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ABSTRACT

The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019. With
the development of sensors and smart devices, factories and enterprises have accumulated a large amount of data
in their daily production, which creates extremely favorable conditions for robots to perform machine learning.
However, in recent years, people’s awareness of data privacy has been increasing, leading to the inability to circulate
data between different enterprises, resulting in the emergence of data silos. The emergence of federated learning
provides a feasible solution to this problem, and the combination of federated learning and multi-robot systems
can break down data silos and improve the overall performance of robots. However, as scholars have studied
more deeply, they found that federated learning has very limited privacy protection. Therefore, how to protect
data privacy from infringement remains an important issue. In this paper, we first give a brief introduction to the
current development of multi-robot and federated learning; second, we review three aspects of privacy protection
methods commonly used, privacy protection methods for multi-robot, and Other Problems Faced by Multi-robot
Systems, focusing on method comparisons and challenges; and finally draw conclusions and predict possible future
research directions.
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1 Introduction

Since the 21st century, with the rapid development of artificial intelligence and the Internet of
Things (IoT), many dangerous or tedious tasks in our life have been gradually replaced by robots. For
example, the cleaning of facades of high-rise buildings [1]; mine clearance in war [2]; and hazardous
jobs such as underground exploration in coal mines [3], train track flaw detection and internal
inspection of industrial equipment [4] are replaced in industry. Due to the wide application of the
Internet of Things and sensor devices, robots have collected a large amount of relevant data during
their work, dramatically impacting industrial production. With the continuous improvement of deep
learning algorithms, the accuracy of robots in some recognition tasks has far surpassed that of humans,
especially in image recognition. However, the prerequisite for high-precision image recognition is a
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large amount of high-quality training data. And in most industries, competition between different
companies, privacy and security, and distrust lead to data silos, and there is tremendous resistance to
centralizing data from even different departments of the same enterprise, which seriously affects the
enterprise development.

The increased awareness of privacy protection and the introduction of national laws related to
privacy protection issues [5] have made collaboration between different data owners difficult. In 2016,
Google proposed a new distributed machine learning paradigm called Federated Learning (FL) [6],
which provides an excellent solution to the above problem. FL enables knowledge sharing among
multiple participants without data interaction. It effectively improves learning efficiency and privacy.

The combination of multi-robot and FL breaks down data silos, and multi-robot can get more
data to improve performance. But over time researchers have found that existing FL are vulnerable to
malicious behavior by local IoT devices. Current approaches to counter these malicious behaviors
include data encryption and information fuzzing. Since robots are limited in computing power,
communication capacity and memory. So using a form of data encryption to improve the privacy of
multiple robots adds extra communication overhead and affects the real-time nature of robot decision-
making. On the other hand, the use of information fuzzing leads to degradation of model performance
and affects the performance and accuracy of the robots when performing tasks. Therefore the
application of FL in multi-robot systems requires a trade-off between privacy and robot performance
and the use of a lightweight FL framework. In addition to this, each robot is in a different location
and environment, and it is not possible to obtain completely independent and identically distributed
(IID) data. Therefore, the effect of non-independently and identically distributed (Non-IID) data on
FL performance should also be considered.

The research directions and privacy-preserving methods in FL are presented in the literature [7]
and the number of references cited in the article is visualized, which is mainly aimed at industrial
applications. In the literature [8], the authors provided, an overview of FL using the PRISMA process,
summarizing the privacy issues and solutions faced by FL, and the article focuses on applications
in medicine. Privacy-preserving [9], the authors presented a review of FL in the context of IoT in
terms of communication efficiency, privacy protection, and summarized the challenges faced by FL
in IoT applications. Privacy-preserving [10], the authors summarize the privacy issues faced by FL,
including those specific to FL compared to distributed ML, and summarize the costs associated
with different privacy-preserving techniques. Privacy-preserving [11], the authors summarized FL
applications in smart cities, including privacy and security aspects. However, these articles did not
mention the scenarios to which various privacy-preserving approaches in FL can be applied, and did
not analyze the application of FL in robotics, and we also summarized the latest research results in
2022.

2 Background
2.1 Multi-Robot Systems

With the rapid development of human technology, especially with the arrival of the new crown epi-
demic, many industries are beginning to consider the use of multi-robot to replace manual work. Multi-
robot has higher efficiency, greater robustness, and lower cost compared to a single robot (multiple
lower-performance robots will collaborate better than a single powerful robot). The main workflows of
multi-robot systems are: machine learning, task decomposition, coalition formation, task assignment,
decision perception, and motion planning. Task decomposition [12,13], task assignment [14,15], and
motion planning [16,17] of multi-robot have been studied more extensively. In the learning phase
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individual robots use the acquired data for model training and the data quality directly affects the
accuracy of decision perception. The perception phase mainly uses pattern recognition techniques,
e.g., image recognition, speech recognition, etc.

2.2 Federated Learning

Federated learning, mainly consists of a server and several clients. In federated learning, clients
can optimize their own models with the knowledge learned by other clients without uploading local
data to the server, enabling collaborative learning that effectively protects data privacy.

2.2.1 Federated Learning Workflow

We use robot to simulate a client in FL, and the federal learning workflow is shown in Fig. 1:

1) Robot selection: When multi-robot are used for FL, the first step is to select the robots that will
participate in the learning. Preference will be given to robots with good network conditions
and sufficient power, The communication algorithm is then selected according to the specific
requirements.

