
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.042711

ARTICLE

Software Coupling and Cohesion Model for Measuring the Quality
of Software Components

Zakarya Abdullah Alzamil*

Software Engineering Department, CCIS King Saud University, Riyadh, 11495, Saudi Arabia

*Corresponding Author: Zakarya Abdullah Alzamil. Email: zakarya@ksu.edu.sa

Received: 09 June 2023 Accepted: 24 October 2023 Published: 26 December 2023

ABSTRACT

Measuring software quality requires software engineers to understand the system’s quality attributes and their
measurements. The quality attribute is a qualitative property; however, the quantitative feature is needed for
software measurement, which is not considered during the development of most software systems. Many research
studies have investigated different approaches for measuring software quality, but with no practical approaches
to quantify and measure quality attributes. This paper proposes a software quality measurement model, based
on a software interconnection model, to measure the quality of software components and the overall quality
of the software system. Unlike most of the existing approaches, the proposed approach can be applied at the
early stages of software development, to different architectural design models, and at different levels of system
decomposition. This article introduces a software measurement model that uses a heuristic normalization of the
software’s internal quality attributes, i.e., coupling and cohesion, for software quality measurement. In this model,
the quality of a software component is measured based on its internal strength and the coupling it exhibits with
other component(s). The proposed model has been experimented with nine software engineering teams that have
agreed to participate in the experiment during the development of their different software systems. The experiments
have shown that coupling reduces the internal strength of the coupled components by the amount of coupling they
exhibit, which degrades their quality and the overall quality of the software system. The introduced model can help
in understanding the quality of software design. In addition, it identifies the locations in software design that exhibit
unnecessary couplings that degrade the quality of the software systems, which can be eliminated.

KEYWORDS
Software coupling measurement; software cohesion measurement; quality attributes measurement; software quality
measurement; software quality modeling

1 Introduction

Measuring software quality is one of the challenges in software development. It requires software
engineers to understand software quality attributes that describe internal or external system features
or properties, and how to measure them. However, measuring software quality attributes is a major
challenge for software engineers as they are qualitative and measurement requires quantitative metrics.
It has been found that quality attributes are primarily addressed in a general form without any

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.042711
https://www.techscience.com/doi/10.32604/cmc.2023.042711
mailto:zakarya@ksu.edu.sa


3140 CMC, 2023, vol.77, no.3

empirical model or specific quantifiable approach [1] that may help in integrating quality attributes in
the development process.

Stevens et al. [2] introduced software coupling and cohesion as internal attributes of a software
component. Since then, they have been considered as main software metrics along with complexity,
inheritance, and size [3], and are being used to assess different quality attributes of software systems
such as reusability and maintainability [4].

In addition, the proposed approach is not limited to object-oriented designed systems; it can be
applied to different architectural design models. Furthermore, the proposed approach can be applied
at different levels of system decomposition, including the subsystem level, component level, and class
or module level.

In this paper, the author investigates software coupling and cohesion to propose a software model
that uses a heuristic normalization of the software’s internal attributes for measuring the quality
of software components as well as the overall design quality of the software system. The proposed
model aims to provide software engineers with practical guidelines to understand the quality of the
software under development and identify places in the design that may influence the quality of the
software components as well as the overall quality of the software system. Unlike most of the existing
approaches, the proposed approach can be applied at the early stages of software development to
different architectural design models, and at different levels of system decomposition. The paper is
organized as follows; Section 2 presents the related work, Section 3 describes the proposed approach,
Section 4 illustrates the experiments, and finally, Section 5 presents the conclusions.

2 Related Works

There have been many studies that investigate quality attribute measurement and evaluation of
software systems at different stages of software development and for different purposes. Coupling and
cohesion are among the most explored software internal quality attributes that have been investigated
for different purposes such as fault prediction [5], energy consumption [6], program restructuring [7],
and maintainability and testability [8].

Many approaches have been proposed to evaluate the quality of software systems using different
coupling and cohesion metrics. These different approaches have been applied to software systems at
the design level and source code level, and have used different coupling and cohesion metrics, such
as Martin’s metrics [8], which aim to measure direct coupling among software packages, i.e., classes,
coupling between objects (CBO) which aims to measure coupling among object-oriented classes., and
Lack of cohesion in methods (LCOM) [9] which has been extended in a series of LCOM metrics [10],
which aim to measure similarity degree of methods based on the commonly used instance variables
between methods to measure the inter-relatedness between class methods. In the following paragraphs,
those approaches are briefly presented.

Changeability measures have been proposed in [11] using coupling among object-oriented classes
to estimate the impact of the changeability of the classes by extracting associations among them.
These measures identify the ripple effect to measure the change propagation, its impact on the classes,
and the cost of class change. An approach to evaluate software reliability concerning correlated
component failures was proposed in [12] using internal coupling among software components based
on a multivariate Bernoulli distribution, in which components’ dependencies are collected by static
analysis and then applied to a real-time software application to illustrate the effectiveness of the
software reliability evaluation. A dynamic software coupling metric has been introduced in [13] as



CMC, 2023, vol.77, no.3 3141

a weighted measurement that uses the method calls in terms of the number of interactions between
classes in object-oriented software. In this dynamic approach, data is collected at runtime, and the
number of method calls is compared to the static coupling dependency to compute the coupling
degree statically and dynamically, in which the dynamic coupling metric complements the static ones.
Aggregated coupling and cohesion metrics have been used in [14] to predict the quality of services
properties of web services. This approach uses source code metrics and machine-learning techniques
to automate the prediction of QoS properties and improve its efficiency.

Reference [15] used one class classification technique to evaluate the maintainability of a software
system at the package level. The proposed methodology evaluates software maintainability based
on four static analysis source code metrics, namely: complexity, cohesion, coupling, and inheri-
tance. The results have shown that static analysis metrics enable the effective identification of non-
maintainable components at an early stage, which represent around 50% of the software package
lifecycle. Kaur et al. [4] have proposed a fuzzy model that uses internal package-level metrics, i.e.,
coupling and cohesion, to assess external quality attributes such as reusability, maintainability, and
understandability of aspect-oriented systems at the package level. A package cohesion measure was
proposed in [16] for assessing the reusability of aspect-oriented systems at the package level, which
may help software developers develop high-quality software. This proposed metric is based on formal
definitions and relations among the elements of the package.

A cohesion metric for classes in object-oriented software was proposed in [17] to reduce the
maintenance effort of classes. The authors proposed a low-level attribute-method usage class cohesion
metric that is based on the instance variable used by class methods at a source code level. This proposed
cohesion metric is based on three types of relationships; received, e.g., when the instance variable is
received as a parameter; manipulated, e.g., when the instance variable is used in computation within
the method body; and returned, e.g., when an attribute is returned by a method. Low-level similarity-
based class cohesion and class cohesion metrics are used in [18] to measure the quality of program
code that uses code snippets. In this technique, the quality of the recipient class is measured before the
addition of the snippet, immediately after the addition of the snippet, and at later stages of software
development. The aim was to determine the impact of the addition of snippets on the program’s quality,
and the authors found that in 70% of the cases, the copied snippet affected cohesion, which may lead
to quality deterioration.

