning, the creation of
large yet lightweight models concurrently become feasible. Furthermore, it offers versatile deployment
possibilities, adaptable to diverse environments.

Several training methods have been proposed to effectively implement on-demand pruning.
One such approach is commonly referred to as “random” [24–27], which targets specific layers or
modules within a single neural network for pruning. These targets are selected randomly during the
training phase. For instance, Huang et al. [24] introduced stochastic depth to train deep convolutional
networks, involving the random omission of layers during training. This enables the training of
shorter networks while using deeper networks during testing. Fan et al. [25] introduced LayerDrop, a
form of structured dropout, to regulate over-parameterized transformer networks. It allows efficient
pruning during inference by selecting sub-networks from a larger network without requiring additional
fine-tuning. Lee et al. [26] presented a training and pruning method for ASR models that employ
intermediate CTC and stochastic depth to reduce model depth at runtime without the need for
extra fine-tuning. Vyas et al. [27] proposed stochastic compression for compute-efficient Wav2vec 2.0
models, which incorporates a variable squeeze factor and query and key-value pooling mechanisms
for compression. The stochastically pre-trained model can be fine-tuned for specific configurations,
resulting in substantial computational savings.

While random sampling is relatively simple to implement, its intrinsic randomness can be
challenging to control, and it does not consistently guarantee accuracy compared to the non-pruned
model. Another method known as the “sandwich rule” [21–23] provides an alternative approach.
Yu et al. [21] devised a technique for training a single neural network at various widths, which they
termed Slimmable neural networks. This approach dynamically adjusts the network width during
runtime, striking a balance between efficiency and accuracy. Building upon the concept of the
Slimmable network, they introduce universally Slimmable networks [22] based on the sandwich rule.
This allows these networks to operate at any chosen width. The sandwich rule is devised to train
sub-networks with varying configurations within a single neural network, and the losses from these
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sub-networks are aggregated and back-propagated simultaneously. This method proves particularly
effective in optimizing neural networks when working within defined lower and upper bounds.

Moreover, Li et al. [23] introduced the dynamic Slimmable network, a dynamic network slimming
technique designed to enhance hardware efficiency. This network shows considerable performance
improvements over other model compression techniques, achieving reduced computation and real-
world acceleration, while only minimally impacting accuracy in image classification.

2.3 Distillation Mechanisms

2.3.1 Teacher-Student Distillation

Distillation mechanisms have found extensive application in enhancing the performance and
efficiency of neural networks [49–52]. In the conventional framework, a larger “teacher” network
imparts its structured knowledge to a smaller “student” network, enabling the student network to
leverage this guidance and achieve better performance compared to training from scratch.

In a more specific context, Hinton et al. [49] introduced an approach to consolidate the knowledge
from a variety of models into a single model, greatly streamlining the deployment process. They
introduce a type of ensemble consisting of one or more comprehensive models alongside several
specialist models designed to distinguish fine-grained classes, which are often challenging for the full
models to differentiate.

Sun et al. [50] presented a patient knowledge distillation approach that efficiently compresses a
large-scale teacher model into a more compact student model without compromising effectiveness.
The student model patiently learns from multiple layers of the teacher model, employing two strategies:
learning from the last few layers and learning from every few layers. This approach leads to improved
training efficiency and enhances performance across various natural language processing tasks by
leveraging the rich information present in the hidden layers of the teacher model.

In a related study, Jiao et al. [51] introduced a Transformer distillation approach explicitly tailored
for the knowledge distillation of Transformer-based models. They introduced a two-stage learning
framework for TinyBERT, where Transformer distillation is performed during both the pretraining
and task-specific learning phases. Nevertheless, these approaches necessitate a fixed network of pre-
trained teachers, which can be costly and restrict the flow of knowledge from the teacher network to
the student network in a one-way manner.

2.3.2 Online Distillation

Conversely, online distillation mechanisms streamline the training process by treating all networks
as student networks, allowing them to exchange knowledge within a single stage [53–55]. Lan et al. [53]
introduced an online distillation technique known as an on-the-fly native ensemble. This method
eliminates the need for a complex two-phase training procedure associated with offline distillation
methods. Instead, it simultaneously trains a single multi-branch network while dynamically construct-
ing a potent teacher model on the fly.

Furthermore, in research by Zhang et al. [54], a deep mutual learning strategy was proposed.
Instead of the traditional one-way knowledge transfer from a teacher to a student, this approach
promotes a collaborative learning environment where an ensemble of students teaches each other
throughout the training process. This eliminates the requirement for a powerful pre-trained teacher
network. Notably, this collaborative learning approach enhances the performance of various network
architectures and surpasses distillation methods reliant on a more capable yet static teacher.
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Expanding upon the principles of the preceding two approaches, Guo et al. [55] introduced
an effective online knowledge distillation method that leverages collaborative learning. In contrast
to traditional two-stage knowledge distillation methods that adhere to a unidirectional learning
paradigm, this method fosters a single-stage training environment where knowledge is shared among
students during collaborative training. Experimental results underscore the consistent improvement
in the performance of all student models across diverse datasets, and it proves effective in knowledge
transfer to multiple tasks, including object detection and semantic segmentation.