2) Model broadcast: The robot downloads the current model weights and a training program from
the server.

3) Local training: Each robot is trained locally to update parameters for the model.
4) Model aggregation: After a robot has trained a local model, it uploads the model parameters

to the server, and after enough robots produce training results in a training cycle, it aggregates
the model parameters and removes the dropped robots.

5) Model update: The server updates the model after parameter aggregation, and the robot
downloads the new model to start the next training cycle.

Figure 1: Federated learning (FL) robot workflow

2.2.2 Federated Learning Classification

FL can be classified into Horizontally Federated Learning, Vertically Federated Learning and
Federated Transfer Learning [18] according to the different degrees of overlap between the different
dimensions of the data, as shown in Fig. 2.
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Figure 2: Classification of federated learning (FL)

If there is more feature overlap in the data among the participants, then it is suitable to use
Horizontally Federated Learning. Horizontally Federated Learning is often used for joint learning by
the same type of companies, which can improve the service quality of Horizontally Federated Learning
because similar companies provide similar services. Vertically Federated Learning is mainly used in
scenarios where each participant has a high overlap of data samples and a low overlap of features.
For example, suppose a bank in a certain region has users’ income and expenditure information,
and a supermarket has the purchase records of users. In that case, they can collaborate to train a
purchase prediction model. Federated Transfer Learning can be used when both feature dimension
and sample crossover between data are small. In the case of two firms with low data crossover, for
example, Federated Transfer Learning is performed in both firms using a limited common sample set
for training a common representation of the feature dimensions in the data of both firms. The model
is subsequently applied to the sample prediction of the non-overlapping feature parts of both firms.
Federated Transfer Learning is mainly used to cope with the problem of insufficient data and small
data volume while ensuring security and privacy for each participant.

3 Common Privacy Protection Methods
3.1 Method Introduction

The main two methods of privacy protection commonly used today are privacy protection
through data encryption or fuzzy information. Examples include differential privacy, secure multi-
party computing, homomorphic encryption, blockchain, and trusted execution environments.

3.1.1 Differential Privacy

Differential Privacy (DP) is achieved by adding noise to the private data for the purpose of privacy
preservation [19,20]. Suppose there is a randomized algorithm M, P denotes probability, S is the set
consisting of all outputs, and Sm is any subset of S. For a pair of adjacent data sets D and D′, if satisfies:

P [M (D) ∈ Sm] ≤ eε × P [M (D′) ∈ Sm] + δ (1)

Then the algorithm M provides (ε, δ) Differential Privacy. Where the adjacent datasets D and D′

differ by only one data. The closer ε is to 0, the closer the distributions of D and D’ are, the higher
the privacy of the algorithm; privacy protection is strongest when ε = 0, but the original data will lose
availability. δ denotes the probability that the query outputs of adjacent datasets differ by more than
a factor eε, and the value is generally small, usually taken as less than the inverse of the dataset size.
When δ = 0, Eq. (1) degenerates to ε−Differential Privacy.
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3.1.2 Secure Multiparty Calculation

Secure Multiparty Computing (SMC) originated from the millionaire’s problem proposed by Yao
in 1986 [21]. Third parties often require users to upload data to provide services in daily life. The
privacy of user data must be guaranteed by a trusted third party, but trusted third parties often do
not exist. So an encryption protocol is needed to perform the computation without a trusted third
party and without revealing the user’s uploaded input. The main current frameworks for SMC are
Yao’s Obfuscated Circuit, Secret Sharing [22,23], and Unintentional Transmission [24]. The above
SMC frameworks have advantages and disadvantages in terms of the number of users, computation
and communication efficiency, and the choice must be made according to the actual situation.

3.1.3 Homomorphic Encryption

Data encryption is an important means to protect privacy, but traditional encryption methods
do not allow third-party computations to be performed without decryption, so the user’s privacy is
threatened when the third party is not trusted. Homomorphic encryption (HE) is a special type of
encryption [25] that supports third-party computation in an undecrypted form, i.e., the input and
output of the third party are in ciphertext form. It is defined as:

E (m1) ∗ E (m2) = E (m1 ∗ m2) ∀m1, m2 ∈ M (2)

If Eq. (2) is satisfied, it is called a homomorphic operation on the operator “∗”, where m1, m2

are the original data and E is the encryption algorithm. Homomorphic encryption can be classified
into Partially Homomorphic Encryption (PHE), Somewhat Homomorphic Encryption (SWHE) [26]
and Fully Homomorphic Encryption (FHE) [27] according to the type and number of operations
supported.

3.1.4 Blockchain

The traditional FL architecture has a server to aggregate model parameters uploaded by clients,
and this centralized architecture is not immune to a single point of failure and malicious servers.
The combination of blockchain and FL can solve the centralization problem and monitor malicious
behavior in model training. The smart contract mechanism unique to blockchain allows models to
be aggregated automatically after meeting the conditions without human intervention. The models
are stored in the blockchain after aggregation so that even the clients who join later can enjoy the
global model. However, some mechanisms of blockchain itself also limit its development on FL, such
as limited throughput, encryption and decryption of data, proof of workload, etc., take up a lot of
computing resources resulting in lower model training efficiency.

