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ABSTRACT

The use of fog computing in the Internet of Things (IoT) has emerged as a crucial solution, bringing cloud services
closer to end users to process large amounts of data generated within the system. Despite its advantages, the
increasing task demands from IoT objects often overload fog devices with limited resources, resulting in system
delays, high network usage, and increased energy consumption. One of the major challenges in fog computing
for IoT applications is the efficient deployment of services between fog clouds. To address this challenge, we
propose a novel Optimal Foraging Algorithm (OFA) for task placement on appropriate fog devices, taking into
account the limited resources of each fog node. The OFA algorithm optimizes task sharing between fog devices
by evaluating incoming task requests based on their types and allocating the services to the most suitable fog
nodes. In our study, we compare the performance of the OFA algorithm with two other popular algorithms:
Genetic Algorithm (GA) and Randomized Search Algorithm (RA). Through extensive simulation experiments, our
findings demonstrate significant improvements achieved by the OFA algorithm. Specifically, it leads to up to 39.06%
reduction in energy consumption for the Elektroensefalografi (EEG) application, up to 25.86% decrease in CPU
utilization for the Intelligent surveillance through distributed camera networks (DCNS) application, up to 57.94%
reduction in network utilization, and up to 23.83% improvement in runtime, outperforming other algorithms. As a
result, the proposed OFA algorithm enhances the system’s efficiency by effectively allocating incoming task requests
to the appropriate fog devices, mitigating the challenges posed by resource limitations and contributing to a more
optimized IoT ecosystem.
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1 Introduction

With the rapid proliferation of technology, encompassing smartphones, wearable devices, indus-
trial tools, and various other domains, the number of internet-connected devices has experienced
significant growth. This surge in interconnectedness has given rise to the concept of the IoT, which was
initially introduced by a group of academics in 1991. As IoT devices often face processing capacity
and resource limitations, the adoption of cloud services has become a necessity [1]. Nevertheless,
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the escalating utilization of cloud services and devices has brought forth challenges, including issues
related to distributed data arising from diverse geographical locations, increased bandwidth usage,
and end-to-end delays. To effectively tackle these challenges, fog computing has emerged as a viable
solution [2]. Fog computing is strategically positioned between the cloud and IoT devices, serving as
a decentralized infrastructure comprised of diverse fog nodes that offer management, storage, and
communication capabilities [3]. Moreover, fog computing brings additional advantages, including
data protection and secure communication [4,5]. However, due to the heterogeneity and limited
resources of fog nodes, achieving effective service placement poses a significant challenge. In response
to this issue, several metaheuristic algorithms have been proposed to address task scheduling in the
IoT system. These algorithms encompass the Fireworks Algorithm (FWA) [6], Marine Predators
Algorithm (MPA) [7], Bee Algorithm (BA) [8], Particle Swarm Optimization (PSO) [9], and Genetic
Algorithm (GA) [10]. Abohamama et al. proposed a semi-dynamic real-time task scheduling algorithm
that leverages a modified version of the genetic algorithm to optimize task scheduling [11]. Ghobaei-
Arani et al. utilized the meta-intuitive whale optimization algorithm to allocate tasks on fog devices
and enhance service quality [12]. On the other hand, Dubey et al. introduced a fog device framework
that improves delays, computational costs, load balancing, and energy consumption in the IoT system,
utilizing Cuckoo and PSO algorithms [13]. Maiti et al. proposed a fog node layout to minimize delays
using algorithms such as Simulated Annealing (SA), Genetic Algorithm (GA), and Particle Swarm
Optimization (PSO). Their findings indicated that the GA-SA algorithm proved to be the most efficient
in minimizing delays [14].

