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ABSTRACT

The rapid growth of service-oriented and cloud computing has created large-scale data centres worldwide. Modern
data centres’ operating costs mostly come from back-end cloud infrastructure and energy consumption. In cloud
computing, extensive communication resources are required. Moreover, cloud applications require more bandwidth
to transfer large amounts of data to satisfy end-user requirements. It is also essential that no communication source
can cause congestion or bag loss owing to unnecessary switching buffers. This paper proposes a novel Energy and
Communication (EC) aware scheduling (EC-scheduler) algorithm for green cloud computing, which optimizes
data centre energy consumption and traffic load. The primary goal of the proposed EC-scheduler is to assign
user applications to cloud data centre resources with minimal utilization of data centres. We first introduce a
Multi-Objective Leader Salp Swarm (MLSS) algorithm for task sorting, which ensures traffic load balancing, and
then an Emotional Artificial Neural Network (EANN) for efficient resource allocation. EC-scheduler schedules
cloud user requirements to the cloud server by optimizing both energy and communication delay, which supports
the lower emission of carbon dioxide by the cloud server system, enabling a green, unalloyed environment. We
tested the proposed plan and existing cloud scheduling methods using the GreenCloud simulator to analyze the
efficiency of optimizing data centre energy and other scheduler metrics. The EC-scheduler parameters Power Usage
Effectiveness (PUE), Data Centre Energy Productivity (DCEP), Throughput, Average Execution Time (AET),
Energy Consumption, and Makespan showed up to 26.738%, 37.59%, 50%, 4.34%, 34.2%, and 33.54% higher
efficiency, respectively, than existing state of the art schedulers concerning number of user applications and number
of user requests.
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1 Introduction

The terminology Green Cloud Computing has evolved through Parallel-Computing, Grid-
Computing, and Utility-Computing technologies. The conventional technologies of resource sharing
provide the basis for Green Cloud Computing’s emergence in the current era.
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1.1 Parallel Computing

Traditionally, the software has been written for serial computation; that is, for programs to be run
on a single computer with a single Central Processing Unit (CPU), and a problem is broken down into
a discrete series of instructions, and instructions are executed one after another. Only one instruction
may be performed at any moment. Later, there was a need for complex computing systems to solve
complex problems using mass data volumes. One solution to this problem is Parallel Computing [1].
Parallel Computing involves using multiple computing resources to solve a computational problem
in which programs are run using multiple CPUs. A problem can be divided into discrete parts that
can be solved simultaneously. Each piece is further broken down into a series of instructions, where
each function executes simultaneously on different CPUs. Traditionally, parallel computing has been
considered to be “the high end of computing” and has been motivated by numerical simulations
of complex systems and “Grand Challenge Problems”, such as weather and climate, chemical and
nuclear reactions, human genome, geology, seismic activity mechanical devices, prosthetics, and
spacecraft electronic circuit manufacturing. Parallel computer architectures will become increasingly
hybrid, combining hardware multithreading, many cores, SIMD unit accelerators, and on-chip
communication systems, which require the programmer and compiler to adopt parallelism, orchestrate
computations, and manage data locality at several levels to achieve reasonable performance.

1.2 Grid Computing

In early 2000, the process of computing became pervasive, and individual users (or client
applications) gained access to computing resources (processors, storage, data, applications, etc.) as
needed, with little or no knowledge of where those resources are located or the underlying technologies,
hardware, and operating system. This paradigm is known as Grid Computing. If we focus on
distributed computing solutions, we can consider one definition of grid computing as distributed
computing across virtualized resources [2]. The goal is to create the illusion of a simple yet large
and powerful virtual computer from a collection of connected (and possibly heterogeneous) systems
sharing various combinations of resources. Grid computing provides an architecture for creating a
virtual supercomputer comprising distributed computer nodes. Most grid computing projects have no
time dependency, and large projects are typically deployed across many countries and continents. In
many cases, a grid computing system leverages a node’s idle resources to perform grid-related tasks,
known as cycle-scavenging or CPU-scavenging.