3.1.5 Trusted Execution Environment

A Trusted Execution Environment (TEE) is a standalone execution environment that enables
secure storage. The main idea is that a separate secure memory zone can be allocated on an
untrusted device for private data protection [28]. TEE has been instantiated in several forms, including
Trustzone-M from ARM and Intel’s Trusted Execution Environment: the Intel SGX [29].

3.1.6 Group Key

Group Key is a symmetric key that encrypts and decrypts the content of communications between
robots in a multi-robot system. Also, Group Key can be used for authentication when new robots join.
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It can effectively ensure the data privacy and security of robots and prevent unauthorized robots from
entering the system.

3.2 Comparison of Methods

3.2.1 Distributed Learning Privacy Protection

Machine learning has become the primary method for analyzing predictions due to the increase
in data volume. Still, a huge amount of data cannot be stored on a single device, and people are
reluctant to upload their privacy to a third party. Distributed learning uses data-parallel and model-
parallel approaches [30] to improve model training performance and achieve larger data volumes
through parallel computing with multiple working nodes. Many researchers have improved privacy for
distributed learning. In the literature [31], the authors proposed a selective number of gradients to be
uploaded and parameters of the global model to be updated during distributed learning, which protects
the privacy of participants’ training data while improving model accuracy. However, in this paper,
the authors do not consider the Non-IID nature of the data. Due to the enormous communication
overhead in peer-to-peer architectures, many scholars have focused on the centralized aggregation of
model parameters by servers. The problem of a single point of failure and malicious servers ensues. In
the literature [32], the authors proposed a privacy-preserving ADMM distributed machine learning
framework that first eliminates the assumption of trusted servers, provides differentiated privacy for
users based on the sensitivity of the data and the trustworthiness of the server, and uses added noise to
protect privacy, but also has some impact on classification accuracy. In the literature [33], the authors
proposed a privacy-preserving framework SPDDL for fog cloud computing. The main idea is to use
a threshold signature method to verify the identity of the participants, while the Paillier algorithm is
used to encrypt the gradients for secure aggregation. Experiments show that the method is robust to
client collusion and withdrawal. In the literature [34], it is proposed to achieve privacy preservation by
minimizing the distance correlation between the original data and the segmentation layer activation
is minimized, while ensuring the accuracy of the model. In the literature [35], the authors proposed
CodedPrivateML, a privacy-preserving distributed training framework that can effectively protect the
privacy leakage caused by the collision of multiple clients. It speeds up the training and reduces each
worker’s computational and communication load, but errors in the quantization process can lead to
performance degradation. In the literature [36] a new scheme with anonymous authentication was
proposed to address the challenge of privacy-preserving distributed learning.

3.2.2 Federated Learning Privacy Protection

FL has become a popular topic for privacy preservation in distributed learning since Google
proposed the FL system. FL privacy and efficiency have been improved compared to distributed
learning. However, recent studies have shown that FL systems still have notable privacy leakage
potential in the face of malicious attacks. Inference attacks are the leading cause of privacy leakage.
When FL trains a model, its data does not leave the local client. Still, a semi-honest or malicious
adversary can obtain membership, attribute, and gradient information based on sharing model
parameters among clients and uploading model gradients, thus causing privacy leakage. The privacy
leakage threat caused by a malicious server or multiple malicious clients colluding can be much larger
than that of a single malicious client. Based on this problem, many scholars have conducted in-depth
research.

Traditional privacy protection methods still have many drawbacks in practice. For example, it
affects the model accuracy, requires huge arithmetic power, etc., and many scholars have improved.
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In the literature [37], the authors used HE for privacy protection and an improved Paillier algorithm
to improve the training speed of the model. But it is not tested for many client cases and contains a
large communication overhead. The authors in [38] proposed a privacy-preserving framework, PPFL,
which uses layer-by-layer FL training and always updates layers in the TEE of the server and client,
effectively suppressing data reconstruction and attribute inference attacks. Still, the assumption in the
paper that each participant has a TEE makes the framework highly limited. Blockchain, like FL, is
also a promising technology, and the combination of blockchain and FL can also serve to protect
privacy.

In the literature [39], the authors combined FL with blockchain technology to solve the problem
of a single point of server failure and malicious servers and introduced a DP method in the framework
to improve data privacy. Still, it requires a longer convergence time compared to data concentration
learning. Withdrawal due to faults in multi-robot execution tasks is inevitable, and faulty devices can
impact the robot’s communication. The authors in the literature [40] proposed a fault-tolerant privacy-
preserving data aggregation scheme that not only helps users protect their privacy from reverse analysis
but also tolerates many faulty devices and saves communication and computation time by exploiting
the homomorphism of secret sharing. Resistance to reverse analysis attacks from the normal FL
scheme of the server. The literature [41] used an adaptive learning rate algorithm to adjust the gradient
descent process, improve the model training efficiency, and use DP to provide privacy protection.
However, the convergence efficiency of the model leaves something to be desired, and the literature
does not provide a quantitative comparison of privacy-preserving performance. The literature [42] used
a chained structure to overcome the problem of high client-server communication overhead in FL and
uses eliminable DP for privacy preservation. However, the method is vulnerable to collusion attacks
between clients. The literature [43] improved on [42] by improving the communication efficiency by
grouping clients based on the chained structure and adding noise to each client to protect privacy.
Still, the method is based on the premise of trusted servers. A comparison of each method is shown in
Table 1.