In their study on service placement, Mohamed et al. [15] combined two distinct algorithms to
determine the most optimal and shortest path while selecting the nearest fog node for users. Their
approach resulted in successful improvements in network usage, distance optimization, load balancing,
and data transmission. Zare et al. [16] employed the Asynchronous Advantage Actor-Critic (A3C)
algorithm, developed in the field of deep and reinforcement learning, to ensure high-quality service
delivery. Skarlat et al. [17] used the Genetic Algorithm (GA) to showcase the efficient utilization
of fog resources, leading to reductions in communication delays within the network. Additionally,
Saif et al. [18] employed the Grey Wolf Optimizer algorithm to address energy consumption and
minimize delays in the system. The literature review highlights that fog computing is adopted to
address the growing number of objects and their demands in cloud computing. However, due to the
limited resources of fog clouds, they are unable to accommodate all requests. As a result, the increasing
number of requests adversely impacts bandwidth usage, energy consumption, processing costs, and
operation time. To tackle these challenges, numerous studies have been conducted, focusing on areas
such as resource sharing, task scheduling, and load balancing to mitigate the issues associated with
limited fog cloud resources. In current studies, the service placement problem remains a critical issue
that requires improvement, particularly concerning the placement of applications from objects onto
fog clouds with limited resources. The primary objective of this study is to implement the Optimal
Foraging Algorithm (OFA) to efficiently allocate services onto application modules. The proposed
Optimal Foraging Algorithm (OFA) has been subjected to comparison with various algorithms,
focusing on basic comparison functions and optimization problems [19]. The algorithm’s strong
performance in optimization problems, its novelty in IoT applications, and its promising potential
for success due to its unique structure were regarded as a novel perspective, leading to its application
in this study. The working logic and pseudo code of the algorithm are elaborated upon in Section 3.
In the deployment of IoT applications on fog nodes, it is crucial to ascertain the requirements of the
applications and the desired service quality to ensure compatibility with the existing fog nodes and
applications. During the service distribution stage, where services are allocated to suitable fog clouds
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based on application types, the OFA metaheuristic algorithm is employed to generate appropriate
solutions [19].

The obtained solutions are first internally compared using various metrics and subsequently pitted
against the GA and RA algorithms in terms of energy consumption, bandwidth usage, processing
cost, and execution time. Through these comparisons, the advantages of the proposed algorithm are
demonstrated.

The contributions of this study to the literature can be summarized as follows: (1) Optimization of
efficient service placement between fog devices in fog cloud-based IoT using a three-layer architecture;
(2) Introduction of the Optimal Foraging Algorithm (OFA) for service placement, marking its
application for the first time in IoT; (3) Demonstration through simulation results that the proposed
algorithm outperforms other algorithms in terms of energy consumption, CPU usage, bandwidth
usage, and runtime. The study is structured into six parts. The first part introduces the topic and
provides a comprehensive literature review. The second part presents detailed information about the
system architecture and formulates the problem being addressed. In the third part, the proposed
optimization algorithm is thoroughly explained, along with its operational principles. The fourth part
showcases the performance values obtained from the experimentation. In the fifth part, a numerical
analysis of the algorithm is presented, including relevant data and insights. Finally, the sixth part
concludes the study, summarizing the findings and discussing the overall status of the manuscript.

2 System Architecture and Problem Formulation

The system operates on a layered architecture as shown in Fig. 1. The highest layer is referred to
as the cloud layer, which is a distributed data center accessible to all internet-connected devices and
not used at a specific location [20]. The middle layer, on the other hand, is where fog computing is
implemented, and where fog devices are located, providing real-time computing that considers current
operations [21]. The bottom layer is where various smart and non-smart objects with a distributed
structure, such as computers, smartphones, and machines, are connected [22].

In IoT applications, the limited resources and distributed nature of the heterogeneous and
decentralized fog nodes, as well as their changing processing capacities over time, pose challenges in
the service placement stage. To determine when and where services will be placed, service placement
is required. The proposed algorithm addresses these challenges and enables the efficient allocation
of application modules to fog nodes. The architecture used in the system includes entities and
services. Entities are composed of components such as cloud, client, and fog nodes, while services
are application modules that are received from objects to be run in the system. The system possesses
all the necessary information about fog clouds and incoming mission requests during its operation.
As a result, the services are efficiently directed to the relevant fog cloud. Each node runs the tasks
assigned by the system. Applications can be sent to fog nodes as modules or sets of modules. Each
application module has properties such as processing power, memory, storage, bandwidth, etc. Service
modules are categorized into three different types: client, global, and regular modules. Client modules
can only be processed on client nodes, while global modules can be processed on nodes other than client
nodes. Modules other than these can be processed on both types of nodes. The proposed decision-
making algorithm in the system aims to improve system performance by placing services on nodes
with limited hardware capabilities under a certain service quality constraint. In this study, energy
consumption, processing cost, bandwidth, and execution time are determined as performance criteria.
These performance criteria and the quality of service are formulated and calculated separately as
shown below.
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Figure 1: System architecture

