
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.041819

ARTICLE

A Lightweight Deep Learning-Based Model for Tomato Leaf Disease
Classification

Naeem Ullah1, Javed Ali Khan2,*, Sultan Almakdi3, Mohammed S. Alshehri3, Mimonah Al Qathrady4,
Eman Abdullah Aldakheel5,* and Doaa Sami Khafaga5

1Department of Software Engineering, University of Engineering and Technology, Taxila, 4400, Pakistan
2Department of Computer Science, Faculty of Physics, Engineering, and Computer Science, University of Hertfordshire, Hatfield,
AL10 9AB, UK
3Department of Computer Science, College of Computer Science and Information System, Najran University, Najran, 55461,
Saudi Arabia
4Departments of Information Systems, College of Computer Science and Information Systems, Najran University, Najran, 61441,
Saudi Arabia
5Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman
University, Riyadh, 11671, Saudi Arabia

*Corresponding Authors: Javed Ali Khan. Email: j.a.khan@herts.ac.uk; Eman Abdullah Aldakheel. Email: eaaldakheel@pnu.edu.sa

Received: 08 May 2023 Accepted: 30 October 2023 Published: 26 December 2023

ABSTRACT

Tomato leaf diseases significantly impact crop production, necessitating early detection for sustainable farming.
Deep Learning (DL) has recently shown excellent results in identifying and classifying tomato leaf diseases.
However, current DL methods often require substantial computational resources, hindering their application on
resource-constrained devices. We propose the Deep Tomato Detection Network (DTomatoDNet), a lightweight DL-
based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this. The
Convn kernels used in the proposed (DTomatoDNet) framework is 1 × 1, which reduces the number of parameters
and helps in more detailed and descriptive feature extraction for classification. The proposed DTomatoDNet model
is trained from scratch to determine the classification success rate. 10,000 tomato leaf images (1000 images per
class) from the publicly accessible dataset, covering one healthy category and nine disease categories, are utilized
in training the proposed DTomatoDNet approach. More specifically, we classified tomato leaf images into Target
Spot (TS), Early Blight (EB), Late Blight (LB), Bacterial Spot (BS), Leaf Mold (LM), Tomato Yellow Leaf Curl Virus
(YLCV), Septoria Leaf Spot (SLS), Spider Mites (SM), Tomato Mosaic Virus (MV), and Tomato Healthy (H). The
proposed DTomatoDNet approach obtains a classification accuracy of 99.34%, demonstrating excellent accuracy in
differentiating between tomato diseases. The model could be used on mobile platforms because it is lightweight and
designed with fewer layers. Tomato farmers can utilize the proposed DTomatoDNet methodology to detect disease
more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
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1 Introduction

Agriculture is essential to the stability and expansion of many economies. Early diagnosis of plant
diseases is essential since the commercialization of agricultural practices influences our ecosystem
and the world’s economy. Diseases may significantly impact yields and market value, particularly in
the case of tomatoes, which are both a staple crop and a key commercial item. Rapid detection can
stop the spread of disease, prevent large-scale outbreaks, and lessen severe financial losses. Minor
symptoms might develop into serious diseases that imperil vast estates. Therefore, improving early
detection techniques is essential for sustainable agriculture and economic well-being [1], notably for
tomatoes. Tomatoes are the world’s most widely grown and consumed plant with high nutritional
value [2]. According to the most recent data, the globe produces more than 180 million metric tons of
tomatoes annually, which are exported for USD 8.81 billion [3]. Unfortunately, tomato production
is decreasing because of several diseases and pests, and agronomists find it difficult to accurately
identify these diseases [4]. Moreover, one of the main reasons tomato plants fail and farmers suffer
financial losses is because of tomato leaf diseases. Several tomato diseases can lead to crop losses,
including Septoria leaf spot, viruses such as YLCV, BS, and leaf blights. The recognition of tomato
leaf diseases and agricultural financial activity are inextricably intertwined. Finding tomato leaf
diseases and implementing suitable control measures is crucial to ensure tomato output and farmer
revenue. Farmers in traditional disease identification methods have used their knowledge and visual
examination to detect plant diseases. Still, this approach has significant cost, efficiency, and reliability
problems [5] due to human mistakes. Due to the wide variety of plant species and identical symptoms,
it is occasionally possible for even a skilled farmer and botanist to make a mistake in diagnosing
crop diseases. Additionally, reliable, and automated diagnosis of plant diseases is difficult due to
the cluttered background, numerous simultaneous diseases, complex disease features, changes in
symptoms, etc. Also hindering overall agricultural output are farmers’ nonexistence of specialized
expertise and the unavailability of specialists with farming training who can recognize diseases in
distant areas. This kind of negligence puts the world’s food production in danger and causes big
losses for those involved in tomato production. In addition, a rise in global temperature brought on
by climate change has increased the likelihood of diseases developing and catching swiftly [6]. All the
identified concerns might be resolved using automated technologies and procedures for early tomato
disease detection and identification accessible to farmers [7] to avoid severe losses.

Motivated by the significant achievements of artificial intelligence (AI) methodologies, such as
the latest deep learning (DL) methods and traditional machine learning (ML) algorithms in numerous
areas, including plant diseases classification [8], crop pest recognition and categorization [9], industry
[10], and healthcare [11], numerous AI approaches have been utilized for the automatic identification
and detection of tomato plant diseases in precision farming [12]. The production of tomatoes is
essential for the food business and the global economy since they are a staple food crop worldwide,
a part of several culinary traditions, and have significant economic significance. Thus, disease
outbreaks in tomato crops endangered food security and provided significant economic difficulties.
This highlights the urgent need for precise and quick tomato disease detection. The recognition
and detection of tomato diseases have been addressed in different ways utilizing conventional ML
techniques. Although hand-crafted features are frequently used in the classifiers in traditional ML
approaches, these techniques are costly (expensive) and time-consuming because the expert must
physically (by hand) build these features. Moreover, the amount of available data determines how
successful ML classifiers are; for example, a small dataset results in poor accuracy, but bigger data
has little effect on accuracy if a particular accuracy threshold is attained. DL models can address
these problems by extracting relevant deep features from pictures and achieving greater accuracy than
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traditional ML procedures. Convolutional neural network (CNN) is one DL technique frequently used
to classify plant diseases. The possibility of identifying diseases in tomato crops founded on changes
in leaf structures was opened by the development of the CNN model [13]. Consequently, depending on
the disease, treatment may start right away. Various tomato disease detection applications have used
DL algorithms in recent years to diagnose tomato diseases, delivering state-of-the-art findings [14].