Refactoring and re-refactoring operations on code structure were investigated in [19] to improve
the code structural quality by understanding the effect on internal quality attributes and to check
whether re-refactoring is more effective in improving attributes when compared to single operations. In
this approach, descriptive analysis and statistical tests are used to deeply understand the effect of both
refactoring and re-refactoring on internal quality attributes. This analysis aimed to understand when
and how re-refactoring affects code metrics that quantify cohesion, complexity, coupling, inheritance,
and size. This study has revealed that most operations improve attributes presumably associated with
the refactoring type applied; the other operations keep those attributes unaffected. A non-dominated
sorting genetic algorithm has been used in [7] to automate the restructuring process of object-oriented
software packages. The proposed approach computes coupling and cohesion for package restructuring
using different types of structural, lexical, and change history class information. The results of applying
the proposed approach to restructure five object-oriented software applications indicate that such an
approach may improve the design quality of the software systems under development.

The relationships between package size and internal maintainability attribute metrics such as cou-
pling, cohesion, and complexity were analyzed in [20]. The study aims to identify the maintainability
issues and metrics useful for identifying refactoring opportunities for large packages. The proposed



3142 CMC, 2023, vol.77, no.3

approach has experimented with 111 open-source Java projects to collect package-level metrics, in
which higher maintainability issues in large packages are observed as indicated by the used metrics. In
addition, the results have shown strong relationships between cohesion and complexity with package
size, which may be used to identify large package refactoring opportunities. The influence of process
and developer-related factors on design decay has been investigated in [21] by measuring internal
quality attributes such as coupling, cohesion, complexity, inheritance, and size. In this study, seven
software systems with an average of 45 K commits in more than six years of project history have been
analyzed to identify the effects of interacting factors that cause modules to decay and observe decay
patterns in these modules. The results have shown that the developers-related factors, such as first-time
contributors, and process-related factors such as the size of a change, have no negative effects on the
changed classes. In contrast, when both of these factors interact, a negative effect on the code that leads
to decay is observed. Reference [22] proposed a dynamic approach for identifying software reusability
using coupling detection among software components at the design level. It uses dynamic notions of
sequence diagrams to understand the software system’s behaviors. Data and control dependencies have
been used to detect the dependence among different software components. The dependencies among
software components are defined when one component influences the output of another component.
A client-based class cohesion metric was proposed in [23] to measure class cohesion based on how
its clients use its public methods. This proposed metric can be used at the design phase with the
information from high-level design, in which information can be collected from the communication
diagram.

A prediction model has been proposed in [24] to understand whether the existence of faults in the
code indicates a quality problem in software design. This study investigates the impact of bug fixing
on software internal quality attributes such as complexity, coupling, and cohesion by experimenting
with the proposed model in thirteen different projects using five different classifiers. The results have
shown that the prediction model using least-squares versions of support-vector machines (SVM)
performs better than other techniques, which shows that more than 80% of the cases with bugs in
classes that have at least one critical attribute. Reference [25] proposed a multi-objective hyper-heuristic
method to improve the software maintenance process by improving the software design with better
modularization. The proposed clustering model aims to minimize coupling, maximize cohesion, and
enhance modularity. The results of the experiments have shown that the resulting modularized software
is more optimized with lower coupling and higher cohesion. In addition, the resulting software is
more robust, easier to maintain, and with better modularity. An information-theoretic software re-
modularization approach has been proposed in [26] to re-modularize object-oriented software to
improve its design quality. The proposed model uses entropy-based similarity measures as objective
functions to optimize the internal software structure, in addition, other metrics are used as objective
functions such as inter-module class change coupling. The proposed approach has experimented
with seven object-oriented software systems, which shows that the approach is a good alternative for
software re-modularization to improve the quality of software systems.

Reference [27] proposed an approach that aims to select the most suitable metric, e.g., complexity,
cohesion, coupling, and inheritance, for detecting specific design defects. In this approach, a fuzzy
decision-making trial and evaluation laboratory method has been applied to identify the detection
rules. The proposed approach has been experimented with four open-source projects and has shown
the efficiency of the fuzzy method in identifying the best rules to identify design defects. A usage
pattern-based cohesion metric was proposed in [28] to measure cohesion at the module level of object-
oriented software. This approach aims to evaluate the quality and modularity of a software system at
the design level and improve overall cohesion. The proposed metric uses the frequent usage patterns



CMC, 2023, vol.77, no.3 3143

extracted from the interactions of module functions to measure the cohesiveness of the module, which
is used to perform clustering of modules to maximize cohesion and minimize coupling among modules.
The experiment on two Java programs has shown an improvement in the cohesiveness of the software
system.

A summary of the above-mentioned related works, their used metrics, and the aim of each
approach is presented in Appendix A. Although the existing measurement approaches are valuable and
helpful for many software systems, they are limited to certain quality attributes, certain programming
languages, or specific domains, and are qualitative, in which they depend on domain experts to predict
or provide judgment to analyze the quality attributes. In addition, most of the well-known coupling
and cohesion metrics, such as direct coupling between classes [11], CBO, and LCOM [9], are based
on instance variables used by class methods and/or the similarity degree of methods. However, this
requires very detailed design, such as method definition and instance variable usage, and may require
the availability of the source code to analyze classes, methods, or parameters at the early stages of
software development. However, detailed design and/or source code are not available at the early
stages of software development or due to reused or outsourced components or services. Moreover,
software quality may not be measured or predicted by these approaches until the late stages of
software development, when software changes are costly. Another limitation of the current approaches
is that most of the proposed approaches are limited to object-oriented software systems. However,
most modern software systems are designed based on different architectural designs, such as service-
oriented, interaction-oriented, and component-based.

In this research, the author investigates software coupling and cohesion to propose a software
quality measurement model that uses a heuristic normalization of the software’s internal quality
attributes for measuring software components as well as the overall design quality of the software
system. Unlike most of the existing approaches, the proposed approach can be applied at the early
stages of software development, in which very detailed design or source code is not required. In
addition, the proposed approach is not limited to object-oriented designed systems; it can be applied to
different architectural design models. Furthermore, the proposed approach can be applied at different
levels of system decomposition, including the subsystem level, component level, and class or module
level.

3 Proposed Approach

This section describes the proposed approach for measuring the quality of software components
using coupling and cohesion, in which a formal model is introduced. Among the basics of software
analysis and design is divide and conquer, in which the domain problem is decomposed into smaller
problems or sub-problems, and every sub-problem may focus on certain concerns or aspects of the
domain problem that may be designed as a subsystem or component. Regardless of the system’s
architectural design and structure, system design consists of a set of components, connectors, and
configurations, to which the quality attributes are related. To measure the system quality attributes,
one must decompose the system into its main building blocks, i.e., main subsystems/components;
understand their properties in terms of coupling, cohesion, and configuration; and identify the desired
quality attributes. In this proposed approach, the author uses the notions of software coupling and
cohesion as measures of the overall design quality. Software cohesion measures the internal strength of
software components, and software coupling measures the connections and/or dependencies among
these components. In addition, the author introduces a formal model to understand the configurations
among software components for better software quality. The following paragraphs describe coupling
and cohesion measures:



3144 CMC, 2023, vol.77, no.3

Software coupling is a measure of the interdependence degree between software components.
Software components may exhibit different levels of interdependence, which were identified by Myers
[29] from the worst to the best coupling as follows; content coupling, common coupling, external
coupling, control coupling, stamp coupling, and data coupling. Data coupling occurs when simple
data, i.e., a simple argument, is passed between the interconnecting components. Stamp coupling
occurs when a data portion of a data structure is passed between components. Control coupling
occurs when a control, such as a flag, is passed between components. External coupling occurs when
the two components are tied to an environment or medium that is external to the system, such as
communicating via an I/O device or file. Common coupling occurs when the interacting components
reference global data. Content coupling occurs when one component uses or changes the data or
control information maintained within the boundary of another component. Although coupling
among software components is not desirable, in most cases it is not avoidable; therefore, the objective
is to minimize it to the lowest level. Software coupling can be computed using different techniques,
such as data and control flow analysis [22].