2.4 Integration of Pruning and Distillation Mechanisms

Pruning strategies and distillation mechanisms have traditionally been employed as separate
techniques, but contemporary research has shifted towards their integration. The objective is to
optimize the benefits of both methods, streamlining their combination to reduce computational
overhead and enhance overall efficiency [56]. Distillation has emerged as a valuable approach to
address the inherent loss of precision associated with pruning. However, it is essential to note that
applying distillation after the pruning process, rather than concurrently with pruning during training,
might potentially lead to suboptimal model performance [57].

The recent advancement in the field of ASR is the integration of both pruning and distillation
methods. Initially, various methods have been explored for applying pruning to ASR based on self-
supervised learning (SSL) [58–60]. Building on these foundational studies, Peng et al. [60] highlighted
the limitations of using knowledge distillation in SSL. A significant drawback they pointed out is
the necessity for manual design and maintaining a fixed architecture for the student model during
training. Such an approach is dependent on prior knowledge and might not always achieve optimal
performance. Addressing these challenges, they introduced task-agnostic compression methods for
voice SSL, drawing inspiration from task-specific structural pruning. By merging distillation and
pruning techniques, their methods showcased superiority over methods based solely on distillation
across multiple tasks.

The preceding studies indicate that an integrated approach involving pruning and distillation
reveals the complementary nature of these two strategies when training neural networks for diverse
tasks. This serves as a basis for extending the same concept to the online mechanism and LM task
domains addressed in this study.

3 Joint On-Demand Pruning and Online Distillation for ASR LM

As discussed in Section 2, on-demand pruning offers efficient deployment and adaptability to
various conditions, including diverse devices. However, it can encounter accuracy fluctuations when
employed to compress models into smaller sizes. In such cases, distillation mechanisms can serve as a
valuable complement. In Section 3, this study delves into the proposed joint on-demand pruning and
online distillation approach, outlining its application in an online fashion for ASR LMs. Furthermore,
this study analyzes and validates the efficacy of the Mogrifier LSTM LM as a potential target for
pruning within the ASR task.

In Section 3.1, this study introduces the Mogrifier LSTM as the selected LM for on-demand
pruning, and Section 3.2 details the baseline, delving into the utilization of the random and sandwich
rule as methods for on-demand pruning. Finally, in Section 3.3, this study describes the proposed
method that merges the sandwich rule with online distillation mechanisms.
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3.1 Target LM for On-Demand Pruning

3.1.1 LSTM

LSTM is a type of RNN architecture. RNNs are neural networks specifically designed to process
sequences, like time series data or natural language. The LSTM is introduced to address the limitations
of the basic RNN, primarily the problem of long-term dependencies where the RNN struggles to
remember information from earlier in the sequence. The LSTM introduces the concept of a cell state,
a kind of memory that flows through the network and can be added to, removed from, or read using
three distinct gates.

Specifically, for a given input vector sequence x1, . . . , xT ∈ R
m, a vanilla LSTM [16] processes input

vector xt sequentially to produce an output vector ht ∈ R
n and a cell state ct ∈ R

n. These two outputs
are then used to produce the next output ht+1 for the next input xt+1. The function of the LSTM layer
is denoted as:

ct, ht = LSTM(xt, ct−1, ht−1). (1)

The LSTM layer has three gates: forget (f), input (i), and output gates (o). The output of the gates
is used to produce ct and ht. The forget gate determines which portions of the cell state should be
discarded. The input gate integrates new information into the cell state. Subsequently, the output gate
ascertains the segments of the cell state to be read and emitted. The gates employ sigmoid activation
functions that yield values in the range of 0 to 1, facilitating their decision-making processes. The
operation proceeds as follows:

ft = σ
(
Wf · [ht−1, xt] + bf

)
, (2)

it = σ (Wi · [ht−1, xt] + bi), (3)

ot = σ (Wo · [ht−1, xt] + bo), (4)

ĉt = tanh (Wc · [ht−1, xt] + bc), (5)

ct = ft � ct−1 + it � ĉt, (6)

ht = ot � tanh (ct), (7)

where σ is the sigmoid non-linearity function, � is the element-wise product operation, and W∗ and
b∗ are the weight matrix and bias vector.

3.1.2 Mogrifier LSTM

With the advancement of deep learning, there have been endeavors to enhance the capabilities
of the conventional LSTM. One notable development in this regard is the Mogrifier LSTM [32]. This
variant introduces additional gates that are designed to iteratively refine the input to the LSTM. These
refinements aim to optimize the LSTM’s interaction with its inputs, ultimately improving its learning
effectiveness.