Table 1: Comparison of privacy protection methods

Literature Opponent type Privacy-protection
method

Limitations Applications

[31] Semi-honest DP Single point of
failure

Low demand for
privacy

[32] / DP Low classification
accuracy

Untrusted servers

[33] / Paillier No quantitative
assessment of
privacy protection
performance

Presence of
collusion attacks
and device dropouts

[35] Semi-honest SMC Performance
degradation

Client-specific
collusion and
reduced load on
each client

(Continued)
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Table 1 (continued)

Literature Opponent type Privacy-protection
method

Limitations Applications

[36] / Anonymous
authentication

Only hide the data
owner, not protect
the data

Identity
information is more
important than
data privacy

[37] / HE, Paillier High
communication
overhead

Reasoning attacks
against members

[38] Semi-honest TEE Each participant
does not
necessarily have
TEE

Gradient attack,
attribute inference

[39] / Blockchain, DP Slow convergence
of the model

Malicious servers,
poisoning attacks

[40] Dishonesty HE High
communication
overhead

Untrusted servers
and client exit

[41] / DP Slow convergence
of the model

Untrusted servers

[42] Semi-honest DP Vulnerable to
collusion attacks

Non-collusion of
participants

[43] Dishonesty DP Trusted server
required

Against user
collusion

3.3 Challenges

Table 2 summarizes the most commonly used privacy protection methods, advantages and
disadvantages and application scenarios. But, we can see that these methods have limitations while
protecting participants’ privacy:

• DP reduces the accuracy of model training due to the presence of noise, so the trade-off between
privacy and accuracy is the main problem that DP currently faces [44].

• Secure Multi-party Computation and HE has high computational and communication costs.
• HE increases the risk of privacy breaches when the same key is used.
• Combining Blockchain with FL can solve the single point of failure problem, but the through-

put of blockchain is limited.
• TEE is applied under more demanding conditions, and there is no guarantee that every

participant will have the hardware to support them.
• Group keys can protect data privacy though. However, key leakage can lead to data decryption

or inclusion of malicious participants, and using the same key is more likely to cause key leakage.
At the same time, encryption and decryption operations impose an additional computational
burden.
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Table 2: Commonly used means of privacy protection

Method Features Drawbacks Application
scenarios

DP Add noise to model
information to protect
privacy

The difficult trade-off
between model
performance and privacy

Untrustworthy
servers

SMC Computing
decentralization

High computing and
communication costs

No trusted
third-party function
calculation problem

HE Ciphertext syndication High computing and
communication costs

Untrustworthy
servers

Paillier
algorithm

Prevent malicious clients
from syndicating

More rounds of
communication between
client and server

Prevent
untrustworthy
multiple client
federation

Blockchain Scalable and FL
decentralized

Limited throughput,
taking up a lot of
computing resources for
model training

Decentralized FL

TEE Prevent malicious server
active attacks

There is no guarantee
that all participants will
have this hardware
support

Scenarios requiring
device trust

4 Multi-Robot Privacy Protection
4.1 Problem Introduction

Multi-robot have higher efficiency compared to single robots, which means that multi-robot
systems are more suitable for scenarios where data is collected for machine learning, and data privacy
issues have come into focus in recent years. Therefore, multi-robot machine learning without data
transfer is the main research direction at present.

Multi-robot model training encounters a number of problems, for example, the computational
power of the robot is difficult to support the model training, and it is difficult to achieve good training
results when the robot only uses local data for model training. Therefore, it is necessary to combine
local data from other robots to collaborate on model training. The combination of multi-robot systems
and cloud computing can solve the problem of insufficient computing power of robots. Cloud robots
move complex computing and storage to the cloud for this purpose. Cloud computing helps improve
learning efficiency when multi-robot perform machine learning tasks. Cloud robotics also enables
knowledge sharing to enhance robot learning and accomplish more complex tasks. On the other hand,
the cost of multi-robot systems can be reduced because the robots do not perform computation and
data stored locally. However, the communication of cloud robots can be significantly hindered when
multi-robot need to make fast decisions in complex environments [45], and the Privacy of data also
limits the development of cloud robots [46].



2980 CMC, 2023, vol.77, no.3

The combination of multi-robot systems and FL can solve the communication and privacy
problems of cloud robots. On the one hand, in FL, the robots do not need to communicate frequently
with the cloud, but rather the computation is transferred to the edge server closer to the robots, solving
the communication latency problem of multi-robot systems. On the other hand, data in FL can be
learned collaboratively by multi-robot without leaving the local area, protecting data privacy. Studies
have shown that FL improves performance more than data-centralized multi-robot learning [47].

4.2 Comparison of Methods

4.2.1 Multi-Robot Distributed Learning Privacy Protection

There are few studies on privacy protection in multi-robot communication. In the literature [48],
the authors grouped the robots according to different regions and assigned different keys to the robots
in different regions. They encrypted them using the Paillier algorithm during model upload. The
authors also used two groups of encryption with activation and cost functions and experimentally
proved that the method is effective against attacked robots and fog nodes. The authors of the literature
[49] proposed a re-encrypted multi-robot FL scheme, where each robot uses a different key, the robot
uploads the local data to the server after encryption, the server encrypts again to send the data to the
fog node, and the fog node and the server train jointly. This method uploads the local data, which is
encrypted but still risky in the face of collusion attacks. In the literature [50], the authors combined
secure multi-party computation and auction algorithms to achieve task assignments using secure
multi-party computation. Experiments show good privacy protection for semi-honest robots but
uncertainty in privacy protection when the number of tasks and robots do not match. The traditional
dynamic average consensus algorithm is prone to privacy disclosure when subjected to eavesdropping
attacks. The literature [51] proposed a privacy-preserving scheme based on state decomposition. The
authors decompose an original state into two sub-states and protect data privacy when interacting
and communicating with multi-robot by adding perturbations, which can effectively resist external
attacks. The authors of the literature [52] proposed a distributed multi-robot training framework
based on the augmented Lagrangian function, which finally reaches a consensus on the local model
weights. The method can effectively solve the single point of failure problem and is robust to mid-robot
dropouts. Still, the method does not support asynchronous updates of multi-robot and is vulnerable
to adversarial attacks.