The cohesion of a software component is a measure of its relative functional strength. A cohesive
component is desired, and software engineers should avoid low-level cohesion when designing software
components. Cohesion has been categorized by Stevens et al. [2] from lowest to highest into seven
types, namely; coincidental, logical, temporal, procedural, communication, sequential, and functional
cohesion. Coincidental cohesion occurs when a component performs a set of tasks that are not related
or are loosely related. Logical cohesion occurs when performed tasks, i.e., processing elements within
the component, are related logically. Temporal cohesion occurs when tasks must be executed within
the same span of time. Procedural cohesion occurs when the tasks must be executed in a specific
order. Communication cohesion occurs when the tasks operate on one area of the data structure.
Sequential cohesion occurs when the output of one processing element is used as input for another
element within the component. Functional cohesion occurs when the component performs a single
and well-defined task.

A software component may exhibit more than one type of cohesion, but the overall level of
cohesion would be the worst type that it exhibits. The cohesion of a software component is measured
by computing the relatedness of different elements or methods within the component through their
interactions. Therefore, software cohesion can be computed by identifying the components’ interfaces,
in which the interactions are defined among the component’s methods/signatures to determine the
cohesion type based on the aforementioned classification.

The proposed model in this research has adopted the software interconnection model introduced
by Perry [30], in which a basic input/output predicate was defined. The interconnection model defines
input predicates as assumptions or preconditions that must be satisfied if a sequence of code is
to execute successfully. The output predicates are defined as the results or post-conditions that
are guaranteed to be true if the input predicates are satisfied. These input/output predicates, i.e.,
preconditions and post-conditions, represent the behavior of either the system or a system component.
In the proposed model, the quality of a component is measured based on its internal strength and its
coupling with other components, in which the component’s behavior and/or expected results depend on
the output/post-conditions of other components that the concerned component is coupled with. The
coupling between different components is defined in terms of a graph connecting components by edges,
where the assumptions/preconditions of one component are dependent on the output/post-conditions
of another component that it is connected with, which consequently influences its output/post-
conditions, and the behavior and quality attributes of the component are influenced as well.



CMC, 2023, vol.77, no.3 3145

Formally, coupling between components of a software system S is represented by a directed graph
as an ordered pair S = <C, D> where C is a set of n nodes representing the system’s components,
C = <c1, c2, . . ., cn>, and D is the set of ordered pairs of nodes representing coupling between
these components, such that dij

(
ci, cj

)
describes the dependency of component ci on component cj

iff POSTCOND(cj) influences PRECOND(ci), where PRECOND(ci) is the assumption/precondition
of component ci and POSTCOND(cj) is the output/post-condition of component cj. Consequently, if
dij

(
ci, cj

)
proves true, then dij

(
POSTCOND(ci), POSTCOND(cj)

)
is true as well, in which the coupling

of component ci with component cj influences its behavior and consequently influences the quality
attributes of the software system S.

Similarly, the cohesion of a software component SC is represented by a directed graph as an
ordered pair SC = <K, R> where K is a set of m functions K = <k1, k2, . . . , km > that SC performs and
R is the set of interdependencies between functions of SC, such that rij(ki, kj) describes the functions’
relatedness in terms of dependency of function ki on function kj iff POSTCOND(kj) influences
PRECOND(ki), where PRECOND(ki) is the assumption/precondition of function ki and POST-
COND(kj) is the output/post-condition of function kj. Consequently, if rij(ki, kj) proves true, then
rij

(
POSTCOND(ki), POSTCOND(kj)

)
is true as well, in which the cohesiveness of the software com-

ponent SC influences its behavior and consequently influences its quality attributes and the software
system S as well. For given dij

(
ci, cj

)
and rij(ki, kj), there is drij

(
POSTCOND(ki), POSTCOND(cj)

)

that describes the influence of the coupling of component ci with component cj on the cohesion of
component ci by influencing function ki of component ci, iff dij

(
POSTCOND(ci), POSTCOND(cj)

)

and rij

(
POSTCOND(ki), POSTCOND(kj)

)
prove true. As a result, the internal strength of component

ci is reduced by the amount of coupling it exhibits with the cj component. Fig. 1 depicts a high-level
diagram of the framework of the proposed model. It consists of two parts, the parsing and graph
generation part and the analysis and computation part. The parsing and graph generation part reads
the software artifacts such as use cases, class diagrams, source code, etc., to build the graph, and the
analysis and computation part analyzes the graph to compute coupling and cohesion to provide more
insights into the system’s internal quality for quality tradeoff and improvement.

Parsing &
Graph Generation

INPUT

OUTPUT
Analysis &

Computation

Figure 1: Proposed model framework

In this research study and for measuring coupling and cohesion, the author heuristically quantifies
the qualitative description of the different types of coupling and cohesion to a normalized numerical
spectrum format range from zero to one, i.e., a range of 0–1, in which zero represents the lowest and
one represents the highest. This range distributes the weight evenly among the levels/types of coupling
and cohesion. Tables 1 and 2 show the heuristic weighting of different types of coupling and cohesion,



3146 CMC, 2023, vol.77, no.3

respectively. As stated earlier, the best case is to have components with the highest cohesion and lowest
coupling, in which the highest cohesion is represented as one and no coupling is represented as 0.01
because it is not avoidable.

Table 1: Component weighted coupling

Coupling Interdependence Weight of dij(ci, cj)

No coupling No interdependence 0.01
Data coupling Simple data is passed between components 0.15
Stamp coupling A portion of the data structure is passed between

components
0.30

Control coupling Control flag is passed between components 0.45
External coupling Two components are tied to an external environment

or medium, i.e., I/O device or file
0.60

Common coupling Components reference a global data 0.75
Content coupling One component alters the data/control information

within the boundary of another component
1.0

Table 2: Component weighted cohesion

Cohesion Interdependence Weight of rij(ki, kj)

Coincidental
cohesion

No dependence/loose dependence 0.01

Logical cohesion Control dependence 0.15
Temporal cohesion Time dependence/tasks executed within the same span

of time
0.30

Procedural cohesion Execution order dependence/executed in a specific
order

0.45

Communication
cohesion

Shared data structure 0.60

Sequential cohesion Data dependence 0.75
Functional cohesion Single well-defined task 1.0

Coupling describes the interdependencies among n components, in which a component ci may
exhibit different types of coupling with different components. All dependencies that component ci

exhibits with n components produce the aggregated coupling of the component WCP (ci) based on
the heuristic weights in Table 1, as follows:

WCP (ci) =
∑n

j=1 dij(ci, cj)

n
(1)

Cohesion represents the internal strength of a component, which describes the relatedness of the
functions performed by the component in the form of their interdependencies. A component may



CMC, 2023, vol.77, no.3 3147

exhibit different types of cohesion at the same time, i.e., it may perform different functions that are
related logically and share the same data structure, in which it exhibits logical and communication
cohesion simultaneously, which should be considered when measuring its cohesiveness. Aggregated
cohesion of the component WCH (ci) with m functions can be computed based on the heuristic weights
in Table 2 as follows:

WCH (ci) =
∑m

t=1 CH(ft)

m
(2)

where CH(ft) describes the relatedness of function ft with other functions within component ci, and
is computed as follows:

CH(ft) =
∑m

t=1 rtj(kt, kj)

m
(3)

The overall cohesion of a software system S with n components ACH(S) can be computed as
follows:

ACH (S) =
∑n

i=1 WCH (ci)

n
(4)

Although high cohesion and low coupling are desired for good design, they are not necessarily
correlated, either positively or negatively, i.e., when one is low or high, it does not necessarily cause
the other to be high or low, respectively, as it depends on the design quality, the software engineers’
experience, and the followed development standards. However, cohesion measures the component’s
internal strength, representing its internal quality; such strength is influenced by its coupling with
other component(s) regardless of their level of cohesion. In other words, the best case occurs when a
component has no coupling or minimal coupling with different component(s) that are highly cohesive
to avoid degrading its cohesion. However, in most cases, coupling reduces the internal strength of the
coupled component(s), even if they are highly cohesive. The author proposes a heuristic approach to
measure the design quality of a software component ci in the form of the influence of the aggregated
coupling WCP (ci), Eq. (1), on the aggregated cohesion WCH (ci), Eq. (2). Therefore, the influence of
coupling on the cohesion of a component ci is computed by reducing its aggregated cohesion WCH (ci)

by a percentage equal to the aggregated coupling WCP (ci) it exhibits to compute its overall quality.
The design quality of component ci denoted as Q(ci) is computed as follows:

Q(ci) = WCH (ci) − WCH(ci) ∗ WCP (ci) (5)

The overall quality of a software system S with a set of n software components C = < c1, c2, . . . ,
cn > can be computed as follows:

Q(S) =
∑n

i=1 Q(ci)

n
(6)

The author has experimented with the proposed approach in several real-world software projects
to investigate its applicability. The following section describes the experimental study.

4 Experimental Study

This section describes the experimental study that has been performed to evaluate the proposed
approach. In this experimental study, several software systems from different domains and managed
by different software engineering teams have been investigated using the proposed measurements in



3148 CMC, 2023, vol.77, no.3

this approach to examine the quality of these software systems. The author has experimented with
the proposed approach of nine software systems to be developed by undergraduate and postgraduate
students of the Software Engineering Department at King Saud University for their graduation
projects. Although the selected software systems are training and/or research software projects, unlike
commercial software and development teams, they are available, accessible, and willing to participate
during development.

The development teams of software engineers have agreed to participate in this experiment, in
which online meetings are scheduled and conducted for each team individually to introduce and
describe the proposed model to them. The participants have been provided with a guideline to help
them identify and measure coupling and cohesion within their software components. The teams have
examined their software systems to measure their quality using the proposed measurement in this
approach. However, experimental data are not open-source and unavailable to the public due to
ownership and copyright issues in graduation projects. Table 3 describes the software systems used
in this experiment.

Table 3: Software systems used in the experiments

No. Software system Description

1 CBIR system Content-based image retrieval system that incorporates user relevance
feedback to enhance the retrieved results.

2 Fatwa system Question-answering Islamic fatwa system using machine learning and
information retrieval techniques to retrieve the most relevant and
accurate answers to Islamic decrees (Fatwas) for a fatwa seeker’s
question.

3 Habits tracking
system

A software system that aims to track and analyze personal health
activities to help people to increase their productivity.

4 Puzzle-solving
system

Puzzle app that aims to improve people’s logical thinking skills by
solving puzzles using an augmented reality approach.

5 Tadreeb system Online interns portal provides trainees with training/coop
opportunities and helps companies/firms find suitable trainees for
on-the-job training.

6 Restaurant rating
system

A web-based system that aims to rate restaurants/cafes for individuals
to choose for eating or drinking. The system uses different techniques
to collect and analyze data to rate the restaurants based on specific
rating criteria.

7 Video games rating
system

A software system that automatically classifies and rates video games
based on game reviews using a machine-learning model that employs
Islamic classification standards.

8 Information
security awareness
system

A software system that examines published posts on social media
platforms, e.g., Twitter and Facebook, to warn the users of contents
that contain sensitive data such as personal information and banking
data.

9 Patient companion
system

A software system that provides several religious and social services to
hospital patients.



CMC, 2023, vol.77, no.3 3149

The following paragraphs illustrate the coupling and cohesion measurement of these software
systems using the equations described earlier to compute the overall quality of the software system.
For simplicity’s sake, these measurements are presented in the form of tables.

The CBIR system consists of four major components as listed in Table 4. The development team
has identified the components with a sole single function, namely, Image Processing and Feature
Extraction components, in which their weighted cohesion rij(ki, kj) should be one based on the weights
shown in Table 2, and as a result, their aggregated cohesions WCH (ci), Eq. (2), are one as well.
The remaining components, i.e., Similarity Comparison and Relevance Feedback, each have several
functions, so their aggregated cohesion WCH (ci) is measured by the development team using the
aforementioned equations based on the weights shown in Table 2. The computation of the aggregated
cohesion WCH (ci) of the Similarity Comparison component is presented in Table 5, in which the
aggregated cohesion WCH (ci) of the remaining components is computed similarly.

Table 4: Weighted coupling dij(ci, cj), aggregated coupling WCP (ci), aggregated cohesion WCH (ci),
component’s quality Q(ci), and overall quality Q(S) of CBIR system

dij

(
ci, cj

)
Image
processing

Feature
extraction

Similarity
comparison

Relevance
feedback

WCP (ci) WCH (ci) Q(ci)

Image processing • 0.45 0.45 0.45 0.45 1.0 55%
Feature extraction 0.75 • 0.15 0.15 0.35 1.0 65%
Similarity
comparison

0.75 0.30 • 0.15 0.40 0.59 35%

Relevance feedback 0.75 0.15 0.15 • 0.35 1.0 65%

ACH(S), Eq. (4) 90%

Q(S), Eq. (6) 55%

Table 5: Weighted cohesion rij(ki, kj) among the functions of the similarity comparison component
and its aggregated cohesion WCH (ci)

rij(ki, kj) Color
comparison

Texture
comparison

Edge
comparison

Combination
comparison

CH(f t),
Eq. (3)

Color comparison • 0.60 0.60 0.15 0.45
Texture comparison 0.60 • 0.60 0.15 0.45
Edge comparison 0.60 0.60 • 0.15 0.45
Combination comparison 1.0 1.0 1.0 • 1.0

WCH (ci), Eq. (2) 0.59

The development team has measured the weighted coupling dij(ci, cj) among the system’s compo-
nents based on the heuristic weighted coupling shown in Table 1 to compute the aggregated coupling
of the component WCP (ci). In addition, the development team has computed the design quality
of the component Q(ci), the overall cohesion of the system ACH(S), and the overall quality of the
system Q(S) as presented in Table 4. As can be noticed, cohesion describes the internal strength



3150 CMC, 2023, vol.77, no.3

of the software system, in which it exhibits high internal strength, i.e., 90%. In addition, it shows
how the amount of coupling it displays can degrade its quality, in which the quality Q(S) is reduced
significantly, from 90% to 55%, which indicates the overall quality of the system, which is reduced
by 39%. Software engineers may use this information to localize the places in the software design that
exhibit unnecessary component couplings and improve the software design for better software quality.