During each iteration within these gates, there is a selective update of either the input sequence
or the preceding hidden state, depending on the value of the other. This mechanism aligns with
the fundamental principles of LSTM’s gating mechanisms. The iterative rounds facilitate a nuanced
interplay between the input and the hidden state, thereby enhancing the model’s proficiency in
recognizing intricate patterns within the data.
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Subsequent studies on the Mogrifier LSTM [31,32,61] consistently demonstrate that various
Mogrifier variants outperform both the traditional LSTM and Transformer models in language
modeling tasks.

Specifically, in the Mogrifier LSTM, the input of the vanilla LSTM, xt−1, and ht−1 are replaced
with the output of a special layer, referred to as the “MogrifierGate”. Accordingly, Eq. (1) is changed
to:

xt,r, ht−1,r = MogrifierGate (xt, ht−1), (8)

ct, ht = LSTM
(
xt,r, ct−1, ht−1,r

)
. (9)

The structure of the MogrifierGate is based on a series of “rounds”, denoted as r where r is greater
than or equal to 1. For each round, a gate vector is obtained using either xt or ht−1. Then, the other
component (xt, if ht−1 is used to obtain the gate vector, and vice versa) is updated using its previous
value and the gate vector. Formally, for the i-th round, if i is odd:

xt,i = 2σ
(
WQ

i · ht−1,i−1

) � xt,i−2, (10)

and if i is even:

ht−1,i = 2σ
(
WR

i · xt,i−1

) � ht−1,i−2, (11)

where σ is a sigmoid non-linearity, � is the element-wise product, and W∗
i refers to the weight matrix

for the i-th round.

3.1.3 The Impact of Pruning Mogrifier Rounds

Furthermore, to explain the impact of pruning on the components of the Mogrifier LSTM, this
study analyzes their inference times and presents the results in Fig. 2. Specifically, this study compares
the inference time required for Eqs. (8) and (9), which differ in the number of rounds they involve.
This analysis reveals that for a Mogrifier LSTM layer with 8 rounds, calculating these rounds (as
per Eq. (8)) takes 2.8 α times longer than the computation of the vanilla LSTM (as per Eq. (9)),
where α represents the inference time of the latter. This suggests that when conducting a feed-forward
operation with a Mogrifier LSTM comprising eight rounds, it occupies 74% of the total inference
time. However, the inference time needed for Eq. (8) can be significantly reduced to 0.76 α when the
number of rounds is decreased to 1. This implies that effective pruning of rounds with minimal or no
performance degradation can reduce the necessary inference time by more than half (from α + 2.8α

to α + 0.76α).

3.2 Baseline: Sandwich Rule for On-Demand Pruning

Previously, this study discussed the benefits of pruning rounds within the Mogrifier LSTM in the
context of computational efficiency. In this section, this study establishes a baseline for our research.
The baseline approach entails the utilization of the sandwich rule for on-demand pruning, with a
specific focus on pruning Mogrifier rounds. This method initiates with a random pruning mechanism.

3.2.1 Random

The random strategy involves generating a random value s, where 1 ≤ s ≤ r, for each iteration,
and then using only the s-th MogrifierGate to feed-forward the input for that iteration. This strategy
is straightforward to implement and has proven effective for on-demand pruning in prior research
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[22–25]. Formally, the random strategy can be described as follows:

s ∼ Uniform (1, r), (12)

xb
t,s, hb

t−1,s = MogrifierGates

(
xb

t , hb
t−1

)
, (13)

cb
t , hb

t = LSTM
(
xb

t,s, cb
t−1, hb

t−1,s

)
. (14)

Here, MogrifierGates represents the sub-gate of MogrifierGate for the s-th round, and b represents
the mini-batch. It should be noted that s is shared among all timesteps (1 ≤ t ≤ T) and mini batches.
After training, this study evaluates the model using a fixed round.

Figure 2: An analysis on the inference time of the two components of a Mogrifier long short-term
memory (LSTM) layer using one CPU (Intel Xeon Gold 5120): MogrifierGate and LSTM layer

3.2.2 Sandwich Rule

Random selection has been reported in practice that the smallest sub-model (s = 1) and the largest
sub-model (s = r) tend to have reduced accuracy compared to the typical s round Mogrifier LSTM.
To address this limitation, the two sub-models are required to be trained more cautiously. Yu et al. [20]
proposed a sandwich rule that is employed in universally Slimmable networks, and this study adopts
it for the training of MogrifierGate pruning. The sandwich rule aims to mitigate the limitation on the
accuracy of the smallest and largest sub-models by additionally weighting them during training.