4.2.2 Multi-Robot Federated Learning Privacy Protection

Several scholars have recently combined FL with multi-robot to preserve privacy. The authors
in the literature [53] compared different learning approaches for multi-robot. The literature [54]
compared centralized learning with FL, and experiments show that FL has advantages in optimizing
communication efficiency and privacy preservation and that the combination of FL with multi-robot
helps cross-organizational collaboration and breaks down data silos. Withdrawal due to malfunction
is inevitable in the multi-robot execution of tasks, and faulty devices can have an impact on robot
communication. The authors in the literature [55] proposed a decentralized, FL mechanism that allows
connected robots to use different learning algorithms. The authors of the literature [56] proposed a
privacy-enhanced FL scheme in industrial robots for combating collusion attacks. The authors in the
literature [57] combined multi-robot auction algorithms with FL, where the default server is trusted
in the article, and privacy-preserving bidding, auction computation, and model aggregation processes
are performed using partial HE.
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The authors of literature [58] proposed decentralized privacy-preserving algorithm. There is no
central server in this algorithm, random robots broadcast the learned model, dynamically aggregate
into a group based on each robot’s reputation, and then start P2P communication. Meanwhile, the
model parameters are encrypted by secret sharing. Specifically, each robot in the group obtains a
secret slice, and a single secret slice cannot decrypt the model parameters, only a certain number
of secret slice can be decrypted. This method effectively solves the single-point-of-failure problem
caused by the dependence on the server. However, when multiple robots collude it may have an impact
on privacy. Complex FL models cannot be configured on robots due to their limited computational
power. Privacy-preserving [59] authors applied a lightweight deep neural network MobileNet on robot.
and used the JPQ (Joint Pruning-Quantization) technique to reduce the model storage space and
accelerate the inference process. HE is used to encrypt the data during the FL process to protect privacy.
Experiments show that the method has good results in robot target recognition. In the literature [60],
the authors propose tri-layer FL framework, where model pruning is performed in the first layer, the
second layer selects the appropriate client based on the client’s current state and history of activity
records, and the third layer uses an improved FedAvg to dynamically choose to complete all or part
of the work based on the client’s resource availability. The authors used 12 mobile robots for the
simulation experiments in exchange for faster speed at the cost of losing some accuracy, but with low
privacy. The specific privacy-preserving properties are shown in Table 3.

Table 3: Comparison of the effectiveness of Multi-robot privacy protection methods

Literature Method Unreliable
client

Unreliable
server

Participant
collusion

External
attacks

[48] HE √ √
[49] HE √ √
[51] State decomposition √
[52] Decentralization √
[56] HE √ √
[57] HE √ √
[58] Secret sharing √ √

4.3 Challenges

Multi-robot systems using traditional centralized learning approaches require uploading local
data to a central server, which undoubtedly poses many pitfalls for multi-robot systems. For example,
the risk of privacy leakage, the huge communication overhead caused by uploading data, and the
lack of personalization of models. In recent years, many scholars have addressed these problems by
combining FL with multi-robot systems, but it is clear from the analysis that the application of FL in
multi-robot systems still faces a series of problems:

• The study of privacy protection by multi-robot is still in its infancy, and the few articles available
leave much to be desired in terms of protecting the privacy of robot data. Robots have limited
computing power, and deploying homomorphic encryption algorithms would impose large
computational costs on the bot for the bureau, so this may be the reason why more robust
privacy-preserving algorithms cannot be deployed on the robot.
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• Multi-robot may malfunction and exit the training task while performing the task. Some FL
privacy-preserving algorithms require a certain number of robots to operate properly, and
robot withdrawal from FL tasks may directly lead to the failure of FL privacy-preserving
algorithms. There is less research in dealing with this aspect of unexpected robot withdrawal
during operation.

• Studies of FL applications in multi-robot systems are usually specific to robot work scenarios
and lack general applicability.

• Multi-robot participation in FL requires a central server to coordinate aggregated model
parameter updates, which can also result in privacy leakage of the robot if the server is controlled
by an attacker.

• Robots usually have only limited computational power and communication bandwidth, and the
application of lightweight FL frameworks in multi-robot systems can reduce computational and
communication overheads and improve the efficiency of model updating. However, the model
performance will be limited.

5 Other Problems Faced by Multi-Robot Systems
5.1 Problem Introduction

There are some problems with the traditional FL workflow. The server has access to the robot’s
model updates during model training, intermediate models aggregated by the server in each training
round, and the final model. The semi-honest server will follow the communication protocol flow and
will not affect the availability and integrity of the model during training but will perform inference
attacks on the model parameters as they are received, causing privacy breaches. Malicious servers do
not follow the communication protocol and tamper with the sent messages at will to induce other
robots to steal more information. Similarly, the presence of malicious robots and the collusion of
multiple malicious participants can cause privacy breaches.