It is still possible to develop highly accurate automated systems for classifying tomato diseases
despite the wide range of research on the recognition and categorization of tomato leaf diseases.
Despite the recent presentation of a few papers on the classification and identification of illnesses
that affect tomato leaves, this area of research has yet to be explored in depth. The approach that is
most used for classifying and identifying tomato leaf diseases for studies nowadays is transfer learning
(TL) using pre-trained networks and support vector machines (SVM). However, it takes longer to
train the SVM ML technique with larger datasets [15,16]. The most problematic limitations in transfer
learning are negative transfer and overfitting [17–19]. Furthermore, the researchers have also designed
numerous CNN architectures, many of which have deep layers and parameters. As a result, updating
these parameters requires powerful computing power, which raises the complexity of classification. We
created a novel lightweight DTomatoDNet framework for tomato leaf disease detection to solve these
issues in this research. Nineteen learnable layers comprise the proposed model, sixteen of which are
Convn, and three are completely linked (FC). The convolution (Convn) kernels used in our framework
are 1 × 1, ultimately reducing the number of parameters. We used our approach to categorize nine types
of tomato leaf diseases, i.e., SLS, SM, YLCV, TS, LM, BS, EB, LB, MV, and Healthy images.

The research study’s primary achievements are as follows:

• Through the early detection of 10 forms of tomato leaf disease, we created a lightweight and
efficient DTomatoDNet framework for improving tomato disease classification performance.

• To accurately classify and identify tomato leaf disease, the unique end-to-end DTomatoDNet
framework that is currently proposed automatically retrieves the strongest discriminative
features.

• We evaluated the performance of the proposed DTomatoDNet model to the recent state-of-the-
art methods for classifying and identifying tomato leaf diseases.

The remainder of the article is ordered as follows. The related work is described in Section 2. The
approach is enlightened in Section 3. The particulars of the tests and their outcomes are covered in
Section 4. Discussions are covered in Section 5. Section 5 concludes our effort in the end.

2 Related Work

Finding the best method for recognizing agricultural diseases has been the subject of much
study. This has been achieved through developing techniques that help with crop identification in an
agricultural setting. This section discusses peer-reviewed studies with a particular emphasis on tomato
plant disease classification.

The prompt detection of tomato plant diseases substantially affects the quantity and quality
of tomato plant products. ML techniques are employed in several studies for tomato leaf disease
categorization tasks. Narla et al. [20] offered a technique for recognizing plant diseases from their
leaf-reflected symptoms that utilize digital image processing (DIP). Three pipelining processes were
utilized in the DIP technique: preprocessing, segmentation, and feature extraction. The sick leaf creates
color, texture, and structure characteristics. Moreover, collected features create an SVM classifier
to label different diseases. Using cross-validation, testing on tomato leaf images from the publicly
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available datasets produced results with a reasonable level of accuracy. Javidan et al. [21] developed a
unique weighted majority voting ensemble strategy to categorize pictures to detect normal tomato
leaves and tomato leaves with LB, BS, SLS, LM, and EB. The pictures’ color, texture, and shape
characteristics were retrieved and utilized as basic classifier inputs. To improve identification accuracy,
effective features were chosen using the Relief approach. Six ML techniques were employed as basic
classifiers—discriminative analysis, decision trees, k-nearest neighbors, SVM, random forests (RF),
and Naive Bayes (NB). Then, simple majority and weighted majority voting ensemble approaches
were used to increase the accuracy of disease categorization. Bhagat et al. [22] classified leaf diseases
in plants such as pepper bell, potato, and tomato using hybrid ML approaches. For expressing sick
leaf features graphically, they employed a bag-of-feature. The strongest features are extracted using
the SURF approach, and SVM was employed for the classification challenge.

Tomato illnesses were categorized using ML techniques using classifiers that were given manually
constructed features based on the color, texture, and shape of tomato leaves [23]. These studies, which
were often confined to certain conditions and centered largely on a small number of disorders, included
extensive feature development. ML techniques relied on substantial preprocessing operations, like
color adjustment, a section of interest trimming, background abolition, filtering, and scaling for useful
feature extraction since the retrieved features from leaf images were sensitive to their surroundings.
Conventional ML strategies can only identify a few diseases from a small dataset because of the
increased sophistication brought on by these preprocessing techniques, and they cannot generalize
to larger datasets [3]. Furthermore, their conclusions were incomparable because many earlier efforts
were based on small, self-curated datasets with few images. The PlantVillage dataset [24], which
included 54,309 images of 14 distinct plants and 26 diseases, significantly reduced this issue. Recently,
some researchers have employed DL methods for detecting and categorizing plant leaf diseases
because these algorithms depend on enormous amounts of data to work properly. One such dataset
is PlantVillage. Sagar et al. [25] compared and experimented with several classical ML techniques,
such as SVM, RF, NB, and DL, to categorize tomato leaf diseases. According to this study, with a
trained Inception V3 framework, CNN could identify or categorize more accurately than traditional
approaches.

Furthermore, the effectiveness of a variety of pre-trained CNNs using different hyperparameters
has been assessed in existing TL-based algorithms using the PlantVillage database for leaf disease
diagnosis to reduce reliance on hand-crafted features and improve the accuracy of classification with
large amounts of picture data. Using the conditional generative adversarial network (C-GAN) to
generate fictitious images of tomato leaves, Abbas et al. [26] proposed a DL technique for identifying
tomato illness. This strategy was one of those tests. Subsequently, TL is used to train a DenseNet-121
to classify tomato leaf images into ten, 7, and 5 illness categories. Like this, Attallah [27] presented
an augmentation strategy to provide artificial data supplied to a boundary-aware refined network
(BARNet) to categorize tomato leaf diseases into four classes and reach acceptable accuracy results.
By separating ill and healthy tomato leaf pictures using two pre-trained CNNs, Inception RessNet
V2 and Inception V3, Saeed et al. [28] identified tomato leaf disorders. Several 5225 images and an
open-source database called PlantVillage were used to train the frameworks. Several dropout rates
were examined for the algorithms. The Inception ResNet V2 and Inception V3 frameworks, with 15%
and 50% dropout rates, respectively, provided the most accurate results.