2.1 Quality of Service

After including application cycles in the system, it is checked if the task is completed on time
while providing Quality of Service (QoS). Operation delays and transmission delays that arise while
transferring the application between two nodes are calculated during this process. The importance
of service quality has increased due to the growing number of devices and the emergence of diverse
services [23]. QoS is considered to be fulfilled if the application cycles are processed and their tasks
are completed. Eq. (1) is used to calculate QoS, when representing the cost of CQ performance, Q,
denotes the total number of application loops. AA

q represents each loop within the application, and AD
q

shows the completion times of tasks in the application. q refers to the total delay in application loops,
LP

q indicates the total processing delays between two nodes, and LT
q represents the total transmission

delays between two nodes. By taking these delays into account, it is checked whether QoS is ensured
during the transfer of an application between two nodes [24].

CQ (x) =
∑
a∈A

ea xa, ea = min

(∑
q∈Q

eq, 1

)
, AA

q = a, (1)

eq =
{

1, if Lp
q + LT

q > AD
q ;

0, otherwise.
, ∀q ∈ [0, Q]

2.2 Power Cost

The equation in Eq. (2) is used to calculate the cost of energy consumption by taking into account
the transaction cost used during the application and the cost spent on network transmission. It is
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important to note that in fog computing, sending data to distant clouds can lead to excessive energy
consumption [25]. The power consumption cost (CPw) is obtained by summing up the processing cost
(CP) and the transmission cost (CB). To calculate CP, the difference between the power consumption
while active (fbPw) and the power consumption while idle (fiPw) is multiplied by the connection usage
percentage. To calculate CB, the power consumption is multiplied by the connection usage percentage
at full transmission capacity (fTx) [24].

CPw (x) = CP

(
x. × (

f bPw − f iPw
)) + CB

(
x . × f Tx

)
(2)

2.3 Processing Cost

The system’s processing capacity is increased by using a low-cost processor. When operating the
system, it is important to consider the processing capacity used by each resource and to take processing
costs into account when allocating tasks [26]. Eq. (3) calculates the processing cost (CP) is the sum
of the ratio of the total amount of processing capacity to the utilized capacity multiplied by f Fog

n .
Pn × mMips represents the total amount of processing capacity required for all modules placed in node
n. ap × f Mips

n indicates the capacity utilised by multiplying the processing capacity of node n by the
resource utilisation percentage (ap). f Fog indicates whether the node is a fog node. If n = 0, it is a client
node [24].

CP (x) =
∑
n∈N

fFog
n xn

Pn × mMips

ap × fMips
n

. (3)

2.4 Bandwidth Cost

While processing the applications, if the necessary bandwidth is provided, the system will operate
fast. The number of edges on the system increases the bandwidth cost [27]. Eq. (4) calculates
bandwidth. CB is calculated as the ratio of each value of the tuple routing map Rz,e to the bandwidth
used (ab × EBw

e ). The products of these ratios with fFog
i are summed. The sums obtained are added

to the amount of bandwidth (mBW
lSz ,lDz

) required between the destination and source nodes to obtain the
result. f Fog indicates whether the nodes are fog nodes or not [24].

CB (x) =
∑
z∈Z

mBw
lsz,lDz

∑
e∈E

fFog
i xi

Rz,e

∝b × EBw
e

, i = ES
e . (4)

2.5 Execution Time

It is the time in milliseconds from the start of the system to the completion of the optimization
phase.