FL is vulnerable to attacks by malicious participants, and there are two main types of attacks.
One is the attack on model performance, called an “adversarial attack”, which is divided into data
poisoning, model update poisoning, and model evasion attacks; the other is the “data inference
attack”, which targets data privacy. The other one is the “data inference attack” for data privacy, which
is divided into membership inference attack, attribute inference attack, and gradient attack. As shown
in Table 4. To improve the privacy of FL, FL is mostly combined with privacy-preserving algorithms.
Due to the specificity of the application scenarios of multi-robot systems, the participation of robots
in the improved FL algorithms raises many other issues.

Table 4: Major attacks faced by FL

Malicious behavior Name Description

Confrontational attacks
Data poisoning The main purpose of the

malicious device is to affect
the FL model performance

Model update poisoning
Model evasion attacks

Data inference attacks Member inference attack
Attribute Reasoning Attack
Gradient Attack

The main purpose of the
malicious device is to steal data
information from the client
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5.2 Federated Learning Privacy Breach Issues

Privacy is the most important property in FL, and in recent years, several scholars have found
that privacy protection in FL is not infallible. Inference attacks are the main means of attack against
privacy, and there are three main categories of inference attacks: membership inference attacks,
attribute inference attacks, and gradient attacks.

Membership inference attacks can be launched when FL participants have access to the model.
The original data from the client is obtained by judging whether a certain data sample is present in the
training data [61–65]. That is, an attacker can infer an attack by Model parameters for uploading to the
server, or by observing the global model in the client. Membership inference attacks can be classified
into black-box attacks and white-box attacks in terms of the amount of information obtained about
the target model. The black-box attack can only obtain the target model and the output of the model,
and this attack mode is the least threatening but the most common; in addition to the input and output
of the model, the white-box attack can also obtain information about the structure, parameters, and
algorithms of the model, and is highly threatening. Membership inference attacks can be classified
into passive membership inference attacks and active membership inference attacks based on whether
they actively affect model training.

Attribute inference attacks generally target attributes of training data that are not relevant to the
main task in model training [66,67]. Attribute inference attacks can be divided into active attribute
inference attacks and passive attribute inference attacks. Active model inference attacks can be used
to obtain more information by leading the FL model, but the auxiliary training set desired for attribute
inference attacks may sometimes be difficult to obtain.

Gradient attack is an attack method in which attackers reconstruct private data through gradient
information. Ongoing research by scholars has shown that openly shared gradient exchanges in
FL have great privacy leakage hidden problems, and malicious participants restore users’ private
information through gradient information with accuracy up to pixel-level original images or matching
symbol-level text [68–70]. The attacker reconstructs the client data and the corresponding labels by
inferring the gradient information of the training model in each batch.

5.2.1 History of Gradient Attack Development

Information is mainly exchanged in FL by passing gradient messages, and it was once thought
that the way of passing gradient messages would not reveal private information. But, the authors of
a 2019 paper [68] showed that malicious participants could steal private information such as images
and characters through gradient messages. There is a growing awareness of this problem, and in recent
years there have been many more studies targeting gradient attacks. We review the history of research
on gradient leakage, as shown in Fig. 3.

Deep leakage from gradients (DLG) was first proposed in the literature [68], where a virtual input
x’ and labeled input y’ are randomly initialized, and then these “virtual data” are fed into the model,
and “virtual gradients” are obtained. By optimizing the virtual gradient so that it is close to the
original gradient, the virtual data and virtual labels can be gradually approximated to the original
data. Later, in [71], the authors optimized the DLG and confirm that the label information can be
computed analytically from the gradient of the last fully connected layer but it requires the use of
a non-negative activation function. The literature [72] confirmed that all networks, are subject to
attacks due to gradient leakage and confirms that the reconstruction of the fully connected layer is
independent of the network topology. In the literature [73], the authors proposed a recursive procedure
to recover data from the gradients of deep neural networks. A novel gradient-based privacy breach
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risk level assessment method is also proposed. The authors of the literature [74] proposed a batch tag
recovery algorithm that can recover image data in large batches and with high accuracy. In addition,
it is demonstrated that single detailed images can be recovered in deep networks. The literature
[75] proposed a gradient attack method called GIAS, which is experimentally shown to outperform
[72–74] for recovery on image data when given a pre-trained model. The literature also proposed that
GIML can be learned by gradient data only when there is no pre-trained model, and the original
data recovery is still good For a long time, it was believed that increasing data batches during training
could prevent data leakage [71], and in the literature [76], authors proposed a new gradient leakage
attack called CAFE, which can recover data at 40 or even larger data batches, and in (Yin et al., 2021)
mentioned the limitations of algorithms for recovering data at large batches and developed a CAFE
attack for mitigating A defense strategy is developed for mitigating CAFE attacks. The literature [77]
summarized the drawbacks of the previously proposed gradient attack methods: poor recovery of
large batches of data, low accuracy of label reconstruction when the target batch has a large label
repetition rate, and the huge expense of picking hyperparameters. The authors also proposed the
E2EGI gradient attack method to achieve sample reconstruction with a batch size of 256, which also
has some improvement in algorithm efficiency and duplicate label reconstruction accuracy.

