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ABSTRACT

In many commercial and public sectors, the Internet of Things (IoT) is deeply embedded. Cyber security threats
aimed at compromising the security, reliability, or accessibility of data are a serious concern for the IoT. Due
to the collection of data from several IoT devices, the IoT presents unique challenges for detecting anomalous
behavior. It is the responsibility of an Intrusion Detection System (IDS) to ensure the security of a network by
reporting any suspicious activity. By identifying failed and successful attacks, IDS provides a more comprehensive
security capability. A reliable and efficient anomaly detection system is essential for IoT-driven decision-making.
Using deep learning-based anomaly detection, this study proposes an IoT anomaly detection system capable of
identifying relevant characteristics in a controlled environment. These factors are used by the classifier to improve
its ability to identify fraudulent IoT data. For efficient outlier detection, the author proposed a Convolutional Neural
Network (CNN) with Long Short Term Memory (LSTM) based Attention Mechanism (ACNN-LSTM). As part of
the ACNN-LSTM model, CNN units are deployed with an attention mechanism to avoid memory loss and gradient
dispersion. Using the N-BaIoT and IoT-23 datasets, the model is verified. According to the N-BaIoT dataset, the
overall accuracy is 99%, and precision, recall, and F1-score are also 0.99. In addition, the IoT-23 dataset shows a
commendable accuracy of 99%. In terms of accuracy and recall, it scored 0.99, while the F1-score was 0.98. The
LSTM model with attention achieved an accuracy of 95%, while the CNN model achieved an accuracy of 88%.
According to the loss graph, attention-based models had lower loss values, indicating that they were more effective
at detecting anomalies. In both the N-BaIoT and IoT-23 datasets, the receiver operating characteristic and area
under the curve (ROC-AUC) graphs demonstrated exceptional accuracy of 99% to 100% for the Attention-based
CNN and LSTM models. This indicates that these models are capable of making precise predictions.
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1 Introduction

Several Information and Communications Technology (ICT) infrastructures are becoming
increasingly dependent on the IoT. There are several new service paradigms that have emerged from
this technology, including wearable medical technology, driverless cars, and other applications for
smart cities [1]. According to recent research, there are currently over 26 billion operational IoT devices
in use around the world [2]. IoT technologies are being used by businesses to improve efficiency and

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.042726
https://www.techscience.com/doi/10.32604/cmc.2023.042726
mailto:m.kolhar@psau.edu.sa


2858 CMC, 2023, vol.77, no.3

security. Through the use of IoT solutions, manufacturers can avoid and foresee significant and real-
time problems like engine failures and other mishaps by analyzing massive amounts of data collected
by sensor devices incorporated into their equipment. Because of this, factories can dramatically
improve output and worker security [3,4]. Security flaws exist in each of these tiers [5–9]. The data
that IoT devices create, collect, and analyze typically consists of sensitive information, leaving them
open to significant security vulnerabilities. Cybercriminals and attackers have been able to exploit
these widespread adoption [10] and deployment of information and communication technologies
for the purpose of accessing patient information and confidential digital health records [11]. As a
result, designing efficient anomaly detection systems is crucial to ensuring the trustworthiness of
data collected by IoT devices in an immediate fashion [12]. Both statistical and machine learning
methodologies are used for anomaly detection in the IoT [13]. For data analytics and creating
control options for cyber-physical systems, IoT devices should be equipped with sensors capable
of transmitting data to the cloud. To train a model, statistical methods merely use typical IoT traffic
[14]. In contrast, machine learning techniques employ excellent and bad data to create a trained
model. Based on the nature of the training data, these methods can be classified as supervised,
unsupervised, or semi-supervised [15]. Through supervised learning, we can determine if a given flow
of communication is benign or malicious based on its characteristics. By identifying intriguing patterns
in the data, the unsupervised learning technique can learn the traffic characteristics independently
of the traffic class. Because the study uses IoT traffic records with defined class labels, supervised
learning may be utilized to train the model. Rapid technological advancement has also provided new
entry points for attackers seeking to breach network security. Information stored in the cloud or on
a device connected to the internet, security has thus become the first and foremost issue. Millions of
apps rely on internet connectivity, all of which need to be protected. Since most work now depends on
incorporating contemporary technology, a trustworthy, quick, and suitably robust security solution is
urgently required to safeguard their information [16]. The prevalence of Network Intrusion Detection
Systems (NIDS) allows for identifying assaults based on signatures and anomalies [17]. Signature-
based anomaly detection approaches compare network events to a library of known attack signatures
to determine if a compromise attempt has been attempted and to notify the network administrator
of the attack and its specifics [18,19]. In contrast, anomaly-based systems can identify previously
unidentified assaults in network data by comparing them to a predefined norm [20].

With the increasing volume and diversity of data, deep learning outperforms traditional machine
learning methods. When dealing with complex and high-dimensional data, such as images or time
series, CNNs can be particularly helpful for outlier detection. The outlier detection process can be
improved by leveraging the CNN’s ability to automatically extract relevant features. Deep learning-
based anomaly detection systems have gained significant traction due to their effectiveness. This
research focuses on developing a deep learning-enabled framework for accurately identifying anoma-
lies in IoT, addressing the challenges posed by the diverse nature of IoT systems. Our study presents a
communication-efficient on-device deep learning system that performs accurate and timely anomaly
detection at the edge. This system leverages a CNN-LSTM (ACNN-LSTM) model with an attention
mechanism. Specifically, LSTM modules are employed for time series prediction, while attention-
based CNNs extract fine-grained characteristics from historical observation sensing time-series data.
The proposed model mitigates issues such as gradient dispersion and memory loss. We highlight our
main contributions, emphasizing the development of an efficient on-device anomaly detection system
that enhances IoT data security.
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• By establishing a robust anomaly detection framework for the Internet of Things (IoT), the
capacity to identify malicious data generated by compromised and diverse IoT devices is
significantly enhanced.