This study considers the use of multiple objective functions Ls, where Ls is the objective function
of the model using the s round Mogrifier sub-gate, MogrifierGates, obtained from the r round of
MogrifierGate. This study considers multiple values of Ls concurrently using the sandwich rule.
Formally, the loss of sandwich rule can be addressed as:

s1 = 1, (15)

s2 = r, (16)

s3, . . . , sk ∼ Uniform (2, r − 1), (17)

L : = 1
k

∑k

i=1
Lsi , (18)

where k is the hyperparameter of the sandwich rule, representing the number of losses per training
iteration (here, k ≥ 2) and L is used for training the model.
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One drawback of the sandwich rule is the increase in computational cost for each mini-batch, as
it requires separate computations for each Lsi . Nevertheless, through experimental observations, this
study notices that the sandwich rule significantly enhances the final accuracy of both the smallest and
largest models, surpassing the performance of the random method.

3.3 Proposed Method: Sandwich Rule with Online Distillation Mechanism

In this section, this study introduces an approach that combines on-demand pruning and an
online distillation mechanism customized for ASR LMs. Specifically, the proposed method builds
upon the foundational concept of the sandwich rule, which is explained in Section 3.2. However, this
study focuses on the fact that the utility of the sandwich rule may exhibit instability when the demand
for more compressed models becomes paramount. To confront this challenge, this study proposes the
integration of an online distillation mechanism in tandem with on-demand pruning during the training
phase. This distillation mechanism takes inspiration from a previous method, namely collaborative
learning-based online distillation, which is discussed in detail in Section 2.3. The primary advantage
of this approach resides in its capacity to consistently accrue additional information through the
ensemble of soft targets generated by all student networks throughout the training process [55].

The proposed method can be conceptualized as an extension of the sandwich rule, as illustrated in
Fig. 3. Assuming the existence of k sub-models predicated on the sandwich rule, we denote the logits
of the i-th sub-model as zi, while the ensemble logits generated from all sub-models are designated as
zensemble. This can be formally expressed as follows:

zensemble = 1
k

∑k

i=1
zi. (19)

Figure 3: The process of the proposed sandwich rule with an online distillation mechanism. For
different sub-models generated by the sandwich rule, respective knowledge distillation (KD) losses
are generated. These KD losses are joined with the respective cross-entropy losses

Subsequently, for each sub-model, a knowledge distillation (KD) loss is computed using the
Kullback-Leibler divergence (KLD) between the soft targets (p) and the soft predictions (q). The soft
targets are derived from zensemble, whereas the soft predictions are extracted from one of the sub-models.
Formally, this process is articulated as follows:

p = softmax
(zensemble

T

)
, (20)
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q = softmax
( zi

T

)
, (21)

LKD : = T 2KLD(p, q), (22)

where T represents the temperature parameter for KLD. The incorporation of a temperature param-
eter within the softmax function of the KD loss aids in the effective management of the probability
distribution. Additionally, to circumvent potential underflow issues, it is advisable to work with soft
predictions in the logarithmic space.

Finally, the KD loss is added to the cross-entropy (CE) loss, which is a product of the sandwich
rule, as delineated in Eq. (18). Formally, the KD loss, integrated with a trade-off weight denoted as λ,
is calculated as follows:

L : =
∑k

i=1
Li

CE + λLi
KD. (23)

This integrated approach holds the promise of enhancing the efficacy of on-demand pruning while
harnessing the power of distillation, presenting a compelling avenue for optimizing ASR LMs.

4 Experiments

In this section, this study assesses the effectiveness of the proposed joint pruning and online
distillation method for the Mogrifier LSTM LM using the LibriSpeech dataset [62], a commonly used
dataset in ASR tasks. Sections 4.1 and 4.2 outline the evaluation metrics and datasets employed in
this study, respectively. Sections 4.3 and 4.4 provide comprehensive details about the proposed model
specifications and the training process. Finally, Section 4.5 presents the experimental results.

4.1 Evaluation Metrics

This study employs two key evaluation metrics: perplexity (PPL) and word error rate (WER).
Perplexity is a widely utilized metric in the field of natural language processing, particularly for
assessing the performance of LMs. It quantifies how effectively the probability model predicts the
sample and is typically defined for discrete probability distributions. The formula for perplexity is as
follows:

PPL (W) = P (w1, w2, . . . , wn)
− 1

N , (24)

where W is the test set composed of N words. A lower perplexity score indicates better generalization
performance.

WER is a standard metric for assessing the performance of a speech recognition system. It
measures the minimum number of operations (substitutions (S), deletions (D), and insertions (I))
required to transform a system output into the reference output. The formula for WER is:

WER = S + D + I
N

, (25)

where N is the number of words in the reference. A lower WER signifies better system performance.

4.2 Dataset Setup

This study utilizes the LibriSpeech ASR and LM datasets to train the English ASR and LM
models, as outlined in Table 1. The LibriSpeech dataset is well-known in the ASR field and is publicly
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available. It comprises a wide range of audiobooks narrated by various native English speakers, earning
acclaim for its high quality and diverse content. In particular, the text-only LM dataset consists of
approximately 40 million normalized sentences sourced from 14,500 public domain books.