Figure 3: Research history of gradient leakage

As our research progresses we find that increasing the batch size is no longer effective in preventing
privacy breaches. The gradient attack algorithm proposed in the literature [78] can obtain individual
gradients in arbitrarily large aggregated batches and, crucially, it applies to arbitrary models. The
gradient attack algorithm is now able to reconstruct image information with a resolution of 224 × 224
and steals information with increasing accuracy. So FL needs to be combined with privacy-enhancing
algorithms to improve privacy.

5.2.2 Comparison of Methods

The authors in the literature [79] considered a multi-server FL using HE for privacy protection and
use the SignSGD idea to decompose the model gradients uploaded by the client and aggregated by mul-
tiple server gradients, which can avoid most participants colluding to launch gradient leakage attacks.
However, the method uploads too many ciphertexts, the participants have a huge communication
burden. Unfavorable real-time multi-robot collaborative sensing and decision-making. The literature
[80] grouped participants in FL and used the chaining method to update the model parameters. Each
participant’s model parameters are protected by the previous participant, reducing the influence of
malicious servers on model training. However, it may increase the complexity of multi-robot task
management and scheduling.
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The literature [37] used an improved HE algorithm to encrypt privacy and uses an enhanced
Paillier algorithm to improve computational efficiency, but the method is not resistant to collusion
attacks. The literature [70] used DP to encrypt the model gradient, avoids excessive contribution from
a single node by compressing the gradient in the model aggregation phase, and uses batch data to
add noise in the noise addition phase to reduce the impact on the model accuracy, but still brings
inevitable model accuracy degradation. This in turn affects the performance and accuracy of multiple
robots when performing tasks. The literature [81] used a decentralized FL that uses DP for encryption
when each client communicates with others for model parameters. When the number of robots is large,
a large amount of communication bandwidth is used for model parameter sharing and updating. In
the literature [82], the authors proposed a privacy-preserving scheme for multi-key HE, where the
authors assume that the adversary is honest and curious and encrypts the model parameters using an
aggregated public key. This method provides strong privacy protection against the collusion of servers,
clients, and multiple participants. But the method has no defense against malicious participants. Many
defense mechanisms against malicious participants require the training data to be independently and
identically distributed (IID), but this is difficult to achieve in a multi-robot scenario. The authors in
the literature [83] extended the classical MPHE approach, where a collective public key and collective
key are generated for key generation, the same public key is used for encryption when the model
is trained locally, the key is divided into k shares, and the aggregated model is decrypted as long
as k users exist when it is decrypted. The literature [84] combined secret sharing with lightweight
HE, which is effective in avoiding single-participant or collusion attacks when the participants are
semi-honest. The authors use gradient compression to reduce the communication efficiency with a
slight loss of convergence rate. The authors in the literature [85] used a HE algorithm to encrypt the
model parameters and applied zero-knowledge proofs to determine whether the client is trustworthy.
The method was experimentally demonstrated to have excellent resistance to malicious participants.
But it will increase the communication burden and algorithmic complexity of the robot. Literature
[86] proposed a blockchain-based decentralized FL framework that uses authentication contracts and
update contracts to control client authentication and model aggregation while using HE to protect
privacy. The server single point of failure problem, data leakage problem are solved. The authors of
the literature [87] proposed a decentralized FL framework. Reliable clients are selected by recording
the reputation of each client on the blockchain. Each client’s contribution is recorded in a nascent
block and rewarded. Noise is also added to detect inert clients by using pseudo-noise as a watermark.
A comparison of the specific schemes is shown in Table 5.

Table 5: Comparison of gradient leakage defense schemes

Literature Methods Decentralization Server Client collusion Device
dropout

Model
accuracy

[79] HE √ √ √ √
[80] DP √ √ √
[37] HE √ √ √ √
[41] DP √ √ √ √

(Continued)
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Table 5 (continued)

Literature Methods Decentralization Server Client collusion Device
dropout

Model
accuracy

[42] DP √ √
[43] DP √ √ √
[81] DP √ √ √
[82] HE √ √ √ √
[83] HE √ √ √
[84] HE √ √ √ √ √
[85] HE √ √ √

5.2.3 Challenges

Privacy issues due to gradient leakage have become a key topic of interest for scholars in recent
years [88] the integration of FL with privacy-preserving algorithms has become a major means to
enhance the privacy of FL, but the fusion of algorithms can have many negative effects on multi-robot
systems.

• Multiple robots need to share sensory information with other robots to make quick decisions
when collaborating on a task. FL privacy enhancement methods using data encryption add
additional communication overhead and affect the real-time nature of the robots’ decisions.

• Grouping participants in FL can effectively improve the efficiency of model updating. Grouping
the robots participating in FL requires the robots to switch between participating in FL and
performing task scheduling. This places extreme demands on multi-robot task management
and scheduling.

• Enhancing the privacy of FL using DP leads to a degradation of the model performance. This
affects the performance and accuracy when performing tasks with multiple robots.

• Multiple robots participate in decentralized FL, and frequent communication between robots
is required to share model parameters. It will increase the communication overhead and latency,
which affects the task coordination and decision-making of the multi-robot system.

• In multi-robot systems, due to the differences in location and environment, sensors and task
roles of each robot. It leads to the difficulty of obtaining completely independent and identically
distributed (IID) data.