On the other hand, Bensaadi et al. [29] developed a low-cost CNN architecture-based automated
crop diseases categorization system that enables quicker online categorization. The training employed
about 1,57,000 naturally shot tomato leaf images from 9 distinct classes without any background
removal. The created framework was quite accurate in differentiating one disease from another. For
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the localization of items Kaur et al. [30] utilized the 1610 tomato leaf pictures of various categories
from the PlantVillage collection. A very successful DL-modified Mask Region CNN (Mask R-CNN)
was developed to independently detect tomato plant leaf diseases. The proposed model included a
light head R-CNN to reduce computational cost and memory use. The recognition accuracy and
performance of computing the metrics were enhanced by adjusting the anchor ratios in the region
proposal network (RPN) and the feature extraction architecture. It was contrasted with current
state-of-the-art systems to determine if the proposed approach is workable and reliable. The model’s
outcomes met expectations in terms of performance. Afify et al. [31] compared the performance of 4
distinct contemporary state-of-the-art DL frameworks to identify nine distinct tomato diseases and
develop a reliable smart scheme for identifying tomato problems to assist farmers and agricultural
employees. Fine-tuning, data augmentation, dataset enrichment, and label smoothing strategies were
researched to increase the system’s generalization capacity. Furthermore, for categorizing six different
tomato diseases, a technique built on multi-ResNet34 multi-modal (MM) fusion learning founded on
residual learning was proposed by Zhang et al. [32]. TL, which combines data from several sources,
speeds up training, reduces data dependencies, and guards against overfitting caused by a limited
sample size, was presented by the authors based on the ResNet34 base framework (environmental
parameters and tomato disease pictures data). The feature-level MM data fusion approach is utilized
to keep the crucial details of the image used to recognize the feature for the diverse modal data to
correct, support, and complement one another and produce a more precise recognition outcome.
Similar models fail to forecast the six tomato infections with the same accuracy as the proposed multi-
modal fusion network multi-ResNet34.

These earlier approaches for classifying tomato leaf diseases had an impressive performance,
but they still have several drawbacks. First, several of these are founded on ML, which tradition-
ally requires domain expertise and understanding. The effort and time needed for manual feature
extraction decreases the system’s efficiency. Second, most are built using CNN structures with
many deep layers and parameters. Changing these hyperparameters requires advanced computing
skills, which raises classification uncertainty. This paper suggests a unique, lightweight, and effective
DTomatoDNet for tomato leaf disease classification to get over these constraints.

3 Methodology

DL techniques have substantially influenced image processing (more exactly, plant disease detec-
tion and categorization). This work proposes the DTomatoDNet DL framework for classifying tomato
illnesses. Utilizing the (Tomato leaf disease detection) dataset, we could categorize tomato diseases into
ten classes. Fig. 1 depicts the proposed approach’s abstract view. We supplied tomato images into the
model to run the proposed method. Additionally, a DTomatoDNet architecture with 16 Convn layers
was created and intended to categorize images for the optimum configurations into 10 categories.
Finally, we assessed the proposed framework using the (Tomato leaf disease detection) dataset. The
proposed model has 19 learned layers, including three FC and 16 Convn layers. The proposed strategy’s
specifics are defined in more detail below.

3.1 Image Resizing

We performed initial preprocessing by reducing the input images from 256 × 256 pixels to
227 × 227 pixels to preserve consistency and accelerate processing.
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Figure 1: Methodology overview of the proposed method

3.2 Dataset Partitioning

The image data is divided into testing and training sets for all experiments. In further detail, we
utilized 20% of the pictures for network testing and 80% of the dataset for model training.

3.3 Motivations

We can prevent tomato crop failure by preventing diseases that attack tomato plants. Misclassify-
ing the disease can occasionally result in ineffective treatment plans (using inappropriate chemicals),
harming agricultural outputs and the ecosystem. Accurate and early detection and classification
of tomatoes are required to ensure food safety and minimize financial loss. This motivates us to
create an effective, efficient, lightweight DL model for automatic tomato leaf disease classification
and recognition. Squeezenet [33] is the most extensively utilized CNN developed by Forrest N.
Iandola. Squeezenet has a remarkable performance in the case of image detection, classification, and
recognition. SqueezeNet achieved performance comparable to AlexNet with 50x fewer parameters
(using the ImageNet database). Inspired by the Squeezenet model, we proposed a (Deep Tomato
Disease Net) DTomatoDNet model for tomato leaf disease identification and categorization. The key
purpose of this study was to create a DL-based framework that can effectively and efficiently classify
potato leaf diseases. The architecture of our proposed framework is based on the following strategies:

• Architecture depth: Compared to DenseNet’s 100+ layers, ResNet’s deep variations like
ResNet-152, and VGG’s 3 × 3 filter-intensive designs like VGG-19, our 16 convolutional layer
model is shallower. Our system achieves parameter economy and quick inference using 1 × 1
filters and fire modules, achieving the perfect mix for limited situations.

• Decreasing the number of parameters: The majority of the Convn kernels used in this frame-
work are 1 × 1, since a 1 × 1 kernel has 9X fewer parameters than a 3 × 3 filter. The total
quantity of parameters in the layer can be calculated as the (((number of input channels) ∗ (filter
width ∗ filter height)) + 1) ∗ (number of filters).

• Parameter efficiency: The emphasis in our model’s design is on parameter efficiency. We can
extract useful information from input data with the fewest number of parameters feasible
because of the combination of 1 × 1 filters and fire modules.
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• Detailed feature extraction: To extract complicated properties more precisely, we employed
compact filters, such as 1 × 1 and 3 × 3. We accomplish this with the hope that a feature will
be extracted from the image by the linear combination of the convolutional filter-weighted
pixels. These considerations guide its completion: Most important characteristics in an image
are typically local. Therefore, applying Convns to a limited number of local pixels makes sense
using tiny filters simultaneously. These helpful elements can be seen in various locations across
an image. So, it makes sense to move a single kernel across the image to extract that feature
utilizing that kernel in various locations throughout the image. Therefore, we used small-sized
filters to extract more fine-grained and local features.

• Accuracy improvement on a limited number of parameters: In CNN, the spatial resolution of
the output activation map produced is often greater than 1 × 1. We controlled the height and
width of these activation maps by: (1) employing input images of size 227 × 227 images and
(2) employing maximum pooling layers with a stride of 2 × 2 after using many layers of stride
1 × 1 to produce a large activation map. Delayed downsampling (large activation maps) results
in higher classification accuracies [34].

• Batch normalization (BN): Batch normalization minimizes network complexity, speeds up
training, unifies inputs, cuts down on the number of epochs needed, and offers regularization
to keep the framework from overfitting. Leaky Relu (LR): The LRlayer is used to fix the “dying
ReLU” issue (no zero slope in the case of LR) and speed up the training process.

3.4 DTomatoDNet Architecture Details

This research proposed a DTomatoDNet framework for categorizing tomato leaf disease. The
architecture starts with the first standalone Convn layer with 64 kernels of size 3 × 3, followed by
5 Fire modules (Fire 1 to Fire 5) and three fully connected (FCD) layers. The fire module consists
of three Convn layers, i.e., a squeeze Convn layer with multiple kernels of size 1 × 1, followed by a
mix of 3 × 3 and 1 × 1 Convn layers (expand layer). We used 1 × 1 layers to lessen the total amount
of parameters. The parameters in the layer can be calculated as the (number of filters) × (number of
input channels) × (filter size, i.e., 3 × 3). Therefore, to diminish the number of inputs (input channels)
to 3 × 3 filters, we utilized fewer filters in the squeeze layer than in the expand layer. To form the output
of the 1 × 1 and 3 × 3 kernels of the same size, we utilized padding of 1 pixel in the Convn layers with
3 × 3 kernels. From the start of the network until its end, we constantly increase the number of kernels
per fire module to extract more in-depth features. We used three maximum pooling layers, i.e., after
the first standalone Convn layer, Fire 2 and Fire 4.