1.3 Utility Computing

With the growing demand for computing resources and network capacity, providing scalable and
reliable computing services on the Internet has become challenging. Recently, more attention has been
paid to the Utility Computing concept, which aims to provide computing as a utility service, similar
to water and electricity. Utility Computing offers online computation or storage as a commercial
metered service, computing on demand, or cloud computing [2]. It creates a “virtual supercomputer”
by using spare computing resources within an organization. Utility computing differs from cloud
computing because it relates to the application infrastructure resource business model. This could be
either hardware or software delivered, whereas cloud computing relates to how it is designed, deployed,
built, and runs applications that operate in a virtual environment.
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1.4 Green Computing

Green cloud Computing refers to an environmentally friendly Cloud Computing system that
minimizes energy consumption and reduces carbon emissions from the computing system. The green
characteristics of Information and Communication Technology (ICT) products and services can be
observed in sustainability-related concepts, including green ICTs, ecological informatics, environmen-
tal informatics, sustainable computing, and green computing. ICTs have been studied throughout their
lifecycle to promote green and sustainable development. This can substantially contribute to improving
the existing state of the environment by mitigating adverse effects that have become more severe in
recent decades. Producers are under intense pressure to comply with environmental standards and
offer products and services that have the least detrimental impact on the ecosystem.

1.5 Migration to Sustainable Green Cloud Computing

Green cloud computing involves designing, producing, and using digital spaces that primarily
minimize unfavourable environmental impacts. It involves finding and producing energy-saving digital
methods to minimize carbon emissions to the ecosystem [3,4]. It saves energy and reduces the
enterprise costs required for operations. Cloud storage benefits are addressed by users using green
cloud computing while simultaneously diminishing unfavourable climatic impacts, thereby affecting
human well-being. Green cloud computing is used for many purposes, such as allocating resources
and improving communication protocol performance [5]. Cloud computing information is expected
to increase with the rapid development of cloud computing. This has become an unavoidable trend
in developing data centres for green cloud computing [6]. Green cloud data centres have become
progressively more significant because they must manage an ever-increasing number of cloud platform
administrators. Different operations run simultaneously in a green cloud, necessitating high-scope
framework resources that commonly incorporate many servers and cooling offices [7]. To achieve high
energy proficiency, every application is generally sent to various green cloud data centres situated in
various locations. Each green cloud data centre generally requires several megawatts of force network
energy and environmentally friendly power for cooling and executing different tasks. In addition,
because the energy cost of green cloud data centres is increasing, it is vital to improve the number of
servers in the green cloud at its ongoing speed [8]. With the increasing size of green cloud data centres,
energy consumption is increasing. For collaborative computing, cloud computing is a supercomputer
model that uses high-bandwidth networks, large-scale storage systems, large data centres, and various
distributed computing resources. Consequently, effective management is required for many servers in
data centres [9]. The monitoring objective for energy utilization in cloud data centres is to use green
cloud computing, which is a novel computing model. Green cloud computing administrators have
paid significant attention to the utilization productivity of energy, providing step-by-step directions
for reducing emissions of carbon by-products, thereby saving money [10]. In any case, a decrease in
energy utilization might create more time for the service’s response, which affects service performance;
therefore, striking a balance between energy usage and performance is critical. Utility, grid, and
parallel computing are some of the stages of cloud computing [11,12]. In green cloud computing,
energy efficiency has become a paradox owing to the rapid development of data centres, while it
may result in decreased performance and delays in service response in terms of performance and
energy. A group of green communications, cloud computing and innovation, and communications
aims to increase data centre computability while reducing carbon dioxide emissions [13]. The green
cloud management system is the main resource to balance the underlying scheduling resources and
infrastructure. Resource scheduling is under investigation, and no industry standard has yet been
established in green cloud computing [14,15]. For cloud computing applications, more communication