Table 1: Statistics for the LibriSpeech automatic speech recognition (ASR) and language model (LM)
datasets used in this study

Dataset name Hours Per-speaker min Total speakers Sentences

ASR train
: train-clean-100 100.6 25 251
: train-clean-360 363.6 25 921
: train-other-500 496.7 30 1166
ASR test
: dev-clean 5.4 8 40
: dev-other 5.3 10 33
: test-clean 5.4 8 40
: test-other 5.1 10 33
LM train 40,418,261
LM test 5,558

In this study, both the ASR and text-only LM datasets in this study are tokenized into 1,024
subwords using SentencePiece [63]. To evaluate the PPL of the LMs, approximately 6K sentences are
randomly selected from this dataset, while the rest are allocated for LM training. When assessing the
WER of the ASR, the study utilizes four partitions of the LibriSpeech dataset. Each subset comprises
approximately 3K utterances that exhibit diverse characteristics, including background noise and non-
native speakers. These subsets have been deliberately designed to evaluate ASR models in real-world,
less controlled scenarios, effectively simulating the challenging conditions commonly encountered in
casual conversational speech.

4.3 Model Setup

All LSTM-based LMs utilized in this study have 512 input and hidden dimensions, as specified
in Tables 2 and 3. Initially, eight distinct Mogrifier LSTM LMs are trained from the ground up, each
featuring a different number of rounds, spanning from one to eight. Furthermore, an eight-round
Mogrifier LSTM is trained using on-demand pruning, as described in Section 3.2. Additionally, the
proposed eight-round Mogrifier LSTMs are trained using a combined mechanism of the sandwich
rule and online distillation, as explained in Section 3.3.

4.4 Training Details

For the training of these LMs, a batch size of 32 is employed, with each training example
containing 512 tokens. All models are trained for a maximum of 300K iterations, and the checkpoint
with the lowest loss value is selected. It is confirmed that all models converge within 300K steps. The
Adam optimizer [64] is utilized, and the learning rate is gradually warmed up from 10−7 to a peak of
10−3. Subsequently, it is decayed using a cosine scheduler with a weight decay of 10−2. The temperature
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for the distillation loss is set at 2, and the trade-off weight between the KD loss and the CE loss is fixed
at 0.5. All models are trained using the Fairseq [65] framework with a single NVIDIA V100 GPU.

Table 2: Structure of vanilla long short-term memory (LSTM) used in this study

Layer name Input size Output size Use of bias

Embedding 1024 512 –
LSTM × 4 512 512 –
Full connected 512 1024 True

Table 3: Structure of Mogrifier long short-term memory (LSTM) used in this study

Layer name Input size Output size Use of bias

Embedding 1024 512 –
Mogrifier LSTM × 2 – – –
>Linear × 8 512 512 True
>LSTM 512 512 –
Full connected 512 1024 True

For the training of AMs, this study employs a 16-layer Conformer-M encoder [3] trained with
the CTC loss [6]. In all experiments, beam search decoding is utilized in combination with LMs. The
decoding algorithm follows a frame-synchronous approach [10], with the beam size set to 5, and the
LM weight is fixed at 0.4, a value determined to be optimal through preliminary experiments.

4.5 Experimental Results

This study conducts three distinct sets of experiments to evaluate the performance of the proposed
approach. In the first set, a comparison is made between the performance of the vanilla LSTM LM and
the Mogrifier LSTM LM in the ASR task. The second set of experiments demonstrates the efficiency
of the proposed joint on-demand pruning and online distillation method by comparing it to previous
on-demand pruning strategies that serve as a baseline. As the third experiment, an ablation study of
the proposed method is conducted.

4.5.1 Comparison of LSTM LMs

In the initial step, this study compares the performance of shallow fusion using the vanilla LSTM
LM and the Mogrifier LSTM LM. To ensure a fair comparison, both LSTM LMs have the same
model parameters. The vanilla LSTM consists of four layers, while the Mogrifier LSTM comprises
two layers with eight rounds each.

As elaborated in Section 3.1, the Mogrifier LSTM LM incorporates a distinct module called
rounds, which facilitates mutual gating between the current inputs and previous hidden states.
In this study, the rounds of the Mogrifier LSTM LM serve as targets for on-demand pruning.
Table 4 illustrates the effectiveness of pruning Mogrifier rounds and provides a comparative analysis
with the conventional method of pruning layers from a vanilla LSTM LM. Notably, even without
the implementation of specific training techniques for pruning, the Mogrifier LSTM LM slightly
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outperforms its vanilla counterpart. When a layer is pruned from the vanilla LSTM LM, performance
dramatically declines, occasionally yielding results even worse than ASR performance without any
LMs. In contrast, while performance does decrease when rounds are pruned from the Mogrifier LSTM
LM, the LM maintains its efficiency.