The architecture is shown in Fig. 2. The DTomatoDNet model consists of 19 learned layers,
i.e., 16 Convn layers and 3 FCD layers. Our architecture contains 63 layers, including one image
input layer, 16 Convn layers, 18 BN layers, 18 Leaky relu layers, 3 maximum pooling layers, 3 FCD
layers, two dropouts, a softmax, and a classification layer. Convn and pooling layers are followed by
normalization operation and Leaky relu activation function.

The first layer in our network is the input layer, which processes input images of size 227 × 227.
Convn layers with filter sizes of 1 × 1 and 3 × 3 are utilized, which execute Convn processes to generate
the feature maps. The initial standalone Convn layer extracts the feature from the input picture
(dimensions 227 × 227) by using 64 filters of size 3 × 3 with a stride of 2 × 2. The output of Convn
layers (feature map) is calculated as follows:

hk
ij =

∑((
wk × x

) + bk

)
(1)
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where the layer number is represented with k (kth layer), the feature’s value is represented with h, the
pixel coordinates are represented with (i, j), the filter is represented with , and finally the bias value is
represented with bk.

Figure 2: Architecture of proposed DTomatoDNet model

Normalization operations and activation functions follow all Convn and FCD layers (except the
last FCD layer). We employed the BN operation to standardize the results of Convn and pooling layers
(excluding the last FCD layer).

Activation functions usually follow convn layers. The activation function explains how a layer
node converts the input’s weighted sum into an output. The relu activation (RA) function deactivates
all neurons with negative values, making many networks inactive. We used an improved version of the
RA function (Leaky RA function) after all Convn layers and FCD layers (excluding the last FCD
layer) to improve the model’s classification performance. Unlike RA, the leaky relu function does not
disable the inputs and produces an output for negative values. Leaky RA function works as follows:

f (x) = max (0.01 × x, x) (2)

The leaky relu layer yields x (in case of positive input), but in negative input, it proceeds 0.01 times
x (slight value).

Moreover, the maximum pooling layers with a stride (shift) of 2 × 2 after the first standalone
Convn layer, Fire 2 and Fire 4, are employed for down-sampling. This layer decreases the number of
parameters, spatial size, calculations, and computational complexity. Using maximum pooling layers
at the network’s end after many layers with stride 1 × 1 produces a large feature map and improves
accuracy.

f (x) = {x1, x2, x3, . . . , xk} (3)

F(x) provides the optimized feature map. Maximum pooling in our framework uses the kernel of
size 3 × 3 with stride 2 × 2 to choose the maximum value from the neighborhood pixels (in the picture).
The output of the standalone Convn (first Convn layer) is sent to the Fire 1 module, specifically, the
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first squeeze layer (second Convn layer with 1 × 1 filter) after employing normalization, activation,
and pooling. The output first squeeze layer is transferred into the third Convn layer (first expand
layer), which applied 64 filters of size 3 × 3 with padding of 1 pixel. Then, the output of the first
expand layer is forwarded into the fourth Convn layer (expand layer), which employs 64 filters of size
1 × 1. The output of the initial fire 1 module is directed to the squeeze layer of the subsequent Fire 2
module, continuing this flow until the output of the fifth fire module is transmitted to the initial fully
connected dense (FCD) layer. The FCD layer transforms the two-dimensional feature map extracted
by the Convn layers into a one-dimensional feature vector. The FCD layer works as below:

ai =
∑m×n−1

j=0
wij × xi + bi (4)

where i, m, n, d, w, and b denote the index of the FC layer’s output, width, height, depth, weight, s
and bias, respectively. We used BN, leaky relu, and dropout layers (to avoid overfitting) after the first
two FCD layers. Whereas the last FCD layer is followed by 10-way softmax and classification layers
(as given in Table 1).

Table 1: DTomatoDNet architecture details

Sr. no. Operation Layer Filters Filter size Padding Stride Parameters

1 Input 0
2 Standalone

Convn
Convn (BN + LR) 64 3 × 3 - 2 × 2 1792

3 Pooling Max pooling 1 3 × 3 - 2 × 2 0

4 Fire 1
Convn (BN + LR) 16 1 × 1 - - 1040
Convn (BN + LR) 64 3 × 3 [1 1 1 1] - 9280
Convn (BN + LR) 64 1 × 1 - - 4160

5 Fire 2
Convn (BN + LR) 16 1 × 1 - - 1040
Convn (BN + LR) 64 3 × 3 [1 1 1 1] - 9280
Convn (BN + LR) 64 1 × 1 - - 4160

6 Pooling Max pooling 3 × 3 [0 1 0 1] 2 × 2 0

7 Fire 3
Convn (BN + LR) 32 1 × 1 - - 2080
Convn (BN + LR) 128 1 × 1 - - 4224
Convn (BN + LR) 128 3 × 3 [1 1 1 1] - 147584

8 Fire 4
Convn (BN + LR) 32 1 × 1 - - 16512
Convn (BN + LR) 128 3 × 3 [1 1 1 1] - 36992
Convn (BN + LR) 128 1 × 1 - - 16512

9 Pooling Max pooling 3 × 3 [0 1 0 1] 2 × 2 0

10 Fire 5
Convn (BN + LR) 48 1 × 1 - - 6192
Convn (BN + LR) 192 1 × 1 - - 9408
Convn (BN + LR) 192 3 × 3 1 × 1 - 331968

11 FC + BN + LR + Dropout
12 FC + BN + LR + Dropout
13 FC + Soft max + classification
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3.5 Hyper-Parameters