2794 CMC, 2023, vol.77, no.3

resources are required. Cloud applications require more bandwidth to transfer large amounts of data
and satisfy end-user requirements. There must be no communication source that causes congestion
or loss owing to unnecessary switching buffers. Green computing is based on reducing energy
consumption using optimal algorithms [16]. Data centres must effectively manage their resources to
reach this goal in a green cloud. Using optimal scheduling algorithms [17] in green cloud computing
to assign tasks to specific resources reduces processing time and energy usage. Tasks arrive regularly,
and it is impossible to perform all of them with the restricted resources available in green cloud data
centres. The admissions controller mechanism in green cloud data centres is often structured to reject
specific jobs and avoid overpopulation. There has been no evidence of a link between job rejection by
applicants and green cloud data centre invoices. An approach known as Time-Aware Task Scheduling
(TATS) [18] considers temporal variance, and the tasks admitted are scheduled to run green cloud
data centres while staying within their delay restrictions. The Spatial Task Scheduling and Resource
Optimization (STSRO) technique [19] reduced the overall service cost by effectively scheduling all
incoming activities from diverse products to satisfy task delay-bound limitations. Green energy-
gathering Distributed Energy Resources (DER) [20] can aid in alleviating energy poverty and pursuing
high network energy efficiency. The energy and non-service level agreement aware algorithm (EANSA)
[21,22] uses the environment to target energy reduction but not explicitly the workload, power
consumption model, and experimental setup. The high energy utilization of cloud data centres has
become an important topic in the ICT world [23]. The Amazon Cloud computing platform Amazon
Elastic Cloud (EC2) with a VANET simulator explores the performance efficiency of cloud solutions
[24]. Computer manufacturing companies, such as Microsoft, Dell, and Hewlett-Packard, contribute
to Green computing by manufacturing environmentally friendly computer hardware, such as energy-
efficient processors designed with power-saving algorithms [25]. IBM investigated the elements of
sustainable ICT, discussed its evolution as a service, and offered criteria to increase its alignment with
corporate sustainability strategies. Soft computing techniques solve various task-scheduling problems
in cloud computing environments. Different algorithms, such as the genetic algorithm, particle swarm
optimization, ant colony optimization, and artificial bee colony, are suitable for efficiently scheduling
tasks to resources. We propose a meta-heuristic bio-inspired approach called EC-scheduler to schedule
tasks to optimize resource utilization in a Green cloud environment.

1.6 Research Objective

The objective of our work is green cloud computing and energy- and communication-aware
scheduling (EC-scheduler), which optimizes data centre energy consumption and traffic load. The
primary objectives of the proposed EC-scheduler are as follows:

1. A Multi-Objective Leader Salp Swarm (MLSS) algorithm is used for task sorting to balance
traffic load.

2. An Emotional Artificial Neural Network (EANN) is utilized for efficient resource allocation
based on cloud user requirements, which jointly optimizes energy- and communication-related
delay and packet losses to ensure Quality of Service (QoS).

3. EC-scheduler is implemented in the GreenCloud simulator, and the results demonstrate that
it enhances QoS performance.

The remainder of this paper is organized as follows. Section 2 presents a literature survey, and
Section 3 concerns the proposed EC-scheduler and system model, task sorting, and resource allocation
algorithms using mathematical models. Section 4 describes the EC-scheduler’s performance evaluation
and comparative analysis with existing energy-centric schedulers. Finally, Section 5 concludes the
paper.
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2 Literature Survey

This section examines recent literature on green cloud computing and energy saving from various
perspectives. Table 1 summarizes the existing literature in several areas. As with existing research,
in the Clonal Selection Resource Scheduling Algorithm (CSRSA) [26], resource-aware scheduling is
performed based on the clonal selection principle and a load-balancing method and is statistically
proven to improve performance. This fact ensures that research on the scheduling and optimal
allocation of resource nodes in data centres can minimize cloud platform maintenance and operating
costs and that heat generation and energy consumption are practically and theoretically essential
for green cloud computing. According to previous research, the CSRSA significantly reduces energy
consumption in green cloud computing, and its exploitation and exploration capabilities are balanced
and improved. A time and energy-aware algorithm was proposed for task scheduling in a diverse
context. The Energy Trade-Off Multi-Resource Cloud Task Scheduling Algorithm (ETMCTSA) [27]
recognizes the importance of developing a technique that constantly alters them depending on the
latest workload conditions, but also improved trade-offs need not just tune static α. The probability
parameters of the algorithm can be adjusted by users to regulate and manage the energy consumption
and performance of the cloud system. A Spatiotemporal Task Scheduling Algorithm (STTS) [28]
was used to schedule incoming tasks efficiently to fulfil delays and reduce energy consumption.
Temporal and spatial differences in distributed green data centres were thoroughly studied using STTS.
Nonlinear restricted optimization issues were solved, such as energy cost minimization problems.
While meeting all task delay bound criteria precisely, STTS achieves lower energy costs and higher
Throughput than several other task scheduling systems. By task scheduling various applications
intelligently to fulfil their response time restrictions, the Profit-Sensitive Spatial Scheduling algorithm
(PS3) [29] was proposed to increase the total profit of a distributed green data centre provider. This
scheduling approach effectively utilizes those, as mentioned above, variable spatial diversity. PS3 solves
the profit maximization problem for a distributed green data centre provider as a restricted nonlinear
program and achieves higher Throughput and total profit than two common approaches of task
scheduling according to real-life trace-driven simulation trials. The Grey Wolf Optimisation Algorithm
(GWO) [30] was used to solve the issue of workflow scheduling in green cloud computing data centres,
where its goal is to reduce the cost, time, and power consumption for executions.