Table 4: Comparison of shallow fusion with language models (LMs) which comprise vanilla and
Mogrifier long short-term memory (LSTM) layers respectively in the test-other partition of Lib-
riSpeech

Type Training
layer/round

Inference
layer/round

#param PPL WER (%)

Greedy (ASR w/o LM) N/A 7.53
Vanilla LSTM 4/0 4/0 9.5M 44.38 6.71

4/0 3/0 7.4M 1089.04 10.66
Mogrifier LSTM 2/8 2/8 9.5M 41.77 6.62

2/8 2/4 7.4M 263.0 7.34

Furthermore, a comparative analysis has been conducted, comparing the Mogrifier LSTM LM
against a variety of alternative architectures, as presented in Table 5. This comprehensive evaluation
effectively highlights the capabilities of the Mogrifier LSTM LM in the context of the ASR task. The
results not only showcase its ability to compete with established architectures but also position it as a
viable and promising choice for enhancing ASR performance.

Table 5: Comparison of shallow fusion with language models (LMs) which comprise several architec-
tures and Mogrifier long short-term memory (LSTM) LM respectively in the test-other partition of
LibriSpeech

Type Layer/dimension/head/round #param WER (%)

Greedy (ASR w/o LM) 7.53
GPT-2 [53] 4/512/8/0 13.4M 7.32
TFM-XL [22] 4/512/8/0 12.9M 6.71
TFM-XL [22] 3/512/8/0 9.8M 6.96
Mogrifier LSTM 2/512/0/8 9.5M 6.62

4.5.2 Comparison of On-Demand Pruning Strategies

The following series of experiments demonstrate the effectiveness of the suggested joint on-
demand pruning and online distillation method by comparing it to previous on-demand pruning
strategies, as shown in Tables 6–9. As elaborated in Section 4.3, these experiments employ the
Mogrifier LSTM LM with two layers and eight rounds.
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Table 6: Comparison of shallow fusion with Mogrifier long short-term memory language models
(LMs) with on-demand pruning strategies and the proposed joint online distillation on the dev-clean
partition of LibriSpeech under various run-time scenarios. The parameter k in the sandwich rule
represents the number of losses computed per training iteration. Here, this study determines that
setting k = 2 or k = 3 is adequate to achieve comparable accuracy to the baseline

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Individuals 2.60 2.57 2.53 2.54 2.54 2.55 2.53 2.52
Random 2.62 2.61 2.59 2.59 2.58 2.58 2.58 2.58
Sandwich (k = 3) 2.61 2.60 2.59 2.60 2.59 2.58 2.57 2.57
+ Joint distillation (proposed) 2.58 2.56 2.55 2.56 2.56 2.55 2.56 2.56
Sandwich (k = 2) 2.59 2.58 2.55 2.57 2.58 2.56 2.57 2.57
+ Joint distillation (proposed) 2.58 2.56 2.56 2.56 2.56 2.56 2.54 2.53

Table 7: Comparison of shallow fusion with Mogrifier long short-term memory language models
(LMs) with on-demand pruning strategies and the proposed joint online distillation on the dev-other
partition of LibriSpeech under various run-time scenarios. The parameter k in the sandwich rule
represents the number of losses computed per training iteration. Here, this study determines that
setting k = 2 or k = 3 is adequate to achieve comparable accuracy to the baseline

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Individuals 6.58 6.56 6.57 6.52 6.56 6.56 6.50 6.58
Random 6.70 6.61 6.59 6.58 6.57 6.55 6.55 6.58
Sandwich (k = 3) 6.65 6.63 6.64 6.62 6.60 6.60 6.57 6.57
+ Joint distillation (proposed) 6.62 6.59 6.58 6.55 6.55 6.53 6.53 6.53
Sandwich (k = 2) 6.61 6.62 6.60 6.58 6.62 6.61 6.59 6.57
+ Joint distillation (proposed) 6.57 6.57 6.57 6.56 6.55 6.53 6.52 6.54

In the second row of these tables, individual Mogrifier LSTMs are presented, with each one being
independently trained for rounds 1 through 8, without employing on-demand pruning. The number
of parameters for these models varies from 5.8 million to 9.5 million, and during inference, it remains
fixed to match the round used during training. This approach operates under the assumption that
there are adequate resources available to train each model individually. While this approach may yield
reliable performance, it is not practical due to its inefficiency.

Starting from the third row, this study introduces baseline models trained using on-demand
pruning strategies. For the random method, this study randomly selects one of the eight rounds for each
iteration during training. The overall performance of the random method is less consistent compared
to the individual models, especially at the lower and upper bounds (with rounds of 1 or 8). Conversely,
when employing the sandwich rule, this study observes a more stable WER at lower rounds compared
to the random method. This stability is particularly evident at the lower and upper bounds, where
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the performance gap relative to individual models is significantly reduced compared to the random
method. This study uses k = 3 and k = 2 for the sandwich rule, where k = 3 includes cases that are
randomly selected at each iteration during training, as explained in Section 3.2. It is important to note
that finding the right balance between the value of k and accuracy is crucial, as increasing k results in
higher computational costs.