The Fatwa system consists of four major components as listed in Table 6. The development
team has identified the components with a sole single function, namely, Dataset Extraction, Fatwas
Preprocessing, and Question Classification components, in which their weighted cohesion rij(ki, kj)

should be one based on the weights shown in Table 2, and as a result, their aggregated cohesions
WCH (ci) are one as well. The development team has measured the aggregated cohesion WCH (ci)

and aggregated coupling WCP (ci) of the remaining component, i.e., Information Retrieval which has
several functions, similarly as illustrated earlier. In addition, the design quality of the component Q(ci),
the overall cohesion of the system ACH(S), and the overall quality of the system Q(S) were computed
as well and presented in Table 6. It can be noticed that cohesion describes the internal strength of
the software system and how the coupling it exhibits influences its quality, in which the Q(S) is
reduced from 85% to 79%, which indicates the overall quality of the system. Although the reduction in
quality is 7%, this can help the software engineers identify the locations of couplings among software
components that cause such degradation and decide how to trade off the necessity of such couplings
for the amount of quality improvement that can be gained.

Table 6: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Fatwa system

dij

(
ci, cj

)
Dataset
extraction

Fatwas
preprocessing

Question
classification

Information
retrieval

WCP (ci) WCH (ci) Q(ci)

Dataset
extraction

• 0.15 0.15 0.15 0.15 1.0 85%

Fatwas
preprocessing

0.01 • 0.01 0.01 0.01 1.0 99%

Question
classification

0.01 0.01 • 0.15 0.07 1.0 93%

Information
retrieval

0.01 0.01 0.01 • 0.01 0.38 38%

ACH(S), Eq. (4) 85%

Q(S), Eq. (6) 79%

The Habits tracking system consists of six major components as listed in Table 7. The development
team has identified the components with a sole single function, namely, Recommendation and Report
Generator components, in which their weighted cohesion rij(ki, kj) should be one based on the
weights shown in Table 2, and as a result, their aggregated cohesions WCH (ci) are one as well. The
development team has measured the aggregated cohesion WCH (ci) and the aggregated coupling
WCP (ci) of the remaining components that have several functions, i.e., Settings, Activity Tracker,
Analysis, and Authentication. Table 7 shows the design quality of the component Q(ci), the overall



CMC, 2023, vol.77, no.3 3151

cohesion of the system ACH(S), and the overall quality of the system Q(S). As can be seen, cohesion
describes the internal strength of the software system and how the amount of coupling it exhibits
reduces its quality by 24%, in which the overall quality of the system Q(S) is reduced from 72% to
55%. Such quality degradation can be tracked in the software design by localizing the couplings that
cause such quality degradation to avoid or minimize them.

Table 7: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Habits tracking system

dij
(
ci , cj

)
Settings Activity

tracker
Analysis Recommendation Authentication Report

generator
WCP (ci) WCH (ci) Q(ci)

Settings • 0.15 0.15 0.30 0.30 0.01 0.18 0.21 17%
Activity tracker 0.30 • 0.01 0.60 0.15 0.60 0.33 1.0 67%
Analysis 0.01 1.0 • 0.45 0.01 0.30 0.35 0.10 7%
Recommendation 0.01 0.01 0.75 • 0.01 0.30 0.22 1.0 78%
Authentication 0.30 0.01 0.01 0.01 • 0.15 0.10 1.0 90%
Report generator 0.01 0.01 1.0 0.30 0.01 • 0.27 1.0 73%

ACH(S), Eq. (4) 72%

Q(S), Eq. (6) 55%

Puzzle-solving system consists of five major components as listed in Table 8. The development
team has identified the components with a sole single function, namely, the Player component, in
which its weighted cohesion rij(ki, kj) should be one based on the weights shown in Table 2, and as
a result, its aggregated cohesions WCH (ci) is one as well. The development team has measured the
aggregated cohesion WCH (ci) and the aggregated coupling WCP (ci) of the remaining components
that have several functions, i.e., Main Menu, AR View, Puzzle, and Scoreboard. Table 8 shows the
design quality of the component Q(ci), the overall cohesion of the system ACH(S), and the overall
quality of the system Q(S). As can be noticed, the quality of this system is low, as described by its
cohesion. The low quality of the software system is worsened by the amount of coupling it exhibits,
in which the Q(S) is reduced from 42% to 31%, which indicates the overall quality of the system.
Although this software system has low internal strength, which indicates very low quality, it shows
how the coupling degraded its quality by 26%. This measurement provides software engineers with
more insight into their software system, in which they can inspect their software design to identify the
coupling among components that worsen its quality and minimize it to increase the quality to a better
level.

Table 8: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Puzzle-solving system

dij

(
ci, cj

)
Main menu AR view Puzzle Player Scoreboard WCP (ci) WCH (ci) Q(ci)

Main menu • 0.15 0.15 0.01 0.15 0.12 0.05 4%
AR view 0.01 • 0.60 0.60 0.01 0.31 0.48 33%
Puzzle 0.01 0.45 • 0.15 0.15 0.19 0.38 31%
Player 0.30 0.60 0.15 • 0.30 0.34 1.0 66%
Scoreboard 0.15 0.01 0.01 0.30 • 0.12 0.21 19%

(Continued)



3152 CMC, 2023, vol.77, no.3

Table 8 (continued)

dij

(
ci, cj

)
Main menu AR view Puzzle Player Scoreboard WCP (ci) WCH (ci) Q(ci)

ACH(S), Eq. (4) 42%

Q(S), Eq. (6) 31%

The Tadreeb system consists of five major components as listed in Table 9. The development team
has identified the components with a sole single function, namely, the Post View component, in which
its weighted cohesion rij(ki, kj) should be one based on the weights shown in Table 2, and as a result,
its aggregated cohesions WCH (ci) is one as well. The development team has measured the aggregated
cohesion WCH (ci) and the aggregated coupling WCP (ci) of the remaining components that have
several functions, i.e., Post Controller, Post Model, HRE Model, and Trainee Model. Table 9 shows the
design quality of the component Q(ci), the overall cohesion of the system ACH(S), and the overall
quality of the system Q(S). The quality of this software system is very low, as described by its internal
strength, the cohesion, however, such low quality is deteriorated by the amount of coupling it exhibits,
in which the Q(S) is reduced from 32% to 29%. Although coupling degraded the overall quality of the
software system, the quality of the software is very poor and was degraded by 9%. This measurement
helps software engineers understand the quality of their software systems and make some tradeoffs to
decide whether to focus on improving the internal strength of their software components or minimize
coupling to improve the overall quality.

Table 9: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Tadreeb system

dij

(
ci, cj

)
Post view Post

controller
Post
model

HRE
model

Trainee
model

WCP (ci) WCH (ci) Q(ci)

Post view • 0.3 0.01 0.01 0.01 0.08 1.0 92%
Post controller 0.45 • 1 0.3 0.15 0.48 0.15 8%
Post model 0.01 0.01 • 0.01 0.01 0.01 0.15 15%
HRE model 0.01 0.01 0.01 • 0.01 0.01 0.15 15%
Trainee model 0.01 0.01 0.01 0.01 • 0.01 0.15 15%

ACH(S), Eq. (4) 32%

Q(S), Eq. (6) 29%

The restaurant rating system consists of six major components as listed in Table 10. The devel-
opment team has identified the components with a sole single function, namely, Controller, Review,
and Rating components, in which their weighted cohesion rij(ki, kj) should be one based on the weights
shown in Table 2, and as a result, their aggregated cohesions WCH (ci) is one as well. The development
team has measured the aggregated cohesion WCH (ci) and the aggregated coupling WCP (ci) of the
remaining components that have several functions, i.e., User, Restaurant, and Admin. Table 10 shows
the design quality of the component Q(ci), the overall cohesion of the system ACH(S), and the overall



CMC, 2023, vol.77, no.3 3153

quality of the system Q(S). The quality of this software system is low as described by its internal
strength, the cohesion, however, such low quality is deteriorated by the amount of coupling it exhibits,
in which the Q(S) is reduced from 53% to 38%, which indicates a bad overall quality of the system.
The coupling has degraded the internal strength of this software system and reduced its quality by
28%. Software engineers can use this measurement to inspect the internal structure of the software
system and decide whether to spend more time improving its internal strength or reducing its coupling,
depending on which will provide better overall quality.