Table 1: Summary of research gaps

Ref. Scheduling scheme Target Remarks

[26] CSRSA Energy consumption,
load balancing

Energy reduction may result in a
service delay.

[27] ETMCTSA Time and energy-aware Certainly causes synchronization and
task subdivision problems

[28] STATS Delay and energy
consumption

Highly challenging to minimize

[29] PS3 Higher total profit and
throughput

Desirable explored segments of the
search space

[30] IGWO Power consumption,
cost, and makespan

The task scheduling is acceptable
against reliability

[31] GHSA_di Energy consumption
and scalability

Real Pareto front problem due to huge
workload

(Continued)
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Table 1 (continued)

Ref. Scheduling scheme Target Remarks

[32] FSTS Lower energy cost Huge makespan, communication costs
[33] JVCMMD Energy consumption,

container migrations
and SLA violations

Scheduling against reliability and
stability

[34] Lion optimization (LO.) Energy efficiency Uncertainty propagation towards task
execution and data transfer time

[35] NLR prediction model SLA violation Reduction of energy consumption
deteriorates task performance

The algorithm was tested and found to reduce the cost, energy, and runtime in a simulation. To
emphasize the benefits of hardware energy regulation concepts, a co-evolutionary dynamics equation
was used in the Heuristic Scheduling Algorithm (GHSA) di algorithm [31]. The GHSA di algorithm
has been used for its apparent scalability, energy savings, and overall performance for data- and
computationally-intensive cases. Hardware energy regulation principles are emphasized and exploited
in the co-evolutionary dynamics equation. Three-dimensional biomimetic encoding and decoding
considering individuals and their corresponding evolutionary mechanism for scheduling and creative
hierarchical parallelization are suited to schedule servers’ super-hybrid systems. To reduce the data
centre provider’s energy costs by allocating heterogeneous application tasks optimally across many
data centres, to stay under response time constraints of the studies strictly, and to specify the quantity
of running speed and power on servers of every server in data centres, a fine-grained resource
Provisioning and Task Scheduling (FSTS) algorithm [32] was utilized. By comparing various up-
to-date scheduling approaches, real-world data-driven trials show that FSTS saves energy, thereby
ensuring the highest Throughput.

To solve the issue of green resource management in container-based cloud data centres, parameters
such as energy usage, quantities of container migrations, Virtual Machine (VM) and Service Level
Agreement (SLA) violations are considered. The eight subproblems that constitute the container
consolidation problem and joint VM are solved using a Joint Virtual Machine and Container
Migration (JVCMMD) algorithm [33] for deciding VM transfer. To show that their solutions have
a significant migration in reducing energy consumption, the number of VMs migrating to cloud
data centres and SLA violations, the CloudSim simulator was used to confirm the applicability of
their policies. The green and cloud manager layers [34] provided an approach for adequate resource
availability to users with an uncompromised QoS. From each accessible resource, the cloud manager
layer is accountable for choosing suitable resources. The best one is selected by the green manager
layer. Due to its optimal resource selection, the standard service response time diminishes with
decreased power utilization. The managing layers consider the distance between the cloud server
and service requester, assigning the queue length, optimum resource, and present workload, thus
further developing the QoS. Using the New Linear Regression (NLR) and Modified Power-Aware
Best-Fit Decreasing (MPABFD) algorithms to detect under- and overloaded hosts resulted in good
performance. The NLR [35] prediction model significantly outperformed the eminent expectation
models, as indicated by outcomes and execution examinations. The NLR forecast model reduces
energy use and SLA violations through CoT utilization to establish a sustainable and intelligent
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climate for smart cities. Our proposed Energy-and-Communication-aware-scheduling system aims
to bridge the research gaps of existing systems, such as energy reduction without service delay [26],
synchronization and task subdivision problems due to the time and energy-aware scheduling [27], delay
and energy consumption while scheduling [28], desirable explored segments of the search space [29],
reliability of the system while achieving power consumption, cost, and makespan during scheduling
[30], real Pareto front problem due to huge workload, Huge makespan, communication costs [31], high
communication costs [32], scheduling against reliability and stability [33], uncertainty propagation
towards task execution and data transfer time [34], and reduction of energy consumption deteriorating
task performance [36]. Dynamic resource provisioning is a critical challenge due to the varying task
resource requirements in green cloud computing. An abnormal workload causes resource scarcity,
waste, and erratic resource and task allocation, all affecting task scheduling and contributing to SLA
violations. There is inefficient and environmentally hazardous use of cloud resources. Recognizing the
seriousness of this situation, several scholars have contributed to promoting green cloud computing
by using various methods. Green cloud computing is implemented to improve the utilization of
calculating assets to decrease energy usage and the ecological consequences of their use. As a result,
the importance of green computing has increased to minimize data centres’ harmful effects, energy,
CO2 emissions, and water and power consumption, which are hazardous to the environment. Table 1
presents the significant characteristics of existing scheduling systems.