Table 8: Comparison of shallow fusion with Mogrifier long short-term memory language models
(LMs) with on-demand pruning strategies and the proposed joint online distillation on the test-clean
partition of LibriSpeech under various run-time scenarios. The parameter k in the sandwich rule
represents the number of losses computed per training iteration. Here, this study determines that
setting k = 2 or k = 3 is adequate to achieve comparable accuracy to the baseline

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Individuals 2.79 2.76 2.78 2.79 2.74 2.73 2.78 2.73
Random 2.83 2.79 2.79 2.78 2.77 2.77 2.76 2.77
Sandwich (k = 3) 2.81 2.80 2.79 2.78 2.79 2.76 2.76 2.76
+ Joint distillation (proposed) 2.81 2.78 2.78 2.78 2.76 2.76 2.75 2.77
Sandwich (k = 2) 2.78 2.77 2.77 2.78 2.78 2.76 2.75 2.75
+ Joint distillation (proposed) 2.78 2.74 2.74 2.74 2.73 2.74 2.76 2.74

Table 9: Comparison of shallow fusion with Mogrifier long short-term memory language models
(LMs) with on-demand pruning strategies and the proposed joint online distillation on the test-other
partition of LibriSpeech under various run-time scenarios. The parameter k in the sandwich rule
represents the number of losses computed per training iteration. Here, this study determines that
setting k = 2 or k = 3 is adequate to achieve comparable accuracy to the baseline

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Individuals 6.74 6.70 6.68 6.68 6.69 6.69 6.68 6.62
Random 6.86 6.77 6.75 6.73 6.73 6.73 6.73 6.71
Sandwich (k = 3) 6.71 6.70 6.70 6.66 6.67 6.67 6.66 6.65
+ Joint distillation (proposed) 6.75 6.70 6.68 6.67 6.65 6.64 6.66 6.63
Sandwich (k = 2) 6.76 6.71 6.72 6.73 6.71 6.70 6.69 6.70
+ Joint distillation (proposed) 6.71 6.70 6.70 6.68 6.64 6.66 6.64 6.64

Nevertheless, there are trade-offs to consider, especially regarding the potential for unstable
accuracy when using sandwich rule-based pruning strategies to achieve a smaller model size. To address
this concern, this study incorporates joint online distillation alongside the sandwich rule, as illustrated
in these tables and Fig. 4 (Fig. 4 is included to provide an intuitive comparison between the sandwich
rule and joint online distillation methods, using the data from Table 9). The experimental results
of the proposed joint online distillation indicate an overall improvement in performance compared
to using the sandwich rule alone. The proposed setup not only reduces the number of parameters
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by approximately 39% but also boosts performance, outperforming the models trained individually.
Moreover, this approach showcases its robustness, sustaining its performance even when pruned down
to models with fewer parameters.

Figure 4: A comparison between the sandwich rule and the proposed joint online distillation methods
on the test-other partition of the LibriSpeech under varying language model (LM) parameters

Upon a detailed analysis of these experimental results, several insights emerge that confirm the
effectiveness of integrating the online distillation mechanism. The data clearly shows that knowledge
transfer, facilitated by online distillation, takes place seamlessly during the training phase. This
manifests in the smaller model’s enhanced ability to absorb and reflect valuable information from
its larger counterpart, leading to improved model accuracy and stability.

Moreover, the inherent flexibility of the model, achieved through on-demand construction, is
evident in the experiments. The model showcases its adaptability, demonstrating its capability to
dynamically adjust based on situational needs. This flexibility ensures that the model remains versatile,
and capable of catering to different devices or scenarios without requiring separate training for each
context.

Additionally, this study analyzes several samples of ASR recognition results from both the
sandwich rule method (with k = 3) and the proposed joint online distillation method, as presented in
Table 10. This study focuses on cases where the online distillation mechanism has been jointly applied
and observes that, in certain instances, this approach addresses issues such as deletion, insertion, and
replacement, leading to outcomes that align with the correct answers.

Table 10: Qualitative analysis of automatic speech recognition results for the sandwich rule and the
proposed joint online distillation method

Answer Sandwich Sandwich
+ Joint distillation (proposed)

ho this will bang it soundly oh this was banging soundly oh this was bang it soundly
well cacked well sung well cackle well so well cackle well sung
a man wishing to go to a certain
place comes to where the road
divides

a man wishing to go to a certain
place come toward the road
divides

a man wishing to go to a certain
place come to where the road
divides
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4.5.3 Ablation Study of the Joint On-Demand Pruning and Online Distillation

This study conducts an ablation study on the proposed method, which combines on-demand
pruning and online distillation. As explained in Section 3.3, this study utilizes the ensemble logit of
all sub-models to obtain soft targets in joint online distillation. To assess the effectiveness of this
collaborative learning strategy, this study replaces the ensemble logit with the logit from the model
that exhibits the smallest loss when obtaining the soft target.