3 Proposed Optimization Algorithm

OFA is a global optimization algorithm that monitors the foraging behaviour of animals and
determines their position accordingly. In addition, the OFA algorithm is used to solve optimization
problems in many fields such as classification and regression problems [28], ranking problems in
industry [29], and healthcare [30,31]. It is a known fact that animals in nature need food in order
to survive and continue their generations. Foraging is a fairly common phenomenon to meet these
needs. Animals consider three situations while foraging [19]. Where to look for food, When to look
for new food, What type of food to choose? In the proposed algorithm, individuals prefer foraging
areas according to the rules they have determined. When an area is determined, the first thing to
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consider is how valuable the food is. If the food found is valuable, more individuals in the community
move there. The search for valuable food continues as long as they live. When the OFA algorithm is
summarized mathematically, the following stages emerge.

3.1 OFA Algorithm Steps

First of all, for the d-dimensional array in N number of food-seeking individuals and R constraint
space, each individual is specified as X = [x1, x2, x3, . . . , xd]T. In this direction, the objective function
is defined as in Eq. (5) [19].

F (×∗) = minX∈R f (x) , R = {
xL

i ≤ xi ≤ xU
i , i = 1, 2, 3, . . . , d

}
(5)

F(x), objective function value and F (×∗) is the optimal objective function value, x∗ is the optimal
vector. Here, maximum optimization problem of F(x) is equivalent to the minimum optimization
problem of −F(x), with xL

i , xU
i lower and upper limit values, respectively. In order to create individuals,

N number of individuals are produced by using Eq. (6) [19].

x1
ji = xL

j + rand(0, 1) × (
xU

i − xL
i

)
(6)

When the recurrence rates are accepted as t for the current number and as t + 1 for the next
iteration, the best individuals are shown with Eq. (7) and the remaining individuals are shown with
Eq. (8). k variable is shown as k = t/tmax, t shows the number of valid iterations, tmax shows the maximum
number of iteration, xt

random shows the randomly selected individual, xt
worst shows the worst individual of

the population, r1i and r2i show the random numbers distributed between 0 and 1 [19].

xt+1
ji = xt

ji − k × r1ji × (
xt

ji − xt
worst

)
(7)

+k × r2ji ×
(
xt

ji– xt
worst

)
xt+1

ji = xt
ji − k × r1ji ×

(
xt

random − xt
ji

)
(8)

+k × r2ji ×
(
xt

random − xt
ji

)
While individuals are deciding on whether to update their current location, they use prey selection

model [32]. Prey energy uses Ft
j , advantageous prey energy uses Ft+1

j variables. In Eq. (9), t and t + 1
positions are compared from each iteration result, if it is efficient, the current position is changed and
if it is not, it continues a new iteration with the current position [19].

lambta × Ft+1
j

1 + lambta × (t + 1)
<

Ft
j

t
(9)

3.2 OFA Algorithm Pseudo Code

General operation logic of the algorithm is given above and the pseudo-code is shown in
Algorithm 1.

Algorithm 1: Pseudo code of the OFA algorithm
1: Procedure OFA
2: iter ← 0;
3: bestSolution ← null;

(Continued)
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Algorithm 1 (continued)
4: for i ∈ populationsize do
5: populationsize[i] ← GenerationRandomSolution
6: end for
7: population ← sort(population);
8: bestSolution ← population[0];
9: while iter ≤ MAX_ITER do
10: prevBestSolution ← bestSolution;
11: bestSolution ← compare(bestSolution, createSolution);
12: iter ← iter + 1;
13: end while
14: return bestSolution;
15: end procedure

Firstly, a population is created, consisting of a specific number of individuals. For each individual
in the population, a random solution is generated. Subsequently, a module placement map is created,
indicating feasible locations for modules within the solution. Based on this map, a tuple routing map
and a module transition map are established, facilitating node selection for transferring modules to
their destination nodes. The solutions obtained for each individual are then ranked according to their
costs, with the individual having the lowest cost selected as the best solution. When creating a new
individual, each one tends to move towards the best position. As individuals search for solutions close
to their current location, the newly produced solutions remain in proximity to the previous ones. Each
new solution is compared with the previous best solution. Following the comparison, if the location
(i.e., the cost) of the newly generated individual is better than the previous best solution, the next search
continues with that solution. Conversely, if the generated solution is worse than the previous one, the
current solution is retained. In this manner, solutions are generated for a number of iterations, and each
time, the best solutions are compared with the previous one. Once the specified iteration is completed,
the best solution obtained is selected as the final best solution. The simulation is then initiated, and
the results are obtained and evaluated based on the chosen final best solution.