The research gaps are addressed by the following research objectives:

1. The proposed EC-scheduler was devised to optimize energy- and communication-aware
scheduling.

2. To generate the required power consumption using our EC-scheduler, suitable for a green cloud
computing environment.

3. To migrate virtual machines between servers in green cloud data centres while adhering to
power consumption and service time constraints.

4. To achieve effective task scheduling through optimal task sorting and efficient resource
allocation.

3 Proposed System Model

The working process of our proposed EC-scheduler for green cloud computing is jointly optimiz-
ing the energy consumption and communication traffic load. Fig. 1 depicts the system model of the
proposed EC-scheduler.

Customer service requests and product performance for every service are delivered to the data
centre. A task that can be handled by a virtual machine in a data centre is referred to as a service
request. Customers who have varying computing service resources and response times make service
requests. Each data centre hosts Virtual machines on several real servers or computers. Assume
SD = Server1, Server2, . . . , Servern is the server set and VD = V1, V2, . . . , VM is the virtual machine
(VM) set installed on the servers. The sorted groupings of requests are delivered to the tasks (scheduling
units). Each request represents a task that a data centre VM may be able to perform. The central
database unit stores the operational and structural data for all physical servers and VMs of the data
centre. The memory capacity, computation speed, current utilization percentage, failure rate, power
consumption rate, availability, etc., should all be included in this unit for each physical resource or VM.
The resource allocation unit is in charge of computing underutilized servers that must be hibernated
or slept, and over-utilized servers will be in charge of receiving requests and migrating the VMs with
their requests. To perform this action, the resource allocation unit queries the data centre’s central
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database for the current server utilization. The server monitor unit provides the server information to
the central database. The main task of the server monitor unit is to monitor the servers and submit
periodic reports to the central database regarding their current state.

The working process of the EC-scheduler is as follows:

• Task sorting using the MLSS algorithm
• Resource allocation using EANN

Figure 1: Proposed system model

3.1 Task Sorting

Salp swarms are transparent jellyfish-like organisms found in the sea. The evolutionary meta-
heuristic Salp Swarm Algorithm (SSA), which has a Salp predation technique, has chain-like behaviour
called group chain. The SSA uses the chain behaviour to obtain the best solution. There are two kinds
of Salp swarms, where one is “leading” and the other is “following”. The leader is the Salp at the top
of the chain, and the others are followers. To keep the chain flexible, the leader at the chain front helps
followers search for food, and all food signals are sent out by the followers of the most recent Salp.
Each Salp site in this study was programmed to look for food in an nD-dimensional search space,
where D signifies the search dimension and n denotes the population size. In the MLSS algorithm, the
j-th Salp position yj

D(j=1,..., n),(D=1,...,d) and D-th dimension are given by Eq. (1).

yj
D =

⎡
⎢⎢⎣

y1
1 y1

2 · y1
d

y2
1 y2

2 · y2
d· · · ·

yn
1 yn

2 · yn
d

⎤
⎥⎥⎦ (1)