The selection of hyper-parameters, often chosen by a trial-and-error-based approach, is crucial to
the effectiveness of DL architectures [35]. We tested the efficacy of the proposed DTomatoDNet frame-
work with various hyper-parameter values to identify the best hyper-parameters values, considering
the different available choices. We picked a few hyperparameters for a framework to determine how the
DL framework hyperparameter influences the representation of the whole model. The framework was
trained to employ various parameters on a smaller dataset (a subset of the dataset used in this work),
and network performance measures were examined. This approach was repeated utilizing a fresh set of
hyperparameter settings until the ideal values were achieved. The model’s accuracy and loss were ideal
(high accuracy and low loss values). The conclusive hyper-parameter values can be found in Table 2.
Employing the stochastic gradient descent optimization algorithm, we prioritized its speed, memory
efficiency, and its compatibility with larger datasets. The framework underwent training for 50 epochs,
considering the potential risk of overfitting. Preliminary tests were the foundation for the decision to
train the algorithm for 50 epochs. We performed several experimental runs with epoch counts ranging
from 10 to 80. We carefully watched the accuracy and loss of the validation during these experimental
rounds. The validation loss started to plateau and, in certain situations, even slightly rise for epochs
exceeding 50, which indicated that the algorithm was starting to become overfit to the training set of
data. As a result, 50 epochs were the best option since they struck a compromise between appropriately
training the algorithm and preventing substantial overfitting. Furthermore, the LR layer is used to fix
the “dying ReLU” issue and speed up the training process. Whereas a fraction of neurons is arbitrarily
“dropped out”or switched off during training as part of the dropout approach, which prevents neurons
from turning highly specialized. Numerous DL investigations have objectively supported 0.5 as a fair
option. It incorporates just enough unpredictability to avoid over-reliance on neurons and ensure that
the algorithm generalizes adequately to new inputs. In our first experiments, a dropout value of 0.5
consistently outperformed alternative dropout values regarding validation performance, supporting
its inclusion in the final method we developed. Given the complexity of tomato diseases, using an 80–20
data split in our work follows best practices in ML and DL, giving the algorithm a wide range of data
for efficient learning. A sizeable 20% budget set aside for validation guarantees that the effectiveness
of our framework is measured on a representative subset, which is essential for an objective evaluation.
To best utilize computing resources, it was decided to set the validation frequency at 30 epochs. Our
early investigation revealed that across brief epochs, the performance of our framework remained
mostly stable. We found a healthy equilibrium by verifying frequently enough to follow framework
advancements effectively without putting undue computing burden on the system.

Table 2: Hyperparameters of the proposed architecture

Parameter Value

Optimization algorithm SGDM
Verbose False
Learning rate 0.001
Maximum epochs 50
Shuffle Every epoch
Iterations per epoch 42
Dropout 0.5

(Continued)
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Table 2 (continued)

Parameter Value

Validation frequency 30
Activation function Leaky ReLU
Test size 0.2
Train size 0.8

4 Results and Discussion

In this section, we offer an extensive assessment of the outcomes of various experiments intended
to evaluate the performance of our DTomatoDNet model. We provide information about the
experimental setup and evaluation metrics to assess the model’s performance. Additionally, there is
more information about the dataset in this section. We used the publicly available Kaggle dataset
(Tomato leaf disease detection) to assess the performance of our system.

4.1 Dataset

To judge the performance of the proposed approach, we utilized an easily accessible “Tomato
leaf disease detection” dataset [36]. The dataset comprises two collections, i.e., train and val. The
training group holds 10,000 pictures for training, whereas the val group holds 1000 pictures for model
validation. We used the images of the train collection for both training and validation of our model.
The pictures in the dataset have a resolution of 256-by-256 pixels, a bit depth of 24, and both vertical
and horizontal resolutions of 96 dpi. The dataset consists of ten classes, i.e., healthy and nine various
forms of tomato leaf disease images. The dataset includes TS, EB, BS, LB, LM, YLCV, SLS, SM, MV,
and H. All images have three channels (RGB). Some examples of the image data used in this research
are presented in Fig. 3.

Figure 3: Sample images of the dataset (a) SLS (b) SM (c) YLCV (d) TS (e) LM (f) BS (g) EB (h) LB
(i) MV (j) H
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4.2 Evaluation Metrics

To assess the performance of our method, we used the accuracy, precision, sensitivity, specificity,
and F1-score metrics. These metrics are calculated as follows:

Accuracy = (TN + TP)/TS (5)

Precision = TP
TP + FP

(6)

Sensitivity (recall) = TP
TP + FN

(7)

F1_score = 2 · Precision × Recall
Precision + Recall

(8)

where TP, TN, FP, FN, and TS are the total number of samples and, in turn, true positive, true negative,
false positive, and false negative results.

4.3 Experimental Setup and Evaluation

We conducted all the studies on a personal laptop with an Intel (R) Core (TM) i5-5200U
CPU and 8 GB of RAM. We employed MATLAB R2020a forthe execution (as given in Table 3).
For each experiment, the pictures are split into testing and training parts. In more detail, we used
20% of the pictures for experimental validation and 80% of the pictures for training the model.
Several experiments are run to assess the effectiveness of the proposed network for tomato disease
classification.

Table 3: Specifics of system utilized for implementation

Sr. no. Name Experiment parameters

1 CPU Intel (R) Core (TM) i5-5200U
2 System type Windows 10, 64-bit
3 RAM 8 GB
4 HDD 500 GB
5 Development tool MATLAB R2020a

4.3.1 Performance Evaluation of Tomato Leaf Disease Classification

The core purpose of this experiment is to assess and test the multi-class classification capacity
of the proposed DTomatoDNet framework. We conducted this test to estimate the performance of
DTomatoDNet architecture for tomato disease classification into SLS, SM, YLCV, TS, LM, BS,
EB, LB, MV, and H. For this experiment, we used 10,000 images (1000 images of each class) of
the standard Kaggle “Tomato leaf disease detection” dataset [36], where 8000 images (800 images
of each class) were utilized for training and the outstanding 2000 tomato leaf pictures (200 pictures
of each class) for testing. The confusion matrix (CM) of our proposed approach is revealed in
Table 4. The off-diagonal terms reflect faulty predictions, whereas the diagonal words indicate the
number of properly recognized tomato images. During our examination, we noted cases when our



CMC, 2023, vol.77, no.3 3981

algorithm misclassified data. The FP rate for images of healthy tomatoes is an important finding.
Even while the results were mostly favorable, 4.5% of the tomato images that were rated as Healthy
were unhealthy. This may be due to the initial disease phases’ minor morphological alterations, readily
obscured by the pictures’ predominately healthy characteristics. Additionally, the proposed approach
performed admirably with diseases like MV and YLCV, reaching a 99.5% accuracy rate for each. The
algorithm occasionally struggles to identify these diseases from other pathologies or ailments with
a similar appearance, as seen by the marginal 0.5% misclassification in these groups. Future work
might reduce these misclassifications by adding more diverse instances of the early disease phases and
improving our feature extraction. Precision, accuracy, F1-score, and recall are used as performance
estimation measures of the system to measure its performance fully. Our method achieved an average
accuracy of 99.34%, a precision of 96.5%, a recall of 96.6%, and an f1-measure of 96.55%, proving
our proposed approach’s effectiveness for tomato disease classification and recognition. The loss
function illustrates how effectively the DTomatoDNet architecture can identify the dataset. To assess
the training performance of the proposed technique, accuracy and loss are displayed in Fig. 4. It is
explained that loss and accuracy nearly remain the same (after epoch “30,” proving that we can also
produce excellent results at lesser classification epochs. Fig. 4 illustrates how the model’s training and
testing loss rapidly lowers while its accuracy increases after each epoch.