• In this study, we introduce a CNN-LSTM model for anomaly detection, combining the
strengths of both architectures to effectively capture the intricate characteristics of time
series data. The CNN component enables the extraction of fine-grained properties, while the
LSTM component ensures reliable and swift detection of abnormalities. The incorporation
of an attention mechanism further enhances the model’s ability to focus on relevant features,
optimizing the anomaly detection process.

• Our objective was to evaluate the performance of our model in comparison to other supervised
deep learning algorithms. For this purpose, the author conducted experiments based on the
N-BaIoT and IoT-23 datasets. By analyzing the results, we aimed to assess the effectiveness
of our model and determine its superiority over alternative approaches based on different
supervised deep learning algorithms. It will speed up the review and typesetting process.

2 Related Work

Intrusion detection systems based on machine learning are considered for protecting IoT net-
works. For the past decade, experts have delved deeply into Artificial Intelligence (AI) techniques like
Machine Learning (ML) and Deep Learning (DL) to develop effective NIDS solutions. Trends in
NIDS over the last three years have shown that DL algorithms have surpassed ML in popularity
because the fast-computing requirement of DL algorithms has been met by the development of
Graphical Processing Units (GPUs) technology [21]. In response, the researchers have developed
adequate security solutions for IoT networks that process large volumes of raw data. Through its
deep structure, DL can understand the intricate pattern, which in turn aids in distinguishing between
normal and abnormal data flows. An IDS was created by Thamilarasu et al. [22] to detect black-hole,
opportunistic, Distributed Denial of Service (DDoS), sinkhole, and wormhole attacks in the Internet
of Things. An attack detection method based on deep learning is used. Each layer of the DNN is
responsible for selecting characteristics to use in the proposed system. When tested against various
attack types, the suggested Deep Learning model achieved an impressive 97% True Positive Rate and
95% average accuracy. For each possible form of cyberattack, five distinct models are created. However,
our research shows that a single model can accurately anticipate many different types of assaults. An
IoT routing attack detection solution is presented in [23,24]. A series of simulations in the realistic
COOJA simulator generate the dataset.

To detect network probing and low-level Denial of Service (DoS) attacks [25] suggested a system
based on a machine learning classifier. The proposed system has poor detection accuracy (high FP)
and poor recall (high FN) regarding DoS attacks. Thereby not providing encouraging findings for
threat detection. Similar to the synthetic dataset [26] utilized by Hussain et al., this one also included
357,952 samples, 13 characteristics (data type: small, persistent, separate, conventional), and 8 classes.
To help machine learning classifiers, static features are used. The suggested IDS is in charge of detecting
attacks such as DoS, data-type searching, mischievous control (MC), malicious operation (MO), scan
(Spy), and wrong setup (Wrong). The supervised Random Forest method achieved the best detection
accuracy across all attack types (99.4%). An intrusion detection system based on the NSL-KDD
dataset was developed by Pahl and Aubet [27]. Considering the dataset can be altered, added to,
and replicated. There are four types of assaults in this data collection (probe, R2L, U2R, and DoS),
however, contemporary attack vectors and IoT traces are absent.
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In [28], a Bidirectional LSTM based Recurrent Neural Network (BLSTM-RNN) is used in
tandem with Word Embedding (WE) techniques to improve the identification of IoT botnets utilizing
DL methodologies. A lab network with an Internet of Things (IoT) surveillance cameras and a Mirai
botnet C2 server was used to develop and test the suggested detection algorithm. Only four of the ten
attack routes unique to the simulated Mirai botnet were employed in their studies, with the remaining
six being filed away for possible future use. We use WE to do preliminary processing on the collected
data, which converts the tokenized strings to integer values. The BLSTM detection model receives
them with the appropriate labels. While the results of the evaluations (accuracy and loss) are hopeful,
there is still room for improvement in the research concerning the dataset, the attack vectors, and the
assessed parameters. In [29], the authors proposed employing neural networks to categorize IoT-based
assaults. Researchers developed, tested, and validated a method for identifying and categorizing IoT
threats based on information available from the Network Security Laboratory-Knowledge Discovery
Databases (NSL-KDD). Ge et al. offered a model based on Feed-Forward Neural Networks (FNN)
for the binary and multi-class classification of other assaults on IoT devices in their recent study [30],
which demonstrates the use of Deep Learning (DL) techniques for IoT network intrusion detection.
The Bot-IoT dataset [31] was selected as a testbed for the authors’ work, as it was for ours. While
the suggested method had generally satisfactory results, the authors noted certain challenges they ran
across during their assessment, as well as some ways in which their system may be improved.

A Neural Network (NN) was introduced for multi-task training by Huang et al. [32]. The NN
is initially employed to determine the aggressiveness of a particular binary or malicious action.
Next, they utilized NN to label an intrusion’s familial group. To investigate the various forms of
infiltration, Kolosnjaji et al. [33] developed a CNN that collaborated with LSTM networks. A
convolution layer is used to learn how the intrusion-related properties are connected. With CNN’s
output, the LSTM is trained to detect feature dependencies. A deep learning model technique was
recently presented for identifying abnormal activity in IoT networks by Ullah et al. [34]. Anomaly
detection in IoT was accomplished by switching to a recurrent neural network fed by LSTM and
Gated Recurrent Unit (GRU). A CNN was also employed to examine IoT-related input properties to
retain relevant data. Combining the two approaches, they created a lightweight deep-learning model
for binary classification. Zhou et al. [35] developed DB-CGAN using generative adversarial networks
(GANs) [36]. Through adversarial training, they improved their classification and detection methods.
Kale et al. [37] proposed a three-stage approach to identifying anomalies in IoT based on deep learning.
With the aid of K-means, GANomal, and convolutional neural networks, they were able to create
a cohesive structure. The authors [38] demonstrated that biometric authentication-based intrusion
detection can be effective in smart cities through the use of artificial intelligence. To implement block-
chain-based IoT security [39–41], it is imperative to take into account factors such as scalability,
interoperability, and energy efficiency. It may also be necessary to integrate other security mechanisms,
including encryption and secure hardware [42], to provide comprehensive IoT security.