Table 10: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Restaurant rating system

dij

(
ci, cj

)
User Controller Restaurant Review Rating Admin WCP (ci) WCH (ci) Q(ci)

User • 0.45 0.15 0.15 0.01 0.01 0.154 0.14 12%
Controller 0.45 • 0.45 0.45 1.0 0.45 0.56 1.0 44%
Restaurant 0.15 1.0 • 0.3 0.3 0.01 0.154 0.01 0.9%
Review 0.3 .45 0.3 • 0.3 0.01 0.272 1.0 73%
Rating 0.01 0.01 0.01 0.15 • 0.01 0.038 1.0 96%
Admin 1.0 0.45 1.0 1.0 0.01 • 0.692 0.057 2%

ACH(S), Eq. (4) 53%

Q(S), Eq. (6) 38%

The video game rating system consists of five major components as listed in Table 11. The
development team has identified the components with a sole single function, namely, VGames-DS,
IGDB, and IGN components, in which their weighted cohesion rij(ki, kj) should be one based on
the weights shown in Table 2, and as a result, their aggregated cohesions WCH (ci) is one as well.
The development team has measured the aggregated cohesion WCH (ci) and the aggregated coupling
WCP (ci) of the remaining components that have several functions, i.e., Naive-Bayes and GUI . Table 11
shows the design quality of the component Q(ci), the overall cohesion of the system ACH(S), and
the overall quality of the system Q(S). The quality of this software system is average as described by
its cohesion, however, such average quality is deteriorated by the amount of coupling it exhibits, in
which the Q(S) is reduced by 8%, from 74% to 68%, which indicates an average overall quality of the
system. Software engineers can use this measurement to gain more insight into the software design and
decide whether to focus on increasing component cohesion or reducing coupling among components,
depending on which will provide better overall quality.

Table 11: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Video games rating system

dij

(
ci, cj

)
VGames-DS Naive-bayes IGDB IGN GUI WCP (ci) WCH (ci) Q(ci)

VGames-DS • 0.15 0.15 0.15 0.3 0.188 1 81%
Naive-bayes 0.15 • 0.01 0.01 0.01 0.045 0.38 36%
IGDB 0.15 0.01 • 0.01 0.01 0.045 1 96%

(Continued)



3154 CMC, 2023, vol.77, no.3

Table 11 (continued)

dij

(
ci, cj

)
VGames-DS Naive-bayes IGDB IGN GUI WCP (ci) WCH (ci) Q(ci)

IGN 0.15 0.01 0.01 • 0.01 0.045 1 96%
GUI 0.3 0.01 0.01 0.01 • 0.083 0.34 31%

ACH(S), Eq. (4) 74%

Q(S), Eq. (6) 68%

The information security awareness system consists of four major components as listed in
Table 12. The development team has identified the components with a sole single function, namely, the
Globals component, in which its weighted cohesion rij(ki, kj) should be one based on the weights shown
in Table 2, and as a result, its aggregated cohesions WCH (ci) is one as well. The development team has
measured the aggregated cohesion WCH (ci) and the aggregated coupling WCP (ci) of the remaining
components that have several functions, i.e., SocialMediaAccount, User, and SenstiveText. Table 12
shows the design quality of the component Q(ci), the overall cohesion of the system ACH(S), and
the overall quality of the system Q(S). The quality of this system is high as described by its cohesion,
i.e., 99%, however, this high quality is reduced by the amount of coupling it exhibits, in which the
Q(S) is reduced from 99% to 78%, which indicates the overall quality of the system. Although this
software system exhibits good quality with high internal strength, it shows how the coupling degraded
its quality by 21%. This measurement helps software designers focus on inspecting their software
design to identify avoidable coupling among components and increase the quality to a higher level.

Table 12: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of Information security awareness
system

dij

(
ci, cj

)
Social media
account

User Senstive
text

Globals WCP (ci) WCH (ci) Q(ci)

Social media account • 0.01 0.6 0.75 0.45 0.958 52%
User 0.45 • 0.45 0.01 0.30 1 70%
Senstive text 0.01 0.01 • 0.01 0.01 1 99%
Globals 0.15 0.01 0.15 • 0.10 1 90%

ACH(S), Eq. (4) 99%

Q(S), Eq. (6) 78%

The patient companion system consists of thirteen components as listed in Table 13. The develop-
ment team has measured the aggregated cohesion WCH (ci) and the aggregated coupling WCP (ci) of
these components, which have several functions. Table 13 shows the design quality of the component
Q(ci), the overall cohesion of the system ACH(S), and the overall quality of the system Q(S).
Although the system exhibits low coupling, it has very low quality, i.e., 34%, because of the low
internal strength of its components. This low quality is further reduced by 6% because of the amount



CMC, 2023, vol.77, no.3 3155

of coupling it exhibits, in which the Q(S) is reduced from 34% to 32%, which indicates the overall
quality of the system. Although this software system exhibits low coupling, however, its quality is
influenced by its low internal strength. This measurement helps software designers focus on inspecting
their software design to identify the low internal strength of the system components to increase their
cohesiveness and improve the system’s overall quality.

Table 13: Weighted coupling dij(ci, cj) and aggregated coupling WCP (ci), aggregated cohesion
WCH (ci), component’s quality Q(ci), and overall quality Q(S) of the Patient companion system
dij

(
ci , cj

)
Login Sign

up
Home
page

Settings Asked
questions

Question
page

Manage
accounts

Manage
umra

Reserve
umra

Create
guider

AI Search Add
fatwa

WCP
(ci)

WCH
(ci)

Q(ci)

Login • 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.26 25%
Sign up 0.01 • 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.26 26%
Home page 0.15 0.15 • 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.38 36%
Settings 0.30 0.30 0.39 • 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.38 35%
Asked
questions

0.15 0.15 0.01 0.01 • 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.38 37%

Question
page

0.01 0.01 0.15 0.01 0.01 • 0.01 0.01 0.01 0.01 0.60 0.30 0.01 0.10 0.26 24%

Manage
accounts

0.15 0.15 0.15 0.01 0.01 0.01 • 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.38 36%

Manage
umra

0.15 0.15 0.15 0.01 0.01 0.01 0.01 • 0.01 0.01 0.01 0.01 0.01 0.05 0.38 36%

Reserve
umra

0.30 0.30 0.15 0.01 0.01 0.01 0.01 0.01 • 0.01 0.01 0.01 0.01 0.07 0.38 35%

Create
Guider

0.15 0.15 0.01 0.01 0.01 0.01 0.30 0.01 0.01 • 0.01 0.01 0.01 0.06 0.75 71%

AI 0.01 0.01 0.01 0.01 0.01 0.60 0.01 0.01 0.01 0.01 • 0.01 0.01 0.06 0.33 31%
Search 0.01 0.01 0.01 0.01 0.60 0.01 0.01 0.01 0.01 0.01 0.01 • 0.01 0.06 0.18 17%
Add fatwa 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 • 0.01 0.08 8%

ACH(S), Eq. (4) 34%

Q(S), Eq. (6) 32%

Table 14 shows the summary of the results achieved for the software systems used in this
experiment, which shows the overall cohesion of the system ACH(S), the overall quality of the system
Q(S), and the quality degradation occurs as a result of the amount of coupling a software system
has. Regardless of the quality a software system achieves, such quality is reduced by the amount of
coupling it exhibits. As can be noticed, software systems with high quality are degraded by the amount
of coupling they have, even software systems with very poor quality are further worsened because of
the coupling they show.