The experimental results demonstrate that employing ensembles for joint online distillation
generally yields comparable or superior performance to using the model with the lowest loss, as
indicated in Tables 11–14 and Fig. 5 (Fig. 5 offers an intuitive comparison between the ensemble
logit and the minimum logit when applying joint online distillation methods, utilizing the data from
Table 14). This implies that the logits generated by the sub-models constructed based on the k value
of the sandwich rule closely influence one another.

Table 11: Comparison of ensemble and minimum when applying proposed joint online distillation
methods on the dev-clean partition of LibriSpeech under various run-time scenarios. The parameter k
in the sandwich rule represents the number of losses computed per training iteration

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Sandwich (k = 3) 2.61 2.60 2.59 2.60 2.59 2.58 2.57 2.57
+ Joint distillation (minimum) 2.62 2.59 2.59 2.59 2.57 2.57 2.56 2.56
+ Joint distillation (ensemble) 2.58 2.56 2.55 2.56 2.56 2.55 2.56 2.56

Table 12: Comparison of ensemble and minimum when applying proposed joint online distillation
methods on the dev-other partition of LibriSpeech under various run-time scenarios. The parameter
k in the sandwich rule represents the number of losses computed per training iteration

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Sandwich (k = 3) 6.65 6.63 6.64 6.62 6.60 6.60 6.57 6.57
+ Joint distillation (minimum) 6.61 6.58 6.57 6.52 6.52 6.50 6.52 6.51
+ Joint distillation (ensemble) 6.62 6.59 6.58 6.55 6.55 6.53 6.53 6.53

In summary, the fusion of on-demand pruning strategies with the online distillation mechanism
empowers us to dynamically adjust the number of gates in the Mogrifier LSTM at runtime while
maintaining high levels of accuracy. This adaptability streamlines the deployment of ASR model across
a diverse array of devices, spanning from high-end to entry-level, all without the need for training
multiple models of varying sizes tailored to each specific scenario. The effectiveness of our proposed
method shines through in our evaluations on the LibriSpeech dataset. Nevertheless, it is imperative to
undertake further validation across a spectrum of ASR and LM models. This crucial step will serve as
the focal point of our forthcoming research endeavors, ensuring the robustness and versatility of our
approach in diverse linguistic and acoustic environments.
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Table 13: Comparison of ensemble and minimum when applying proposed joint online distillation
methods on the test-clean partition of LibriSpeech under various run-time scenarios. The parameter
k in the sandwich rule represents the number of losses computed per training iteration

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Sandwich (k = 3) 2.81 2.80 2.79 2.78 2.79 2.76 2.76 2.76
+ Joint distillation (minimum) 2.82 2.80 2.78 2.78 2.75 2.75 2.76 2.76
+ Joint distillation (ensemble) 2.81 2.78 2.78 2.78 2.76 2.76 2.75 2.77

Table 14: Comparison of ensemble and minimum when applying proposed joint online distillation
methods on the test-other partition of LibriSpeech under various run-time scenarios. The parameter
k in the sandwich rule represents the number of losses computed per training iteration

Inference #round 1 2 3 4 5 6 7 8

#param of LMs (M) 5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5
Individuals 2.60 2.57 2.53 2.54 2.54 2.55 2.53 2.52
Sandwich (k = 3) 6.71 6.70 6.70 6.66 6.67 6.67 6.66 6.65
+ Joint distillation (minimum) 6.76 6.74 6.72 6.70 6.69 6.68 6.69 6.68
+ Joint distillation (ensemble) 6.75 6.70 6.68 6.67 6.65 6.64 6.66 6.63

Figure 5: An ablation study for the proposed joint online distillation using an ensemble mechanism
on the test-other partition of the LibriSpeech under varying language model (LM) parameters. Here,
k = 3 for the sandwich rule

5 Conclusions

The approach proposed in this study offers an efficient and robust solution to the challenge of
deploying ASR models across various conditions, encompassing a wide spectrum of computational
resources. By utilizing the Mogrifier LSTM LM in conjunction with the proposed joint on-demand
pruning and online distillation, this study effectively adjusts the number of gates in the model
while maintaining high accuracy. The experimental results demonstrate that the proposed approach
surpasses the performance of the vanilla LSTM LM and maintains stable performance compared to
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the sandwich rule-based on-demand pruning strategies. Moreover, the optimal configuration proposed
in this study reduces the number of parameters by approximately 39%, facilitating efficient deployment
on both high-end and entry-level devices.
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