The increasing prevalence of IoT devices has necessitated the development of robust anomaly
detection frameworks to identify malicious data generated by compromised devices. In this study, we
propose a CNN-LSTM model for anomaly detection in IoT, leveraging the strengths of both archi-
tectures to effectively capture the intricate characteristics of time series data. The CNN component
extracts fine-grained properties, while the LSTM component enables reliable and swift detection of
abnormalities. Additionally, an attention mechanism enhances the model’s ability to focus on relevant
features, optimizing the anomaly detection process. We evaluated the model’s performance on the
N-BaIoT and IoT-23 datasets and compared it to other supervised deep learning algorithms. The
results demonstrated the superiority of our model, showcasing its effectiveness in accurately detecting
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anomalies in IoT networks. This research contributes to enhancing IoT security by enabling the
identification of malicious data generated by compromised and diverse IoT devices.

3 Material and Method

Deep learning-based anomaly detection in IoT networks is a promising approach to detecting
and mitigating abnormal behavior and potential security threats within the IoT ecosystem. The use of
deep learning and anomaly detection models has greatly benefited computer vision, NLP, and other
applications. Gathering pertinent data from networked IoT devices is the first step. Sensor readings,
network traffic records, device metadata, and anything else useful might fall under this category. Pre-
processing is sometimes necessary to transform raw data acquired from IoT devices into a format
appropriate for deep learning models. Data normalization, feature extraction, and dimensionality
reduction are all possible steps in this process. Several deep learning models are available for use
in IoT network anomaly detection. Fig. 1 shows the overall structure of the proposed model. A
comprehensive architecture is employed to achieve the objectives of the Deep Learning-Powered
Anomaly Identification System for Enhanced IoT Data Security. This architecture consists of the
following components:

1. Input data: A variety of IoT devices provide input to the system, including data from sensors,
network traffic data, or any other relevant data.

2. Preprocessing: During preprocessing, input data is cleaned, normalized, and features are
extracted. As a result, the data will be in a format that is suitable for further analysis.

3. Deep learning models: The system relies on a deep learning model to identify anomalies in IoT
data. A neural network is typically built using CNNs and LSTMs.

4. Training: Anomalies are explicitly identified in labeled data. Data instances with normal and
anomalous characteristics are identified during the training phase.

5. Detection of anomalies: Once the model has been trained, it is deployed for the detection of
anomalies. Input data is taken from new, unlabeled IoT sensors, and anomaly scores or probabilities
are calculated for each data point. Scores indicate the likelihood that a data point is anomalous.

6. Threshold and decision making: A predefined threshold is used to compare the anomaly scores
obtained from the model with a decision point. An anomaly is defined as a data point whose score
exceeds the threshold. In response to this classification, appropriate actions can be taken, such as
issuing alerts, initiating security measures, or notifying the system administrator.

7. Continuous learning and improvement: The system can be designed to learn and adapt to new
patterns and anomalies as they emerge. To achieve this, the model may need to be periodically retrained
with updated data or online learning techniques may be applied to dynamically update the model in
real-time. The system enhances IoT data security by utilizing deep learning techniques and a well-
defined architecture to identify anomalies, enable timely responses, and minimize potential risks.



2862 CMC, 2023, vol.77, no.3

Figure 1: The overall structure of the proposed model

LSTM, CNNs, and Generative Adversarial Networks (GANs) are only a few of the most popular
types of models now in use. The data and the job must be considered while deciding on a model
for anomaly detection. Labeled data includes typical and unusual activity in the IoT infrastructure.
During the model’s training phase, it learns to reflect typical behavior accurately. Once the model has
been trained, it may be produced for real-time anomaly detection. It gathers information from the
Internet of Things and converts it into either a prediction or an anomaly score. High-scoring outliers
are potential anomalies that should be investigated further or addressed. Metrics like accuracy, recall,
and F1-score may be used to gauge how well a deep learning model performs. The assessment findings
may be used to hone and retrain the model for enhanced anomaly identification.

The modules from Fig. 1, are as follows, collecting the Sensor Data module involves collecting
sensor data from various sources such as IoT devices, sensors, or other data sources. The data could
include measurements, readings, or observations from different sensors. Once the sensor data is
collected, it must be stored for further processing. This module focuses on keeping the data in a suitable
format or database for easy access and retrieval during subsequent stages. The collected sensor data is
pre-processed in the pre-processing module to ensure its quality and prepare it for further analysis. Pre-
processing steps may include data cleaning, removing noise or outliers, handling missing values, and
normalizing or scaling the data. Feature extraction involves selecting or deriving relevant features from
the pre-processed data. This module aims to identify the most informative and discriminative features
that can capture essential patterns or characteristics of the sensor data. Feature augmentation is the
process of enhancing the extracted features by incorporating additional information or creating new
features. This module may involve techniques such as feature engineering, dimensionality reduction,
or generating synthetic features to improve the data representation. The DL Model Construction
module focuses on building a model that can effectively learn from the augmented features. Deep
learning models, such as neural networks, are constructed with multiple layers of interconnected nodes
to capture complex patterns in the data. To classify normal and anomalous patterns, the deep learning
model is trained with labeled data once it has been built. This module trains the model to recognize
normal behavior based on the labeled training data. In the Anomaly Detection module, the trained
deep learning model is applied to detect anomalies in real-time or on new, unseen data. The model
analyses the input data and identifies patterns or instances that deviate significantly from the normal
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learned behavior. The performance of the anomaly detection model is assessed in this module. Various
evaluation metrics, such as accuracy, precision, recall, or F1-score, are calculated to measure the
model’s effectiveness in detecting anomalies. This evaluation helps understand the model’s reliability
and identifies areas for improvement.