Table 4: CM obtained by DTomatoDNet model

True class

Predicted
class

Class BS EB H LB LM SLS SM TS MV YLCV

BS 198 0 1 0 1 0 0 0 0 0
EB 0 185 8 0 4 0 0 2 0 1
H 0 3 191 0 2 1 2 1 0 0
LB 0 0 1 196 3 0 0 0 0 0
LM 1 1 6 2 189 0 0 0 1 0
SLS 0 1 1 0 1 190 6 0 1 0
SM 0 0 0 0 3 4 193 0 0 0
TS 2 1 0 0 0 1 2 194 0 0
MV 0 0 1 0 0 0 0 0 199 0
YLCV 0 0 0 1 0 0 0 0 0 199

There is a need for the precise identification and categorization of different tomato leaf diseases
to establish the effectiveness and dependability of the proposed method. To do this, we assess how well
the proposed DTomatoDNet approach categorizes (identifies the disease) each tomato leaf image. The
efficacy of the novel DTomatoDNet approach in diagnosing tomato leaf diseases is demonstrated in
Table 5, showcasing its recall, F1-score, accuracy, and precision. The results highlight the exceptional
performance of the proposed framework across all evaluation metrics. Since it more correctly depicts
each class, the newly built DL model’s strength is a key factor in the increased accuracy in pest
identification.
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Figure 4: Accuracy and loss obtained by the proposed approach

Table 5: Class-wise outputs of the DTomatoDNet model

Class N (truth) N (classified) Accuracy (%) Precision (%) Recall (%) F1-score (%)

BS 201 200 99.75 99.0 99.0 99.0
EB 191 200 98.95 93.0 97.0 95.0
H 209 200 98.65 95.0 91.0 93.0
LB 199 200 99.65 98.0 98.0 98.0
LM 203 200 98.75 94.0 93.0 93.5
SLS 196 200 99.2 95.0 97.0 96.0
SM 203 200 99.15 96.0 95.0 95.5
TS 197 200 99.55 97.0 98.0 97.5
MV 201 200 99.85 99.0 99.0 99.0
YLCV 200 200 99.9 99.0 99.0 99.0
Average 99.34 96.5 96.6 96.5

To assess the categorization results of the proposed method more precisely, we utilized the valued
area under the receiver operating characteristic curve (AUC-ROC) performance indicator. The ROC
curve shows the proportion of TP to FP, showing the classification framework’s sensitivity. The AUC-
ROC metric unquestionably helps assess and educate us about a framework’s ability to classify data.
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The judging criteria state that a model with a higher AUC is superior. The ROC for the proposed
sDTomatoDNet architecture is displayed in Fig. 5. The AUC is near 1, or 0.9983, which suggests that
the proposed model has a decent amount of separability.

Figure 5: ROC plot of DTomatoDNet framework for tomato leaf disease classification

4.3.2 Comparison with Hybrid Methods

In this section, the usefulness of the proposed DTomatoDNet framework is examined by building
a hybrid experiment for categorizing tomato leaf diseases to identify ten different tomato diseases.
We contrasted our technique with hybrid approaches on the same dataset because we had the best
classification performance when using 10 class classifications. It is underlined that utilizing an SVM for
classification instead of a conventional CNN at the top of the model would yield better classification
outcomes. The widely used deep CNNs, such as ResNet18 [37], SqueezeNet [33], MobileNetV2 [38],
ShuffleNet [39], AlexNet [40], GoogleNet [41], and DarkNet19 [42] were employed to extract deep
features and overcome this problem. We then utilized these features as inputs to make a linear SVM
using these features (decision function). Gamma and C hyperparameter values were adjusted to 0.1 and
1.0, respectively, for a better effect. These algorithms have numerous layers and demand input images
of varying sizes. For instance, the Squeezenet Network has 18 layers and uses input tomato leaf pictures
of 224 × 224 dimensions; the GoogleNet framework has 22 layers and processes a picture of 227 × 227
dimensions. Hence, we resized the tomato leaf pictures using improved image datastore functions
to comply with these models’ requirements for the input picture. We used the same experimental
setting to train these DL-based models (values for the hyperparameters were selected using the same
methodology as the indicated method). We employed activations because the deeper layer (final FC
layer) includes greater high-level features than the earlier layers. These layers merge the global spatial
positions of the input features after activation functions to create independent features (ShuffleNet
and AlexNet produce a total of 544 and 1000 features, respectively). The dataset consists of 80%
training sets and 20% testing sets. Surely, for this experiment, we used 10,000 images (1000 images
of each class) of the standard Kaggle “Tomato leaf disease detection” dataset [31], where 8000 images
(800 images of each class) were utilized for training and the outstanding 2000 tomato leaf pictures (200
pictures of each class) for testing. According to the results (Table 6), compared to DTomatoDNet,
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the deep features of these DL-based algorithms and the SVM technique produced inferior results (in
terms of precision, accuracy, recall, and F-measure). ShuffleNet attained the second greatest results
(accuracy of 98.89%), whereas GoogleNet achieved the lowest classification performance (accuracy
of 97.13%) of all contemporary models GoogleNet. The proposed DTomatoDNet model effectively
extracts more distinguishing features from the tomato leaf pictures. Therefore, this novel method
outperformed the present tomato leaf disease classification approach to recognize various kinds of
tomato leaf diseases. We extracted more detailed and in-depth features using small filters with 3 × 3 and
1 × 1 sizes. Moreover, the DTomatoDNet model’s BN method normalizes and reduces generalization
errors and regularizes the inputs to a layer for each mini-batch.

Table 6: Comparison with CNN + SVM approaches

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

ResNet18 98.54 93.2 92.7 92.95
SqueezeNet 98.20 93.4 93.8 93.59
MobileNetV2 98.05 90.3 90.2 90.25
ShuffleNet 98.89 94.5 94.4 94.45
AlexNet 97.83 89.1 89.3 89.2
GoogleNet 97.13 93.2 92.8 92.99
DarkNet19 98.49 92.5 92.5 92.5
DTomatoDNet 99.34 96.5 96.6 96.55

4.3.3 Performance Evaluation on “Tumor Classification Data” Dataset

According to experimental tests, the DTomatoDNet framework achieves well in the case of several
plant disease categorization tasks and datasets. However, more validation on different datasets in other
domains is required to show our framework’s adaptability, robustness, and power across all fields.
To classify brain tumors, we put the proposed DTomatoDNet system to the test using benchmark
medical pictures. This work’s “Tumor Classification Data” (Dataset for tumor classification), which
is easily available on the Kaggle website [43], was used to categorize brain tumors into malignant and
benign types. Together with images of the normal brain, this dataset also contains magnetic resonance
imaging (MRI) scans of malignant and benign tumors. The dataset is divided into two folders, Train
and Test, with three subcollections, Normal, Malignant, and Benign, in each. The 350 malignant
and 350 benign MRI images from the training collection were the only pictures we utilized to test
and train the proposed framework, meaning no other images were used. The remaining 280 images
of each category were utilized for training our framework, whereas we only needed 70 pictures of
each category for testing. We used the identical experimental system described in Table 2 to train our
model. Our framework needed 420 min and 40 s to train. The results demonstrated that the proposed
DTomatoDNet technique functioned satisfactorily, obtaining F1-scores of 95.27%, 94.5, 95.5, and
94.99 in the related medical domain. This confirms the effectiveness of the proposed strategy.