Table 14: The overall cohesion of the system ACH(S) and the overall quality of the system Q(S) of
software systems used in the experiment

No. Software system ACH(S), Eq. (4) Q(S), Eq. (6) Quality
degradation

1 CBIR system 90% 55% 39%
2 Fatwa system 85% 79% 7%
3 Habits tracking system 72% 55% 24%
4 Puzzle-solving system 42% 31% 26%

(Continued)



3156 CMC, 2023, vol.77, no.3

Table 14 (continued)

No. Software system ACH(S), Eq. (4) Q(S), Eq. (6) Quality
degradation

5 Tadreeb system 32% 29% 9%
6 Restaurant rating system 53% 38% 28%
7 Video games rating system 74% 68% 8%
8 Information security awareness

system
99% 78% 21%

9 Patient companion system 34% 32% 6%

The results of this experiment have shown that measuring cohesion and coupling during software
design can help software engineers understand the quality of their software systems by indicating
the places in the system design that may need more attention and investigation to avoid or minimize
the causes of software quality degradation. Software coupling is unavoidable in many cases; however,
software engineers need to know when such coupling degrades quality and should be avoided or
minimized, and when it is necessary and not avoidable, in which quality tradeoff may be considered.
The proposed measurements in this approach have been investigated in this experiment on different
software systems from different domains and different teams. It has shown different results, which
provide more insights into the software systems under investigation that can help software engineers
better understand the quality of their software systems.

The results provide software engineers with more insights into the software system’s internal
strength and understanding of the influence of coupling on software quality and guide them to localize
the couplings that degrade the quality of the software or may be unnecessary to avoid or minimize.
Software engineers can use the information provided by this approach to review their software designs
and decide whether to improve the internal strength to increase cohesion or focus on identifying
coupling among software components that degrades their qualities.

As illustrated in this experimental study, software engineers can perform tradeoffs to decide
whether to focus on increasing cohesion or reducing coupling based on which will provide more quality
improvement with less effort and/or cost. The existing techniques, as summarized in Appendix A,
are limited to certain quality attributes, certain programming languages, or specific domains. In
addition, most of these techniques require very detailed design and may require the availability of
the source code, in which classes, methods, or parameters are analyzed at the early stages of software
development. Unlike the existing approaches, the proposed approach in this research provides the
software engineers with an overall picture or view of the quality of the software system under
construction, which can help them to understand its quality as well as indicate the locations of the
software system design that may be the source of a deficiency in which more investigation should be
performed.

5 Conclusions

This paper investigated an approach that uses the coupling and cohesion among software
components to measure the quality of software systems. In this approach, the quality of a com-
ponent is measured based on its internal strength and dependency on other components, in which



CMC, 2023, vol.77, no.3 3157

the component’s behavior and/or expected results depend on the output/post-conditions of other
components. The dependencies between different components are defined in terms of a graph
connecting components by edges, where the assumptions/preconditions of one component depend
on the output/post-conditions of other components, which consequently influence the output/post-
conditions of the concerned component. As a result, the concerned component’s behavior and quality
attributes are also influenced. The author has introduced a model and mathematical equations to
compute the quality of the software components and the overall quality of the software system.
In addition, heuristic weights for different types of coupling and cohesion have been introduced to
simplify the software quality measurement.

The experimental study has shown that the internal strength of the software components is
influenced by the coupling they exhibit, and as a result, the overall quality of a software system
is degraded by the amount of component coupling it exhibits. The proposed approach can guide
the software engineers to identify the locations in their software designs that need more attention
and investigation to avoid or minimize coupling and improve the quality of their software systems.
In addition, the proposed approach assists software engineers in reviewing their software designs to
decide whether to increase the internal strength of software components and improve the components’
internal qualities or focus on identifying coupling among software components that degrades their
qualities, in which quality tradeoff may be employed.

Acknowledgement: The author would like to thank the participating students in the experiments of
this research to evaluate their graduation projects using the proposed approach.

Funding Statement: The author received no specific funding for this study.

Author Contributions: The author confirms that the contribution of the whole paper by his own, and
has reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data used in this research study experiment is not available due
to the ownership and copyright issues of graduation projects.

Conflicts of Interest: The author declares no conflicts of interest to report regarding the presented
study.

References
[1] P. Neto, G. Vargas-Solar, U. da Costa and M. Musicante, “Designing service-based applications in the

presence of non-functional properties: A mapping study,” Information and Software Technology, vol. 69,
pp. 84–105, 2016.

[2] W. Stevens, G. Myers and L. Constantine, “Structured design,” IBM Systems Journal, vol. 13, no. 2, pp.
115–139, 1974.

[3] B. Mehboob, C. Chong, S. Lee and J. Lim, “Reusability affecting factors and software metrics for
reusability: A systematic literature review,” Software: Practice & Experience, vol. 51, no. 6, pp. 1416–1458,
2021.

[4] P. Kaur and S. Kaushal, “A fuzzy approach for estimating quality of aspect oriented systems,” International
Journal of Parallel Programming, vol. 48, no. 5, pp. 850–869, 2020.

[5] M. Rizwan, A. Nadeem and M. Sindhu, “Empirical evaluation of coupling metrics in software fault
prediction,” in IEEE 17th Int. Bhurban Conf. on Applied Science and Technology, Islamabad, Pakistan,
pp. 434–440, 2020.



3158 CMC, 2023, vol.77, no.3

[6] D. Kim, J. Hong and L. Chung, “Investigating relationships between functional coupling and the energy
efficiency of embedded software,” Software Quality Journal, vol. 26, no. 2, pp. 491–519, 2018.

[7] A. Prajapati, A. Parashar and J. Chhabra, “Restructuring object-oriented software systems using various
aspects of class information,” Arabian Journal for Science & Engineering, vol. 45, no. 12, pp. 10433–10457,
2020.

[8] S. Almugrin, W. Albattah and A. Melton, “Using indirect coupling metrics to predict package maintain-
ability and testability,” Journal of Systems and Software, vol. 121, pp. 298–310, 2016.

[9] S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[10] H. Izadkhah and M. Hooshyar, “Class cohesion metrics for software engineering: A critical review,”
Computer Science Journal of Moldova, vol. 25, no. 1, pp. 44–74, 2017.

[11] A. Parashar and J. Chhabra, “Assessing impact of class change by mining class associations,” International
Arab Journal of Information Technology, vol. 16, no. 1, pp. 98–107, 2019.

[12] X. Li, Y. Yin, L. Fiondella and Y. Zhou, “Software reliability analysis considering correlated component
failures with coupling measurement framework,” Journal of Systems Engineering and Electronics, vol. 26,
no. 5, pp. 1114–1126, 2015.