3.1 Dataset

The IoT-23 dataset is an updated data collection on network activity generated by IoT gadgets.
There are 20 malware samples captured while running on IoT devices and three benign IoT traffic
samples. The earliest release date is January 2020, containing images from 2018 and 2019. Avast
Software, located in Prague, is supporting this study and dataset. Twenty-three samples, or “scenarios”,
of varying IoT network traffic make up the IoT-23 dataset. These situations comprise twenty network
grabs from infected IoT and three network captures from actual IoT devices. For each attack scenario,
we utilized a Raspberry Pi to run a malware sample that used many protocols and varied methods
of operation. We considered the N-BaIoT dataset [43], partly because it is based on actual data
flow from various IoT and non-IoT devices. This dataset contains data from nine affected devices,
however, because the attack flow was unique to the Mirai and Bashlite botnets, we opted to focus
on a dataset that covers a broader range of threats. The N-BaIoT (Network-Based IoT) dataset is
a publicly available dataset designed explicitly for evaluating anomaly detection techniques in IoT
networks. It was created by researchers from the University of New Brunswick and contains network
traffic data captured from a real IoT network environment. Taking into account the characteristics
of the N-BaIoT dataset and the specific anomaly detection algorithm, a suitable anomaly detection
algorithm is selected. To provide insight into the effectiveness of the imbalance handling technique, the
author has also evaluated the performance of the model using appropriate metrics, such as precision,
recall, F1-score, or AUC-ROC.

3.2 Methodology

In machine learning, the first step is pre-processing data so that the relevant classifier can deliver
error-free, optimal results. NaN removal, duplicate instance clean-up, and normalization/scaling come
first in the pre-processing phase. This procedure entails rescaling the data to a predetermined interval
(say, 0 to 1) to guarantee the model is independent of the absolute values of numeric attributes. We use
MinMax scaling to normalize features because the dataset has minimal variance and ambiguity. An
equation illustrating how MixMax scaling is used to normalize data can be found below:

YN = Yi − Ymin

Ymax − Ymin

(1)

where Yi is the variance among the feature’s highest and lowest scores in real numbers, divided by the
difference between values. Fig. 2 illustrates a CNN-LSTM-based IoT anomaly detection architecture.
There are three distinct sections to this model. At first, CNN is fed the cleaned data, and its features
are extracted to provide a high-level representation of the data. In the second phase, CNN’s output
is sent into an LST network, which then extracts the more nuanced temporal connection between
features. The third section shows a focus technique to learn more fault-related data. This theory is
also known as the CLA theory. First, the author includes an attention mechanism in the CNN unit
to refine the system’s ability to zero in on key details. Remember that people will only pay attention
to the most relevant bits of information and dismiss the rest because of the processing limitations
inherent in human perception. Motivated by these considerations, the attention method was developed
to enhance feature extraction performance in many contexts; examples include NLP and computer
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vision. As a result, the model’s recital can be improved by the attention mechanism’s focus on pivotal
aspects. We employ a CNN unit to get the finest details out of time series data. One-dimensional
(1-D) CNN layers consisting of a convolution layer, a batch normalization layer, and a non-linear layer
are stacked to produce the CNN module. Layers of convolutional layers and sample aggregation with
pooling layers form complex networks that extract increasingly abstract data. The size of the module’s
output is denoted by the expression (n × m), and it generates m feature sequences of length n. We
present a parallel feature extraction branch that combines attention processes with CNN to extract
additional, meaningful features from time-series data. Feature aggregation and scale restoration make
up the attention mechanism component. The feature aggregation process employs a convolution kernel
of size 1 × 1 to mine the linear connection, and it does so by stacking numerous convolutions and
pooling layers to excerpt essential characteristics from the categorization.

Figure 2: Proposed attention-based CNN and LSTM method

CNN Feature Extraction: The cleaned data is fed into the CNN to extract high-level represen-
tations of the data. The CNN consists of 1-D convolution layers, batch normalization layers, and
non-linear layers stacked together to produce the CNN module. These layers capture fine details from
the time series data and generate m feature sequences of length n. LSTM Temporal Connection:
The output of the CNN is then passed to an LSTM network to extract more nuanced temporal
connections between features. The LSTM is capable of capturing temporal dependencies and patterns
in the data, contributing to the overall anomaly detection process. Attention Mechanism: To focus on
key details and enhance feature extraction, the model incorporates an attention mechanism. Inspired
by the concept of human perception, the attention mechanism enables the model to pay attention
to the most relevant information and ignore less relevant details. This attention process is applied in
parallel with the CNN feature extraction to extract additional meaningful features from the time-series
data. The attention mechanism includes feature aggregation and scale restoration processes. Feature
aggregation uses a 1 × 1 convolution kernel to mine linear connections and stack multiple convolutions
and pooling layers to extract essential characteristics from the data. Scale restoration ensures that
the extracted features are properly rescaled to maintain their significance in the anomaly detection
process. By combining the strengths of CNN and LSTM and incorporating the attention mechanism,
the proposed architecture can efficiently detect anomalies in IoT data by capturing both local patterns
and temporal dependencies in the time series data. This approach enhances the model’s performance in
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identifying important features and contributes to improved anomaly detection accuracy. The sigmoid
function is used to confine the values to [0, 1] after the scale restoration section has restored the key
features to (n × m), which is in line with the size of the output features of the CNN module. For
a particular training dataset, A = {(mi, ni) |i = 1, 2, . . . , k} mi stands for the original sample data,
mi ∈ Rl, where l is the total amount of characteristics, and ni ∈ {0, 1} is the label of the i th sample
data. High-level feature modeling is created by feeding the representative data into CNN and then
retrieving the original capabilities.