4.3.4 Ablation Study

In the field of DL, the phrase “ablation research” is increasingly used to track how well the
recommended DL model performs by examining the results of changing certain components. A
thorough ablation study demonstrated the effectiveness of the DTomatoDNet architecture. To assess
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how each component of the DL architecture contributes to the representation of the entire network,
an ablation investigation involves removing or altering a portion of the architecture. To be more
precise, after removing each fire module, the performance of the DTomatoDNet model is assessed. It is
essential to assess the stability of the DTomatoDNet architecture in this ablation research to ascertain
how the fire modules and convolutional layers affect the system’s performance. Four experiments that
included deleting some layers, or fire modules, from the proposed architecture were used to conduct
an ablation analysis. We used the identical experimental setup (Table 2) and dataset for all our studies
as we did for our main experiment. To verify the effect of fire modules on the model’s performance, we
deleted the fire modules (with three convolutional layers) in these trials. Table 7 provides an overview
of the ablated models’ performance. The results show that the framework performance decreases when
any aspect of the DTomatoDNet model is changed or eliminated. However, the computational burden
may be reduced by removing one or more modules from the architecture, and the framework will still
achieve satisfactory performance, as shown in Table 7.

Table 7: Ablation study results

Experiment
no.

No. of convolutional
layers

Fire
modules

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

1 13 4 99.12 95.6 95.5 95.55
2 10 3 99.22 96.00 96.1 96.05
3 7 2 99.19 96.6 96.9 96.75
4 4 1 99.13 95.5 95.7 95.6
Proposed
method

16 5 99.04 96.55 96.6 96.55

4.3.5 Performance Evaluation on Train/Validation/Test Split

The major objective of this experiment was to examine our model’s effectiveness in detecting
tomato leaf diseases in samples that have not been observed. This experiment’s dataset is divided
into three parts: training, validation, and testing sets. We used 70% of the input data for training,
20% for validation, and 10% (unseen samples) for testing for the proposed DTomatoDNet approach.
We utilized 10,000 pictures total from all 10 classes (900 for testing, 1800 for validation, and 7300 for
training our model), which is more information. The training set employs the proposed DTomatoDNet
model for categorizing tomato leaf diseases using the criteria specified in Table 2. There are 50 epochs
and 2800 total iterations in the training phase of DTomatoDNet (56 iterations per epoch). The model’s
average validation and testing (on unseen samples) accuracies at epoch 50 were 99.03% and 98.95,
respectively. The proposed DTomatoDNet approach’s validation and testing confusion matrices are
displayed in Tables 6 and 7, respectively. Table 8 displays the outcomes from the validation, test, and
train splits.

4.3.6 Comparison of the Proposed DTomatoDNet with State-Art Methods

Additionally, an experiment was conducted to assess the classification proficiency of the DToma-
toDNet model for distinguishing tomato leaf diseases, in comparison to other state-of-the-art method-
ologies. In this experiment, we compared the proposed work against the most recent ML-based [20–22]
and DL-based [44–46] methods for categorizing tomato leaf diseases. This is not a direct comparison
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because of variations in training and testing techniques, processing power, and data preprocessing
used in the respective methodology. In [44], the authors used data from the PlantVillage dataset to
classify tomato leaf diseases using CNNs and TL. There were around 16,000 leaf images spread over
10 classes in the dataset. The training, test, and validation set received 70%, 20%, and 10% of the
total data. The performance of a CNN model created from scratch for learning was compared to that
of four TL models: ResNet50, DenseNet121, VGG16, and InceptionV3. The algorithms are assessed
using cross-entropy loss and accuracy. For the provided dataset, the VGG16 and CNN models, created
from scratch, demonstrated encouraging results, with validation accuracy on the test set of 90%
and 83%, respectively. In [45], the authors offered a cutting-edge technique for classifying distinct
plant types. The technique was created to discover and categorize different tomato leaf diseases.
Utilizing 2598 images from the PlantVillage dataset, DL networks were trained to identify tomato
leaf diseases (PVD). The trained model demonstrated competence by reaching an accuracy level
of 96.37%. The authors of [46] presented a T-LeafNet that can recognize normal leaves and nine
distinct diseases in tomato plant leaves. The effectiveness of classification was evaluated by training
the proposed system from scratch. Also, the dataset was used to analyze pre-made network models
MobileNetV2, AlexNet, and VGG16 architectures, and the outcomes were contrasted as part of
TL. The effects of data augmentation and learning coefficient parameters on achievement were also
examined by utilizing tests on both the original and augmented data with varied learning coefficients.
T-LeafNet achieved the highest classification accuracy of 97.32%. In [47], the authors employed
two TL-based frameworks, VGG19 and VGG16, together with a customized CNN algorithm to
categorize tomato leaf diseases. Additionally, ablation research was carried out to determine the
ideal network parameters. After employing data augmentation approaches, the proposed method had
the greatest accuracy and recall of all the models, 95.00%. A new network for classifying tomato
leaf diseases was developed using the Dense Inception MobileNetV2 parallel convolutional block
attention module network (DIMPCNET) [48]. An improved bilateral filtering and threshold function
(IBFTF) method was developed to eliminate noise. The issue of big intra-class differences and minor
inter-class differences was addressed by the Dense Inception CNN module (DI). MobileNetV2 now
has a parallel convolutional block attention module (PCBAM) to lessen the effect of complicated
backdrops. According to the experimental findings, DIMPCNET’s recognition accuracy and F1-score
are 94.44% and 0.9475, respectively. According to the results in Table 9, our approach outperformed
all the contemporary methods. Notably, the DTomatoDNet technique employs an end-to-end learning
framework, eliminating the need for distinct feature extraction, selection, or segmentation procedures.