4 Performance Evaluation

There are entities consisting of cloud and fog nodes on physical topology in the operation of the
system. Devices such as sensors and actuators that can receive data and apply the result after processing
can be connected to these nodes. After the system is installed, the control unit performs the necessary
checks and the system operates. Application packages sent on the system are distributed among the
existing fog nodes with the proposed algorithm as data bundles and the system is operated. Each node
has its properties.

4.1 Components of the System

During the system setup, there is one cloud, a proxy connected to the cloud, a varying number of
fog nodes connected to the proxy, and objects have been used. The numbers used have been explicitly
specified during the comparison stage. The processing capacities that can be used for all devices on the
system, the idle power consumed by the nodes, and the amount of power consumed during operation
are defined in Table 1. The results obtained during the operation of the system are produced based on
these values. To evaluate the proposed system, a fog computing environment was created and simulated
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using the iFogSim [33] simulator, which is commonly used in academic publications. The algorithm was
coded using the Java programming language. The experiments were conducted on a desktop computer
with an Intel Core i7-6700 processor with a clock speed of 3.40 GHz and 8 GB of memory, using the
EEG and DCNS, which are commonly used in academic publications.

Table 1: Components of the system

Parameters Value

Cloud
Processing capacity 44,800,000 MIPS
Idle power consumption 1,648 W
Busy power consumption 1,332 W
Proxy
Processing capacity 1,000,000 MIPS
Idle power consumption 107,339 W
Busy power consumption 83,433 W
Fog Node
Processing capacity 75,000 MIPS
Idle power consumption 50 W
Busy power consumption 38 W

4.1.1 EEG Beam Tractor Game

EEG Beam Tractor Game is a type of game that takes place between two humans and uses
augmented brain-computer interaction. The players’ brain activities are measured using EEG devices
and these measurements are transferred to a computer program that allows the players to play the
game. Thus, players’ brain activities enable them to control the objects in the game. The application
consists of 5 modules: EEG sensor, screen, client, concentration calculator, and coordinator [34]. EEG
parameters are shown in Table 2.

Table 2: Application edges of the EEG tractor beam game

Edge Processing (MIPS) Data (B)

Eeg 300 500
Sensor 350 500
Player game state 100 1000
Concentration 1.4 500
Global game state 2.8 1000
Global state update 0 500
Self state update 0 500
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Many experiments have been performed using the OFA algorithm on EEG with systems contain-
ing different numbers of fog clouds. The results of the experiments are shown in Table 3. In Table 3,
the Area column shows the number of fog clouds connected to the Proxy, the Device column shows the
number of devices connected to the fog clouds, and the Fog Node column shows the total number of
nodes on the system. Respectively, Energy (J) indicates the amount of energy consumed by the system,
processed (MI) indicates the amount of data processed through the system, transferred (B) indicates
the bandwidth used by the system, and Execution time (ms) indicates the operating time of the system.

Table 3: EEG simulation results

Cloud Proxy Area Device Fog node Energy (J) Processed (MI) Transferred (B) Execution time (ms)
1 1 2 4 12 2,808,224 13,329,900 9,226,000 1186
1 1 2 5 14 2,883,287 42,649,600 12,259,000 2023
1 1 2 6 16 2,887,039 43,088,400 15,724,000 2397
1 1 3 4 17 3,682,045 38,802,820 18,508,000 1900
1 1 3 5 20 3,744,886 45,505,900 32,377,500 2243
1 1 3 6 23 4,205,220 57,867,010 39,752,000 2558
1 1 4 4 22 4,806,614 51,716,220 37,525,000 2369
1 1 4 5 26 4,807,274 71,003,150 45,879,000 2943
1 1 4 6 30 5,142,440 90,349,090 50,776,500 3603