Mi = f (ω × mi : i+p−1 + b) (2)

ω is the convolutional kernel and p is the size. The offset is indicated by b. The specific matrix M
is obtained following the convolution layer computation:

M = [
Con1, Con2, . . . Conl−g+1

]
(3)

Lastly, the local optimum solution is as follows, after the local characteristic matrix M of the fault
has been processed using the maximum pooling approach to maintain the important information of
the features and decrease the parameters.

V = max
(
Con1, Con2, . . . Conl−g+1

) = max {M} (4)

The entire connection layer then forms a link between the vectors V and U .

U = {V1, V2, . . . Vl} (5)

The LSTM receives its input from the convolution network’s output U .

The key characteristics generated by the associated attention mechanism module are multiplied by
the CNN module’s output attributes element-wise. For simplicity, let’s suppose that I j = {

ij
1, ij

2, . . . , ij
n

}
.

wCNN is the representation of the CNN module’s output after processing the sequence I j, and wattention is
the representation of the attention module’s output after processing the same sequence. Multiplying
the two results, one by one looks like this:

w(j, c) = wCNN(j, c) � wattention(j, c) (6)

For the model to learn the salient properties of the present local sequence, we apply the attention
mechanism to broaden the receptive field of the input. To further address the issue that the model
cannot discern the relevance of the time series data characteristics, we employ the attention module to
reduce the model’s exposure to irrelevant information. After CNN’s output is received, a memory unit
consisting of the hidden state ht−1 from the previous time and the current input mt is used to compute
the forgetting gate, memory gate, and output gate. The technique by which it chooses which bits of
data to keep and which to discard is as follows.

The information is first sent through a forgetfulness gate. The forgetting gate’s sigmoid unit
produces a vector in the range 0–1 via the calculation ht−1 and mt. This vector can be used by LSTM to
determine which bits of data in a memory unit should be retained and which ones should be deleted.

sigmoid = σ(y) = 1
1 + e−y

(7)

ftt = σ
(
wft · [ht−1, mt] + bft

)
(8)

The forget gate is indicated by ftt, and the activation function is indicated by σ .
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The next two actions determine the proportion of newly acquired data that will be stored in the
memory module. In the first place, we obtain the input gate by solving for ht−1 and mt; the input
gate may indicate which part of the data needs to be updated. Then, feed and pass through a layer
to generate candidate memory units, so that the memory of the unit can be updated with this new
information.

itt = σ (wit · [ht−1, mt] + bit) (9)

tanh = ey − e−y

ey + e−y
(10)

MCt = tanh (wmc · [ht−1, mt] + bmc) (11)

Memory unit MCt−1 will be upgraded by LSTM, and the current memory unit will be upgraded
to unit MCt. Here is how the update works: First, enter the Forgetting Gate and let go of certain
memories from the Old Memory Unit. Second, using the MCt input gate, boost some of the candidate
memory unit’s data. Invest in a fresh MCt memory unit now. Let the input vectors ht−1 and mt navigate
the sigmoid layer of the resultant gate to obtain a judgment circumstance, then let the memory unit
pass via the tanh layer to obtain a vector among −1 and 1, and finally, multiply the decision stage of
the production gate by the ultimate result of the memory unit.

ott = σ (wot · [ht−1, mt] + bot) (12)

ht = ott ∗ tanh(MCt) (13)

The data is sent into an LSTM, which generates an output Vt = [v1, v2, . . . , vt] at the end of
each time step, which is then fed into an attention module. The attention mechanism allows for the
prioritization of various wind turbine fault features. Here are the formulas:

wt = tanh(Vt) (14)

The target weight is denoted as wt. The softmax function is then utilized to influence the attention
weight in a probabilistic fashion.

kt = exp(wt)∑m

t=1 exp(wt)
(15)

The weight probability vectors are denoted by kt. The hidden layer state code corresponding to
the produced attention weight vt is then set.

xt =
∑m

t=1
kt · vt (16)

The weighted average is calculated by xt. Full connection layer output is then used to show the
results.

yt = σ
(
wf · xt

)
(17)
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Algorithm 1: An algorithm for Anomaly detection in IoT data using attention-based CNN and LSTM
mechanism
Input: IoT network traffic data A = {(mi, ni) |i = 1, 2, . . . k}
Output: Classification of security threats
Procedure Pre-processing(A):

Perform data normalization and feature extraction
Return processed data

Procedure Attention_Mechanism():
Initialize attention weights (α)
Learn the importance of each input instance for anomaly detection.
Compute the attention weights using a softmax function:
α_i = softmax(W_a ∗ tanh(U_a ∗ h_i + b_a))

Procedure Convolutional_Neural_Network(A):
Apply a series of convolutional layers to capture local patterns
Apply filters (kernels) to the input sequence to extract relevant features.
Use activation functions to introduce non-linearity.
Perform pooling operations to downsample the feature maps.
The output of the CNN represents the learned high-level features
Return output features

Procedure Long_Short_Term_Memory(features):
Model the temporal dependencies and long-term patterns.
Initialize the LSTM hidden states (h) and cell states (c) for the first time step.
For each input in the sequence:

i. ftt = σ
(
wft · [ht−1, mt] + bft

)

ii. itt = σ (wit · [ht−1, mt] + bit)

iii. MCt = tanh (wmc · [ht−1, mt] + bmc)

iv. ott = σ (wot · [ht−1, mt] + bot)

v. ht = ott ∗ tanh(MCt)

End for
Procedure Attention-based_Fusion():

Combine the outputs of the CNN and LSTM layers
Apply element-wise multiplication between the attention weights (α) and the output of the

LSTM layer (h_t)
Compute the weighted sum of the attention-weighted LSTM outputs:
k_t = (exp(w_t))/(

∑
_(t=1)∧m exp(w_t))

Pass the fused representation through one or more fully connected layers.
Use activation functions to introduce non-linearity.
The final fully connected layer produces the output for anomaly detection.
Apply a softmax activation function.
Use a categorical cross-entropy loss function.
Perform backpropagation and update the model parameters.