Table 8: Detailed outcomes achieved using train, validation, and test split

Accuracy Precision Recall F1-score

Training 99.73 98.7 98.7 98.7
Validation 99.03 95.2 95.3 95.25
Testing 98.95 95.0 95.0 95.0
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Table 9: Comparison of the DTomatoDNet model with present systems

Work Method Accuracy (%) Year

Narla et al. [20] Multiple features + SVM 86.6 2023
Javidan et al. [21] Weighted ensemble method 95.58 2023
Bhagat et al. [22] Bag-of-feature and SURF + SVM 97.0 2023
Lingwal et al. [44] TL and CNN 90.0 2023
Bandyopadhyay et al. [45] CNN 96.37 2023
Ecemis et al. [46] CNN T-LeafNet model 97.32 2023
Paul et al. [47] Custom CNN 95.0 2023
Peng et al. [48] DIMPCNET 94.44 2023
Proposed work DTomatoDNet DL model 99.34 2023

5 Discussions

It is important to remember that premature monitoring is essential for choosing the greatest
operative treatment plan and stopping the disease transmission. Professionals routinely recognize and
diagnose diseases by simple observation. Farmers commonly identify issues based entirely on their
knowledge, necessitating the need for professionals to monitor the work and a precise recognition
procedure continually. To do this, the expert needs academic training, in-depth knowledge of many
different disciplines, expertise with disease symptoms, and an understanding of various diseases’
causes. So, a skilled doctor must be knowledgeable about all the symptoms and warning signals the
disease brings. Also, it is a laborious chore for farmers to check plants regularly. As a result, much
work has gone into developing a method that uses leaf images to classify diseases automatically. These
methods’ primary goal is identifying diseases in their earliest stages so that the right therapy can be
given when needed.

DL is advancing significantly in problem-solving thanks to the adaptability of computer vision
techniques, and its outcomes outperform the state-of-the-art in different areas. DL refers to using
artificial neural network (ANN) architectures with substantial processing layers instead of the “shal-
lower” architectures of more traditional ANN approaches. The ability to directly use raw data without
depending on specialized features is the main advantage of DL. DL may be utilized for various tasks,
such as object identification and image classification, which have greatly enhanced image classification
in several industries, including agriculture. In this study, a lightweight DTomatoDNet architecture is
used to identify tomato disorders, inspired by the success of DL and the rapid expansion of CNNs.
Nine different tomato leaf diseases can be more precisely (99.33%) identified by our algorithm than
healthy plant leaves. The proposed DTomatoDNet model took 1338 min and 23 s to train on a
computer with 8 GB of RAM for categorizing tomato leaf images. But this time, it depends on the
computational power of our machine, the number of epochs, and iterations. The length of time depends
on how much processing power is used to build and train our model. During the training phase,
the DTomatoDNet experienced 3100 iterations—62 iterations each for 50 epochs. We can reduce
this training time by reducing the number of layers, using machines with high computational power
(without affecting the classification performance), or training the model with fewer epochs. Based
on the experiments in the ablation study, we can reduce the number of layers and still achieve good
classification performance. Furthermore, based on the training graph (Fig. 4), we can achieve the
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best results even at fewer epochs. The proposed model is assessed against state-of-the-art methods
discovered in the field and hybrid approaches (DL + SVM). We tested the system using “Tumor
Classification Data,” another well-liked and freely accessible Kaggle dataset [38], to investigate the
efficacy and universal applicability of the recommended DTomatoDNet architecture. The proposed
architecture surpasses innovative and hybrid techniques and works well.

Our work achieves this best because our novel DTomatoDNet based method employed the LR
activation function instead of the RA function. To solve the dying ReLU issue, we additionally applied
the LR activation function. The DL model will not function if Relu dies for some reason. We used LR
and the DTomatoDNet method that was recommended to resolve this problem. The LRactivation
technique allows a non-zero (small) gradient whenever the part is unused. Thus, it continues to learn
without halting or encountering obstacles. Therefore, the proposed DTomatoDNet network performs
better when categorizing tomato leaf diseases due to the enhanced feature extraction capabilities of
the LR activation function. We used fire modules consisting of three Convn layers, i.e., a squeeze
Convn layer with multiple kernels of size 1 × 1, followed by a mix of 1 × 1 and 3 × 3 Convn layers
(expand layer). We used 1 × 1 layers to reduce the number of parameters. Moreover, these outcomes
can be ascribed to our method’s capability in effectively capturing resilient and distinctive features
from tomato leaf images, ensuring precise and reliable classification. The initial Convolutional layers
capture fundamental features such as color and edges while deeper layers focus on extracting complex
information like irregularities within the tomato leaf images.

Even though the recommended approach produced favorable results, we identified a few short-
comings and offered suggestions for further study. The key limitation of this method is that it cannot
detect multiple diseases on the same leaf. Our approach only classifies images into disease types;
however, the leaf may be affected by more than one disease in real life. The proposed technique involves
regularly dividing the picture data into a training set (80%) and a test set (20%). On the contrary side,
different divisions can result in different outcomes. To assess the effectiveness of the DL networks, we
employed the most popular dataset for tomato disease detection. However, this dataset only contains
a few images—approximately 1000 per class—of ten different laboratory-captured tomato diseases.
In the future, we will publish pictures of the leaves with numerous diseases to identify them all. We
have compared the effectiveness of the proposed system to hybrid methods (DL + SVM). Still, in the
future, when we utilize the softmax for classification rather than SVM, we will compare the results of
our method to those of other TL-based techniques. Furthermore, we will validate our model on a large
(another) dataset of tomato leaf diseases in real conditions. In the future, we will test our approach
on unseen samples from our dataset. Moreover, to validate the robustness of our approach, we will
perform cross-dataset validation. In the future, we will use one dataset for the training of our model
and another dataset for the validation of our model. Also, in the future, we will use deep dream images
(which return the array of images) to visualize the features learned by our model.

6 Conclusion

It is crucial for anyone working in agricultural production to identify diseases quickly. It can assist
agricultural practitioners in identifying disease kinds rapidly, reducing time spent talking to experts
about disease types, recognizing disease kinds more rapidly and responding, and minimizing financial
losses brought on by crop diseases. To classify tomato leaf diseases effectively, this paper presented the
DTomatoDNet framework. The proposed framework is superior to current approaches, as evidenced
by the accuracy of 99.34% for classifying tomato plant diseases. The effectiveness and resilience
of the proposed model for tomato illness recognition and classification have also been proven by
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experimental findings on the medical domain’s common Kaggle dataset (Tumor Classification Data).
We believe the proposed approach offers a potential resolution to benefit the agricultural industry. In
the future, we will test the proposed model by integrating aerial images [49] and ground-level images
to enhance the robustness of our model. Furthermore, we aim to validate the performance of the
proposed DTomatoDNet approach by testing it on the classification of brain tumors, mask detection,
epileptic seizure detection, predicting heart diseases, and breast cancer to generalize it further. We
performed certain analyses on the proposed approach experiments, such as the confusion matrix
shown in Table 4, to evaluate the performance of deep learning algorithms. However, in the future,
we are interested in further evaluating the proposed approach performance by employing Heatmaps
and TreeMaps to identify misclassification cases.
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