The horizontal axes of Fig. 2 show the total number of nodes. In Fig. 2a, the energy consumed
by the system exhibits a linear increase. While Figs. 2b–2d also show a general linear increase, there
is a noticeable decrease in the values when the number of fog nodes is 17 and 22. This decrease, as
observed in Table 3 in the Area domain, occurs due to an initial increase in the number of optimized
fog clouds. The rise in the number of fog nodes results in additional resources for distributing services,
thereby leading to these reductions. This increase has a positive impact on the system’s CPU usage,
network usage, and runtime performance.

(a) (b)

(c) (d)

Figure 2: (a) Energy consumption (b) CPU usage (c) Network usage (d) Execution time
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4.1.2 DCNS (Intelligent Surveillance through Distributed Camera Networks)

DCNS refers to the deployment of multiple cameras across an area to monitor and analyze
activities in real-time. The cameras capture video footage and detect moving objects by analyzing
the images. A designated object is tracked by PTZ cameras and the images are transmitted to the user
over the internet. The application consists of 5 modules: Motion Detector, Object Detector, Object
Tracker, PTZ Control, and User Interface [33]. DCNS parameters are shown in Table 4. The results
of the experiments with the OFA algorithm on DCNS are shown in Table 5.

Table 4: Application edges of the DCNS

Edge Processing (MIPS) Data (B)

Camera 100 2000
Motion video stream 200 2000
Detected object 50 2000
Object location 100 100
PTZ params 0 100

Table 5: DCNS simulation results

Cloud Proxy Area Device Fog node Energy (J) Processed (MI) Transferred (B) Execution time (ms)
1 1 2 4 12 15,853.45418 3,754,233 47,141,400 1529
1 1 2 5 14 15,865.15359 5,151,415 44,976,600 1741
1 1 2 6 16 15,874.51023 6,138,460 85,679,000 2224
1 1 3 4 17 16,704.77644 5,729,339 114,924,400 2228
1 1 3 5 20 16,717.35024 7,327,834 124,112,600 2982
1 1 3 6 23 16,744.33693 10,475,190 157,069,500 4118
1 1 4 4 22 17,575.02128 9,918,626 161,867,000 3517
1 1 4 5 26 17,601.93762 13,087,850 166,051,100 4757
1 1 4 6 30 17,623.96209 15,818,720 252,093,700 6564

The horizontal axes of Fig. 3 show the total number of nodes. In Figs. 3a and 3c, a linear increase
in energy consumption and network usage on the system is observed as the number of fog nodes
increases. However, in Figs. 3b and 3d, a decrease is noticed when the number of fog nodes is 17 and
22. This decrease is evident in Table 5, which corresponds to the optimization of fog nodes and occurs
when the number of fog nodes is initially increased. The increase in the number of fog nodes provides
additional resources for distributing services, resulting in positive effects on CPU usage and system
runtime.
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(a) (b)

(c) (d)

Figure 3: (a) Energy consumption (b) CPU usage (c) Network usage (d) Execution time

4.2 Algorithm Comparison

The EEG and DCNS were run on a layered architecture with the OFA algorithm, GA, and RA
algorithms, respectively. Comparisons were made over values such as energy consumption, operation
costs, bandwidth cost and execution time. Parameter settings determined for each algorithm to be run
on the system are shown in Table 6 below.

Table 6: Algorithm parameters

Parameters Value

Genetic algorithm

Population size 12
Maximum iteration 1000
Maximum iteration convergence 25

Random algorithm

Maximum iteration 1000
Maximum iteration convergence 130

Optimal foraging algorithm

Population size 12
Maximum iteration 1000
Bound −5.12, 5.12
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4.2.1 Genetic Algorithm

Initially, a random population is generated. The genetic algorithm generates heuristic solutions
using the previously generated solution information. In each iteration, the number of convergence is
checked and new individuals are created according to the situation. The new individual formation
is performed using three genetic operators. The first one is the selection operator, which controls
fitness and ensures that the genes are transferred to the next generation. In this way, it transfers a
certain percentage of genes of the best individuals to the next generation. Secondly, the crossover
operator performs the process of crossing the two best individuals selected by the selection operator,
and finally, new individuals are produced by adding random genes by the mutation operator in order
not to produce the same solutions. The process is continued for the number of iterations and the best
solution is obtained.