Split the dataset into training and testing sets.
Train the attention-based CNN and LSTM model using the training set.

(Continued)
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Algorithm 1 (continued)
Evaluate the model’s performance using precision, recall, F1-score, or AUC-ROC.

Fine-tune the model by adjusting hyper-parameters.

We begin by splitting the processed data into a training dataset and a test dataset. Second, a
convolutional neural network is used to extract data features from the training dataset that was used to
build the model. Following this, the data is fed into a Long Short-Term Memory (LSTM) model to be
transformed into time series features; the fault characteristics of each time segment are combined into a
unified sequence fault feature; and an attention mechanism is included in the model. Prediction results
are then sent out over the whole network’s connections, and the model’s parameters are automatically
adjusted as necessary to minimize the loss function. In this study, we specify a target number of
iterations as the training’s final condition and stop when the model hits that amount. The testing
step begins with loading the trained model. The model is then used to forecast failures based on the
test dataset. At long last, we have data from our experiments.

In the suggested model, CNN, LSTM, and an attention mechanism are all combined. Among
these, CNN may speed up the model’s calculations by reducing the number of parameters it needs
to run by sharing convolution kernel parameters. By utilizing a memory unit, LSTM can address
the issue of gradient disappearance due to a too-long-time step and handle the long-time sequence
dependency of data. An attention mechanism may be employed to direct the model’s attention to
the characteristics that have the greatest correlation with the error. To further enhance the model’s
accuracy and generalizability, an attention mechanism can help diminish the weight of irrelevant
details.

4 Experimental Setup

Our whole process was carried out in Python, and we relied on the TensorFlow framework,
Pandas, and the Scikit-learn packages to accomplish our goals. Our study was done on a PC equipped
with an Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GeForce graphics card. The hyper-
parameters used in this proposed model are shown in Table 1. The magnitude of the filters (or kernels)
applied to the layers of a Convolutional Neural Network. Each filter with a size of 3 will be 3 square
inches in size. The magnitude of the convolutional kernels employed by CNN’s neural network. Each
kernel with a size of 3 will be 3 by 3, therefore the total size of the kernel will be 9. The stride controls
how quickly the filters in the CNN layers advance over the input data. When the stride is set to 1, the
filter pixels advance by a factor of 1. Padding occurs when extra pixels are added to the input data’s
boundaries before convolution is used. If you specify a padding value of 1, then the input data will be
surrounded by a border that is 1 pixel wide. The number of filters (or feature maps) incorporated into
the CNN architecture. The input data is used to teach each filter unique characteristics. In a CNN,
this is the activation function used in the layers that follow the convolutional one. One such option
that does so by introducing non-linearity is ReLU (Rectified Linear Unit). The pooling technique
used in CNN’s last layer, follows the activation function. To reduce the dimensionality of the feature
maps, max pooling chooses the largest value inside an area. The number of cells that make up the
LSTM layer in a neural network’s memory. LSTM Recurrent Neural Networks (RNNs) are effective at
modeling temporal relationships in sequences. The regularization method used to prevent overfitting
in the LSTM layer, is expressed as a dropout rate. With a dropout rate of 0.20, 50% of the LSTM
units will be arbitrarily disregarded during training. The attention mechanism is utilized to prioritize
the information in the input sequence. The attention mechanism uses the tanh activation function.
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During training, the optimizer makes adjustments to the model’s parameters, and the magnitude of
those updates depends on the learning rate. Convergence may be slower, but parameter updates are
more precise with a slower learning rate.

Table 1: Hyperparameter setting for the proposed model

Hyper-parameter Value

CNN filter size 3
CNN kernel size 3
CNN stride 1
CNN padding 1
CNN Number of filters 128
CNN Activation function ReLU
CNN Pooling Max
LSTM units 64
LSTM dropout 0.2, 0.5
Attention units 32
Attention activation Tanh, softmax, ReLu
Learning rate 0.001
Batch size 32, 64
Number of epochs 100
Optimizer Adam, SGD

Several metrics were used to evaluate the effectiveness of the planned system. These parameters
may be used to determine which method is best suited to a particular task based on the parameters. It
is a standard technique that sums up a categorization model’s performance on test data with properly
annotated labels. The method makes it easier to identify cases of miscommunication between classes.
In most cases, this is the baseline from which additional performance indicators are calculated. A
confusion matrix is a summary of the results of a classification task’s forecast. True positive (Tept),
false positive (Fept), false negative (Fent), and true negative (Tent) may all be defined for many classes
using the confusion matrix. Accuracy is merely one aspect of a model’s overall performance. One
statistic used to assess the performance of a classification model is accuracy.