[13] H. Schnoor and W. Hasselbring, “Toward measuring software coupling via weighted dynamic metrics,” in
Proc. of 2018 ACM/IEEE 40th Int. Conf. on Software Engineering: Companion, Gothenburg, Sweden, pp.
342–343, 2018.

[14] S. Rangarajan, H. Liu and H. Wang, “Web service QoS prediction using improved software source code
metrics,” PLoS One, vol. 15, no. 1, pp. e0226867, 2020.

[15] M. Papamichail and A. Symeonidis, “A generic methodology for early identification of non-maintainable
source code components through analysis of software releases,” Information and Software Technology, vol.
118, pp. 106218, 2020.

[16] P. Kaur, S. Kaushal, A. Sangaiah and F. Piccialli, “A framework for assessing reusability using package
cohesion measure in aspect oriented systems,” International Journal of Parallel Programming, vol. 46, pp.
543–564, 2018.

[17] A. Gosain and G. Sharma, “A new metric for class cohesion for object oriented software,” International
Arab Journal of Information Technology, vol. 17, no. 3, pp. 411–421, 2020.

[18] M. Ahmad and M. Cinneide, “Impact of stack overflow code snippets on software cohesion: A preliminary
study,” in IEEE/ACM 16th Int. Conf. on Mining Software Repositories (MSR), Montreal, Canada, pp.
250–254, 2019.

[19] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim et al., “Refactoring effect on internal quality
attributes: What haven’t they told you yet?” Information and Software Technology, vol. 126, pp. 106347,
2020.

[20] H. Mumtaz, P. Singh and K. Blincoe, “Identifying refactoring opportunities for large packages by analyzing
maintainability characteristics in Java OSS,” Journal of Systems & Software, vol. 202, pp. 111717, 2023.

[21] D. Coutinho, A. Uchoa, C. Barbosa, V. Soares, A. Garcia et al., “On the influential interactive factors on
degrees of design decay: A multi-project study,” in IEEE Int. Conf. on Software Analysis, Evolution and
Reengineering (SANER), Software Analysis, Evolution and Reengineering (SANER), Hawaii, USA, pp.
753–764, 2022.

[22] Z. Alzamil, “Software components’ coupling detection for software reusability,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 10, pp. 320–328, 2018.

[23] M. Alzahrani and A. Melton, “Defining and validating a client-based cohesion metric for object-oriented
classes,” in IEEE 41st Annual Computer Software and Applications Conf., Torino, Italy, pp. 91–96, 2017.

[24] L. Kumar, S. Tummalapalli and L. Murthy, “An empirical framework to investigate the impact of bug fixing
on internal quality attributes,” Arabian Journal for Science & Engineering, vol. 46, no. 4, pp. 3189–3211,
2021.

[25] H. Alshareef and M. Maashi, “Application of multi-objective hyper-heuristics to solve the multi-objective
software module clustering problem,” Applied Sciences, vol. 12, no. 11, pp. 5649, 2022.



CMC, 2023, vol.77, no.3 3159

[26] A. Prajapati and J. Chhabra, “Information-theoretic remodularization of object-oriented software sys-
tems,” Information Systems Frontiers, vol. 22, no. 4, pp. 863–880, 2020.

[27] M. Maddeh, S. Al-Otaibi, S. Alyahya, F. Hajjej and S. Ayouni, “A comprehensive MCDM-based approach
for object-oriented metrics selection problems,” Applied Sciences, vol. 13, no. 6, pp. 3411, 2023.

[28] A. Rathee and J. Chhabra, “Improving cohesion of a software system by performing usage pattern based
clustering,” Procedia Computer Science, vol. 125, pp. 740–746, 2018.

[29] G. Myers, “Module Coupling,” in Reliable Software through Composite Design, 1st ed., New York, USA:
Van Nostrand Reinhold Company, pp. 33–54, 1975.

[30] D. Perry, “Software interconnection models,” in Proc. of IEEE 9th Int. Conf. on Software Engineering,
Monterey, CA, USA, pp. 61–69, 1987.

Appendix A: Summary of the related works

No. Approach by Metric used Aim

[4] Kaur et al. 2020 Package coupling and
cohesion

Assessing external quality attributes
such as reusability, maintainability,
and understandability of
aspect-oriented systems at the
package level

[7] Prajapati et al. 2020 Coupling and cohesion Automating the restructuring
process of object-oriented software
packages to improve its design
quality

[9] Chidamber et al. 1994 Coupling and cohesion
between classes, i.e.,
CBO and LCOM
metrics

CBO represents the number of
classes to which a class is coupled, in
which methods of one class use
methods or instance variables of
another class
LCOM uses the similarity degree of
methods based on the commonly
used instance variables between
methods to measure the
inter-relatedness between class
methods

[11] Parashar et al. 2019 Class coupling Estimating the impact of the
changeability of the class to
maintain the software system

[12] Li et al. 2015 Components coupling Evaluating software reliability
[13] Schnoor et al. 2018 Class dynamic and

static coupling
Computing the coupling degree
statically and dynamically

[14] Rangarajan et al. 2020 Aggregated coupling
and cohesion

Predicting the quality of services
properties of web services

(Continued)



3160 CMC, 2023, vol.77, no.3

Appendix A (continued)

No. Approach by Metric used Aim

[15] Papamichail et al. 2020 Complexity, cohesion,
coupling, and
inheritance

Evaluating software maintainability
based on four static analysis source
code metrics

[16] Kaur et al. 2018 Cohesion at the
package level

Assessing the reusability of the
aspect-oriented system at the
package level

[17] Gosain et al. 2020 Class cohesion Reducing maintenance effort of
classes

[18] Ahmad et al. 2019 Low-level
similarity-based class
cohesion and class
cohesion

Determining the impact of the
addition of snippets on the program
quality

[19] Fernandes et al. 2020 Cohesion complexity,
coupling, inheritance,
and size

Applying refactoring and
re-refactoring operations on code
structure to improve its quality by
understanding the effect on internal
quality attributes

[20] Mumtaz et al. 2023 Coupling, cohesion,
and complexity

Identifying the maintainability
issues and metrics useful for
identifying refactoring opportunities
for large software packages

[21] Coutinho et al. 2022 Coupling, cohesion,
complexity,
inheritance, and size

Investigating the influence of
process and developer-related
factors on the design decay of
software modules

[22] Alzamil, 2018 Components coupling Identifying software reusability
[23] Alzahrani et al. 2017 Class cohesion Measuring class cohesion during the

design phase with the information
from high-level design

[24] Kumar et al. 2021 Complexity, coupling,
and cohesion

Understanding whether the
existence of faults in the code
indicates a quality problem in
software design

[25] Alshareef et al. 2022 Coupling and cohesion Improving the software maintenance
process by improving the software
design with better modularization

[26] Prajapati et al. 2020 Coupling Re-modularizing object-oriented
software to improve its design
quality

(Continued)



CMC, 2023, vol.77, no.3 3161

Appendix A (continued)

No. Approach by Metric used Aim

[27] Maddeh et al. 2023 Complexity, cohesion,
coupling, and
inheritance

Selecting the most suitable metric,
e.g., complexity, cohesion, coupling,
and inheritance, for detecting
specific design defects

[28] Rathee et al. 2018 Coupling and cohesion Evaluating the quality and
modularity of a software system at
the design level to improve its
overall cohesion


	Software Coupling and Cohesion Model for Measuring the Quality of Software Components
	1 Introduction
	2 Related Works
	3 Proposed Approach
	4 Experimental Study
	5 Conclusions
	References
	Appendix A: Summary of the related works