4.2.2 Random Algorithm

The RA algorithm generates random solutions without using the values generated in the previous
solution for the specified number of iterations. The first generated solution is taken as the best solution.
Each generated solution is compared with the best solution and if it is better, the better solution is
selected as the best solution. On the other hand, if a certain number of identical solutions are generated
by the convergence number, the loop is broken and the best solution is selected. Table 7 shows the EEG
results.

Table 7: Simulation results in EEG

Energy (J) Processed (MI) Transferred (B) Exe. time (ms)

14 Fog device (1 Cloud + 1 Proxy + 2 Area + 5 Device)

OFA 2,746,065 3,793,497 4,805,274 1499
GA 2,921,447 3,795,804 5,099,065 1404
RA 2,920,742 3,972,147 5,604,187 1620

20 Fog device (1 Cloud + 1 Proxy + 3 Area + 5 Device)

OFA 25,931,500 51,531,800 71,003,150 2224
GA 26,067,730 51,474,960 64,615,760 2292
RA 25,961,480 51,883,940 82,787,920 2226

26 Fog device (1 Cloud + 1 Proxy + 4 Area + 5 Device)

OFA 11,093,000 29,440,000 45,879,000 2943
GA 11,771,000 29,841,500 46,555,500 2930
RA 15,427,000 30,700,000 55,160,000 3352

Fig. 4 shows the comparison of energy consumption, processing costs, bandwidth cost and
execution time of OFA algorithm with other algorithms. In the comparisons made on systems with
different numbers of fog devices; Fig. 4a shows that in terms of energy consumption, it improves 6%,
0.5%, and 6% compared to the GA algorithm, 6%, 0.1%, 39% compared to RA respectively in the
experiment using 14, 20, 26 fog devices. Fig. 4b shows that in the experiment using 14, 20, 26 fog
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devices, there is an increase of 0.06%, −0.1%, 1%, respectively, in terms of cpu usage compared to
GA, and an improvement of 4%, 0.6%, 4%, respectively, compared to RA. Fig. 4c shows that the
bandwidth usage using 14, 20, and 26 fog devices improved by 6%, −8%, and 1% compared to GA,
16%, 16%, and 20% compared to RA, respectively. Fig. 4d shows that in the experiment performed
using 14, 20, and 26 fog devices on the runtimes, it has improved by −6%, 3%, −0.4% according to GA,
8%, 0.08%, 13% according to RA, respectively. The experiments conducted on the EEG application
demonstrate that the OFA algorithm outperforms both the GA and RA algorithms in terms of energy
consumption, bandwidth usage, CPU usage, and runtime.

(a) (b)

(c) (d)

Figure 4: (a) Energy consumption (b) CPU usage (c) Network usage (d) Execution time

However, in certain trials, the OFA algorithm shows a slight lag compared to the GA algorithm.
Table 8 shows the DCNS results.

Table 8: Simulation results in DCNS

Energy (J) Processed (MI) Transferred (B) Exe. time (ms)

14 Fog device (1 Cloud + 1 Proxy + 2 Area + 5 Device)

OFA 15,861.56 4,563,130 36,850,500 2057
GA 15,864.51 5,142,063 68,814,200 2189
RA 15,869.62 5,743,583 54,250,000 1911

20 Fog device (1 Cloud + 1 Proxy + 3 Area + 5 Device)

OFA 16,721.59 7,721,936 112,463,900 2887
GA 16,732.39 8,913,689 118,733,500 3230
RA 16,729.46 8,675,054 177,628,500 3575

(Continued)
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Table 8 (continued)

Energy (J) Processed (MI) Transferred (B) Exe. time (ms)