Accuracy = Tept + Tent

Tept + Tent + Fept + Fent

(18)

Precision in forecasting is measured in terms of its degree of precision. It is the proportion of the
model’s successes relative to the entire number of its forecasts. The following equation provides the
value of Precision for a single class:

Precision = Tept

Tept + Fept

(19)
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A model’s performance may also be quantified using the F1-score. The Weighted average of a
model’s accuracy and reliability. The formula for a single-class F1-score is as follows:

F1 − score = 2 × Precision × Recall
Precision + Recall

(20)

ROC is a popular graph that summarizes how well a classifier does across different cutoffs. To
create it, we compare the True Positive Rate (Tpr) to the False Positive Rate (Fpr) as we change the
threshold for classifying data and plot the two alongside one another. To get the True Positive Rate
and the False Positive Rate, we may use the following formulas:

Fpr = No. of Fept

total sample
(21)

pr = No. of Tept

total sample
(22)

Each projected class’s threshold value is its associated probability. ROC curves may be plotted
with simple yes/no categories. The one-vs.-the-rest approach, however, allows for its generalization to
further classes. Both the genuine positive rate and the false positive rate might be anything from 0 to
1 for any given category.

5 Result and Discussion

Fig. 3 illustrates the confusion matrix for different models evaluated on the N-BaIoT dataset.
The confusion matrix displays the true positive, false positive, true negative, and false negative rates,
and is therefore helpful for assessing the accuracy of classification algorithms. In this figure, four
different models are compared: (a) Attention-based CNN and LSTM, (b) CNN and LSTM without
attention, (c) LSTM with attention, and (d) CNN with attention. Each model has been trained and
tested on the N-BaIoT dataset, which is a dataset specifically designed for evaluating Internet of Things
(IoT) security. ’Benign’ classification accuracy is 97%. The model properly detected 97% of no-attack
cases. Benign IoT devices behave normally and without malice. The model’s excellent accuracy in
categorizing benign cases shows its ability to differentiate harmful IoT device behaviors. The ‘Mirai
ACK’ attack is 100% classifiable. The model correctly recognized all ‘Mirai ACK’ attacks. Mirai virus
targets IoT devices with DDoS assaults. ‘Mirai ACK’ attacks flood the target device’s network with
TCP ACK packets. The model’s 100% accuracy in identifying this assault type shows its ability to
accurately identify it. The ‘Mirai Scan’ assault classifies 98%.

‘Mirai SYN’ assault categorization accuracy is 98%. The Mirai botnet floods the target device with
TCP SYN packets in a “Mirai SYN” assault, making it unreachable. The model detected and classified
98% of this assault. The model successfully identified 100% of these assault type, demonstrating
its ability to recognize and distinguish it. ‘Mirai UDP Plain’ attack categorization accuracy is 98%.
Sending plain UDP packets to the target device overloads its network and disrupts service. The model
correctly identified 98% of ‘Mirai UDP Plain’ assaults. ‘Gafgyt Combo’ categorization accuracy is
100%. Another botnet for IoT DDoS assaults is Gafgyt. ‘Gafgyt Combo’ attacks use TCP and UDP
floods. The model correctly identified and categorized this assault pattern with 100% accuracy. ‘Gafgyt
Junk’ attack categorization accuracy is 100%. ‘Gafgyt Scan’ assault categorization accuracy is 98%.
The Gafgyt botnet uses a “Gafgyt Scan” attack to exploit susceptible IoT devices. The model properly
identified 98% of ‘Gafgyt Scan’ assaults. ‘Gafgyt TCP’ attack categorization accuracy is 100%. The
‘Gafgyt TCP’ attack overwhelms the target device with TCP packets to disable its services. The model
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successfully identified 100% of this assault type, proving its ability to recognize and categorize it.
‘Gafgyt UDP’ attack categorization accuracy is 98%.

Figure 3: The confusion matrix on N-BaIoT dataset (a) Attention-based CNN and LSTM (b) CNN
and LSTM without attention (c) LSTM with attention (d) CNN with attention

Fig. 4 shows IoT-23 confusion matrix findings from several models. The confusion matrix shows
classification results across classes to evaluate each model’s performance. The model outperforms in
classifying the attack with 99% and other file types with 99% to 100% accuracy. Subfigure (a) examines
the attention-based CNN/LSTM model. This model uses dynamic attention processes to classify
features. The confusion matrix shows the distribution of property and erroneously identified examples
across classes for this model. Subfigure (b) shows CNN and LSTM outcomes without attention. The
attention-based model preferentially processes important features, whereas this variation does not. The
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confusion matrix assesses the model’s classification accuracy and identifies potential biases. Subfigure
(c) shows the attention-LSTM model findings. Attention mechanisms and LSTM networks capture
temporal relationships and highlight important characteristics in this paradigm. The confusion matrix
shows the model’s classification performance and class prediction dispersion. Finally, Subfigure (d)
shows the CNN model with attention confusion matrix. This model uses CNNs and an attention
techniques to extract spatial data and highlight important areas during categorization. The confusion
matrix evaluates the model’s class separation and misclassification abilities.

Figure 4: The confusion matrix on IoT-23 dataset (a) Attention-based CNN and LSTM (b) CNN and
LSTM without attention (c) LSTM with attention (d) CNN with attention
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Table 2 shows the accuracy, precision, F1-score, and recall on both datasets. The overall accuracy
of the dataset N-BaIoT is 99%, precision is 0.99, Recall is 0.99 and F1-score is 0.99. The accuracy on the
dataset IoT-23 is 99%, precision is 0.99, Recall is 0.98 and F1-score is 0.98. Fig. 5 shows the accuracy
graph from N-BaIoT dataset-trained models. The graph compares architectural and configuration
accuracy percentages. Subfigure (a) shows a 99%-accurate attention-based CNN and LSTM model.
The attention method helps the model focus on essential characteristics and capture interesting dataset
patterns. In Subfigure (b), an unattended CNN and LSTM model obtained 98% accuracy.