• The application of blockchain technology in FL can solve the single-point-of-failure problem,
while the immutability of blockchain can record the malicious behavior of robots, but the limited
throughput will affect the real-time performance of robots.

5.3 Federated Learning Client Selection Issues

In addition to using privacy-enhancing algorithms, FL can also achieve privacy protection
through the selection of clients. On the one hand, the client selection algorithm evaluates the client’s
reputation, historical participation and security and other indicators to select trusted clients to
participate in FL and reduce the risk of privacy leakage. On the other hand, increasing the randomness
of client selection can avoid frequent participation of specific clients in FL and reduce the risk of
data leakage of individual clients. In addition to this, the FL client selection algorithm can optimize
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the efficiency of FL. We divide the client selection purposes into privacy protection and efficiency
enhancement. Privacy protection is divided into two client selection methods: fairness selection and
privacy assessment. Efficiency enhancement is divided into selection based on client’s Self-attribute,
data distribution and data similarity. As shown in Table 6.

Table 6: Comparison of client selection methods

Literature Privacy protection Improve efficiency

Fairness Privacy assessment Self-attributes Data distribution Data similarity

[89] √
[90] √
[91] √
[92] √
[93] √ √
[94] √
[95] √
[96] √

The authors of the literature [89] improved the efficiency of model updates by selecting the clients.
Firstly, clients that can respond to server requests are screened. Secondly, these clients are predicted to
have the arithmetic power, memory, etc., to complete the task, and finally, clients with fewer data
are eliminated. The literature [90] proposed the FairFL client selection algorithm, which has two
main components TMGCS and SAP. through SAP protocol clients collect state information from
each other and then multiple clients collaborate to decide whether to participate in the local update
process (TMGCS). The literature [91] proposed to identify, based on weight scatter comparison, the
Non-IID degree of the data on the client side. A small portion of IID data is first collected on the
server side as an auxiliary dataset, which is compared by the weight difference with the client, and
then the client with a higher IID degree of data is selected to participate in the training. However, the
auxiliary dataset of this method can adversely affect the model training when it is tampered with by
malicious participants. The authors in the literature [92] exploited the correlation between clients to
achieve faster model convergence. The client selection was also performed based on the variability of
the clients’ contributions in model training and the loss values of the models selected for training out
of different clients. The authors in the literature [93] proposed a fine-grained client selection scheme.
The server ranks the clients by their model training accuracy and training time and selects the top K
clients to participate in the next training round. Clients can optimize their local training to improve the
probability of being selected next time. The authors of the literature [94] grouped the clients according
to their computational power and communication performance and selected pseudo-servers among
the clients, which do not participate in model training and only aggregate the model parameters of the
members of this group. A CSFedL client selection mechanism is proposed in the literature [95], where
the authors suggest that when there are large differences between models, the crossover clients may
be malicious participants and this fraction of clients will be discarded when performing global model
aggregation. The authors of the literature [96] evaluated the similarity of probability distributions
between client data by The clients with high similarity are grouped and then the best-performing client
in each group is selected to participate in the training, which greatly reduces the training time of FL.
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6 Future Research Directions

Robots have entered all walks of life, providing convenient services and helping us with dangerous
jobs. With the development of sensors and deep learning, the efficiency of robots has gradually
surpassed that of humans. Applying FL to the multi-robot has broken the data silos between factory
enterprises. Therefore, robots have become more efficient and accurate. In FL, each robot trains
its model locally and only shares updates of model parameters. However, The updates of model
parameters may contain privacy-sensitive information. An attacker can infer and recover the original
data by monitoring and analyzing these updates of model parameters, which leads to privacy leakage.
To mitigate the risk of leakage, techniques enhancing privacy can be employed in the update and
aggregation process of model parameters. However, research shows that many pressing problems still
need to be solved and further studied.

(1) Trade-off between privacy and communication cost when using HE algorithms. Multi-robot
systems often face dynamic environments and task requirements, and robots need quick
adaptation to environmental and task changes. HE algorithms enhance robot privacy and
impose significant communication costs that limit its flexibility in dynamic environments.

(2) Most HE algorithms currently applied in multi-robot systems are HE with the same key. This
approach simplifies the key management. However, one cracked key of robots will threaten the
data privacy of all other robots. In the future, multi-key HE will be the alternative for multi-
robot systems with high privacy requirements.

(3) The trade-off between privacy and model accuracy when using the DP algorithm is that the
privacy provided by DP comes at the expense of model accuracy. Meanwhile, the data collected
by multiple robots operating in the same field but in different environments is inherently
diverse, which makes it challenging to achieve good model performance. Preserving privacy
by adding cancelable noise in multi-robot systems may be a significant research direction in
the future.

(4) Current privacy-preserving schemes for multi-robot systems typically require that a trusted
environment be maintained during computation, which means that the privacy of the robot
depends on the trustworthiness of the computing device and risks a privacy breach if the
trustworthiness of the environment is compromised.

(5) Collusion between multiple malicious robots, resulting in privacy breaches. Collusion among
adversarial robots poses a significant threat to bot-local privacy, highlighting the importance
of preventing collusion in privacy protection.

(6) Defining the FL client selection algorithm in a multi-robot system can also achieve privacy
protection, and making a fair selection for each robot can avoid frequent participation of
specific robots in FL and reduce the risk of individual robot data leakage. However, the
current research does not have a good balance between the fairness of client selection and
FL performance.
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