26 Fog device (1 Cloud + 1 Proxy + 4 Area + 5 Device)

OFA 17,601.94 13,087,850 166,051,100 4757
GA 17,604.81 13,454,690 192,021,800 4764
RA 17,610.94 14,448,780 198,902,700 5162

Fig. 5 shows the comparison of energy consumption, operation costs, bandwidth cost, and
execution time of the OFA algorithm with other algorithms. In DCNS, the OFA algorithm has better
results than the others. In the comparisons made on systems with different numbers of fog devices;
Fig. 5a shows that the OFA algorithm consumes less energy than other algorithms, even if it is a
small amount. Fig. 5b shows that the OFA algorithm improves the CPU usage by 12%, 15%, and 2%
compared to GA and 25%, 12%, and 10% compared to RA in the experiments with 14, 20, and 26 fog
devices, respectively. Fig. 5c shows that the bandwidth usage improved by 86%, 5%, 15% according to
GA, 47%, 57%, and 19% according to RA, respectively, in the experiment using 14, 20, 26 fog devices.
Fig. 5d shows that it improves 6%, 11%, 0.14% compared to GA, −7%, 23%, and 8% compared to RA,
respectively, in the experiment using 14, 20, 26 fog devices on run times. As a result, it is shown that the
OFA algorithm is more efficient than both GA and RA in terms of energy consumption, bandwidth
usage, and runtime, while it is slightly behind the RA algorithm in the experiment using 26 devices
only in runtimes.

(a) (b)

(c) (d)

Figure 5: (a) Energy consumption (b) CPU usage (c) Network usage (d) Execution time

5 Discussion

The proposed algorithm is compared with the study conducted by Arora and Singh [32], where
heterogeneous modules were sent to fog devices in the network. The comparison is made on the
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“Intelligent Surveillance” application using the same configuration settings in the iFogSim [29]
environment, with results presented in Table 9. The findings indicate that the average network usage
improved by 36% in MB, and the average runtime improved by 37% in milisecond. In another study
by Gavaber and Rajabzadeh [35], which focused on the efficiency of the system by adding fog devices
in the fog layer, a comparison was made on the “EEG” application in terms of average energy
consumption and application cycle delay. The results showed that the average energy consumption
was reduced by 71% in MJ, and the application cycle delay decreased by 69% in milisecond. These
values are also presented in detail in Table 9. It is evident that the proposed algorithm consistently
reduces network usage across different applications, contributing to energy consumption reduction
and affecting runtime positively. However, it is important to note that the increase in the number of
nodes can lead to higher overall consumption values in any system. Since the constraints of the system
used have not been tested in real-life scenarios, the extent to which it may impact the results differently
remains unknown. Nevertheless, the authors state that future studies will include real-world trials.

Table 9: Literature comparisons

OFA Arora and Singh (2021)
[32]

Gavaber and Rajabzadeh
(2021) [35]

Network usage (MB) 3.82 6 –
Execution time (ms) 1015 1632 –
Energy consumption (MJ) 5.69 – 19.89
Latency of control loop (ms) 8.24 – 26.85

6 Conclusion

In this study, the OFA algorithm is proposed to facilitate efficient service placement in a fog
computing network. The algorithm achieves an effective distribution of applications among fog nodes
based on their respective application types. The main objective of this research is to enhance the
system’s performance in terms of energy consumption, network usage, processing cost, and runtime.
To evaluate the proposed algorithm, comparative analyses were conducted with the GA and RA algo-
rithms using the iFogSim simulation tool. Two different configurations were simulated to assess the
algorithm’s performance comprehensively. The results obtained through simulations demonstrate the
effectiveness and significance of the proposed algorithm in outperforming the alternatives concerning
energy consumption, network usage, processing cost, and runtime. The algorithm exhibits stability
and maintains its efficiency even as workloads increase, displaying linear growth patterns. This study
showcases the promising performance and capabilities of the proposed algorithm in the context of
service placement within the fog computing environment. Future work aims to assess the algorithm’s
real-world application performance and further enhance the system’s data security to ensure the
confidentiality and integrity of shared data.
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