Table 2: The performance evaluation results of the proposed methodology

Dataset Category Precision Recall F1-score

N-BaIoT

0 0.97 0.98 0.98
1 1.00 0.99 1.00
2 0.98 0.98 0.99
3 0.98 0.98 0.99
4 1.00 0.99 0.98
5 0.98 0.99 1.00
6 1.00 0.99 1.00
7 1.00 1.00 0.99
8 0.98 0.99 0.98
9 1.00 1.00 0.99
10 0.98 0.99 0.98

Accuracy 99%

IoT-23

0 0.99 1.00 1.00
1 0.99 0.98 1.00
2 0.99 0.98 0.99
3 0.99 0.98 0.99
4 0.98 0.99 0.98
5 0.99 0.98 0.99
6 0.99 0.98 0.98
7 1.00 0.99 1.00
8 1.00 1.00 0.99
9 0.99 0.99 0.98

Accuracy 99%

CNN and LSTM layers extracted significant information and achieved good prediction accuracy
without the attention mechanism. Subfigure (c) shows a 95%-accurate LSTM model with attention.
The LSTM architecture’s attention mechanism enabled the model to selectively pay to significant
temporal information, improving accuracy compared to the CNN with attention model. Finally,
Subfigure (d) shows an 88%-accurate CNN model with attention. The CNN architecture’s attention
mechanism helped the model focus on prominent spatial elements, although it was less successful than
other models in this investigation.
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Figure 5: The accuracy graph on N-BaIoT dataset (a) Attention-based CNN and LSTM (b) CNN and
LSTM without attention (c) LSTM with attention (d) CNN with attention

Fig. 6 shows the N-BaIoT loss graph for anomaly detection algorithms. The graph shows each
model configuration’s loss values, revealing how well they detect dataset abnormalities. Subfigure (a)
shows the Attention-based CNN and LSTM model’s 0.2 loss value. This anomaly detection model
uses CNN and LSTM networks with attention algorithms. Subfigure (b) shows the CNN and LSTM
model’s loss values without attention, 0.3. This model uses CNN and LSTM networks for anomaly
detection but lacks attention methods to focus on key features, perhaps resulting in a larger loss than
the attention-based model. The attention-LSTM model has a loss value of −2.0 in subfigure (c). An
LSTM network with attention mechanisms captures temporal relationships and detects abnormalities.
This model detects abnormalities well due to its negative loss value. Finally, subfigure (d) shows the
CNN model with attention’s 2.6 loss value. With attention techniques to improve anomaly detection,
this model uses CNN networks alone. The positive loss value shows this model may not capture
anomalies as effectively as LSTM-based models.
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Figure 6: The loss graph on the N-BaIoT dataset (a) Attention-based CNN and LSTM (b) CNN and
LSTM without attention (c) LSTM with attention (d) CNN with attention

Fig. 7 showcases the ROC-AUC graphs for two distinct datasets: (a) the N-BaIoT dataset and
(b) the IoT-23 dataset. The graphs depict the performance evaluation of an Attention-based CNN
and LSTM model applied to these datasets. The ROC-AUC curve is a widely used evaluation
metric for binary classification tasks. It shows the compromise between categorization criteria in
terms of sensitivity (how often a test is correct) and specificity (1 minus sensitivity). Better model
efficacy in differentiating between positive and negative examples is indicated by a higher ROC-AUC
value. In both subplots, the Attention-based CNN and LSTM model exhibits exceptional accuracy,
ranging from 99% to 100%. This remarkable accuracy suggests that the model achieves highly precise
predictions on both the N-BaIoT and IoT-23 datasets.
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Figure 7: The ROC-AUC graph on (a) the N-BaIoT dataset (b) the IoT-23 dataset using Attention-
based CNN and LSTM model

6 Conclusion

In conclusion, this study presents a system for identifying anomalies, ACNN-LSTM, which is
specifically designed for use in the IoT. Throughout the paper, the critical topic of security threats
in IoT systems is discussed, as well as the challenges associated with detecting aberrant behavior
and compromised nodes within these systems. By developing an efficient and reliable framework for
anomaly detection, this study enhances the security and reliability of IoT-based systems for decision-
making. The ACNN-LSTM model combines CNN units with an LSTM-based attention mechanism,
leveraging the advantages of both architectures. The CNN units with the attention mechanism address
memory loss and gradient dispersion issues, ensuring robust performance in capturing relevant
characteristics of IoT data. The LSTM unit, known for its effectiveness in time series prediction, is also
integrated into the model, preserving its benefits. To check out the proposed structure, two real-world
IoT datasets, namely N-BaIoT and IoT-23, were used for experimentation. The results demonstrate
remarkable performance, with the N-BaIoT dataset achieving an impressive overall accuracy of 99%
and precision, recall, and F1-score reaching 0.99. Similarly, the IoT-23 dataset exhibits a commendable
accuracy of 99%, with precision and recall at 0.99 and 0.98, respectively. Comparing the experimental
findings with state-of-the-art IoT-based anomaly detection methods, the proposed ACNN-LSTM
framework proves its effectiveness in improving the accuracy of detecting malicious data in IoT
systems. The high accuracy, precision, recall, and F1 scores obtained from the experiments underscore
the robustness and reliability of the proposed model. The proposed ACNN-LSTM model has shown
promising results in detecting anomalies in IoT data. However, further investigation can be done to
explore its scalability to larger and more complex IoT systems. This could involve experimenting with
larger datasets or real-world deployments to evaluate the model’s performance under different scales
and network conditions. Transfer learning can be a valuable approach in anomaly detection, especially
when labeled anomaly data is limited. Future research can explore the potential of leveraging pre-
trained models on related tasks or datasets to boost the efficiency of the ACNN-LSTM model. IoT
data anomalies can be detected by fine-tuning the model using transfer learning techniques.
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