In the D-dimensional search space, the leader position yj
D(D=1,2,...,d) is assigned. The best answer

in terms of functionality based on food supply is likewise the leader position, and it is configured
to obtain food in the area of searching, which in turn is sought and followed by the chain of the
Salp swarm. According to the location of the food supply, the leader adjusts its position according to
Eq. (2).
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y1
D =

{
fD + C1((uaD − laD)C2 + laD), C3 ≥ P,
fD − C1((uaD − laD)C2 + laD), C3 < P,

(2)

where fD represents the food position. y1
D represents the leader’s position. The D-th dimension search

space represents laD the lower bound and uaD the upper bound. The parameters C3 C2 P and P
uniformly generate random numbers in the range [0, 1]. The expression coefficient is represented by
the parameter, which can be written as

C1 = 2E−(4s/S) (3)

where E denotes the natural base. s represents the current number of iterations, and S represents the
maximum iteration number. During each seeking phase, each follower tracks the leader’s position by
following the other followers. Examples of possible follower positions are as follows:

yj
D = 1

2

(
yj

D + yj−1
D

)
(4)

In the D-th dimension, i ≥ 2yj
Dyj−1

D denotes the j-th follower’s and neighbouring positions, respec-
tively. The Perturbation Weight Salp Swarm Algorithm (PWSSA) is proposed in this paper to add a
variable perturbation weight mechanism to the basic SSA to improve the search strategy and eliminate
ignorance in the process. The distance between the population and the best solutions is changed by
the technique of perturbation weight, and using asymptotic circular searching, the search domain
is controlled, resulting in a superior leader searching strategy that is faster balanced. With more
iterations, the positions of the followers will improve, and the adjusted position will alter more. The
perturbation weight mechanism improves SSA’s ability to find the best solution. Eqs. (5) and (6) show
the updates of factors C1 and C2.

C1new = u1 ·
(

1 − s
S

)
(5)

C1new = u2 ·
(

1 − s
S

)
(6)

where u2 and u1 fulfil the usual distribution standards.

u2∼num [0, 1]

u1∼num [0, 1]

The features of standard normal fractions have consistent variability in symmetry and concentra-
tion. When updating the new position for the leader using the equation, the follower position becomes
like Eq. (7):

y1
D =

{
fD + C1new((fd − y1

D)C2new + laD), C3 ≥ P,
fD − C1new((fd − y1

D)C2new + laD), C3 < P,
(7)

The multidirectional cross-searching technique was introduced to the basic SSA to increase the
diversity of follower placements:

yj
D = W1

⌊
(W2 · fd − yj

D) + (W3 · fd − yj−1
D )

⌋
(8)

where random parameters W1, W2, and W3 are represented over the range of [−1, 1].

Algorithm 1 presents the pseudocode of task sorting using the MLSS algorithm.
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Algorithm 1: Task sorting using MLSS algorithm
Input: fitness function (f), D-dimension, parameters
Output: f ∗

Step 1: Initialize the population randomly;
Step 2: The leader position is denoted by

y1
D =

{
fD + C1((uaD − laD)C2 + laD), C3 ≥ P,
fD − C1((uaD − laD)C2 + laD), C3 < P,

Step 3: If i = 0 do
Step 4: Coefficient represented as C1 = 2E−(4s/S)

Step 5: Each follower position is defined as yj
D = 1

2

(
yj

D + yj−1
D

)
Step 6: New factors c1 and c2 updated

C1new = u1 ·
(

1 − s
S

)
C1new = u2 ·

(
1 − s

S

)
Step 7: End if
Step 8: The new leader position is updated as

y1
D =

{
fD + C1new((fd − y1

D)C2new + laD), C3 ≥ P,
fD − C1new((fd − y1

D)C2new + laD), C3 < P,
Step 9: Find the best solution

3.2 Resource Allocation

It is recommended that tasks should be allocated to resources in a queue fashion using grasshopper
sorting as well as heuristic algorithms, thereby choosing the most suitable ways to perform every job
depending on the significant factor considered by the service provider or end-user to obtain optimal
resources in a timely and cost-effective manner. The process of resource allocation is performed by
EANN for efficient resource allocation based on user requirements, which jointly optimizes both
energy consumption- and communication-related delay and packet losses for QoS.

Despite the capacity of ANNs to model decisions, certain things may need improvement if the sup-
plied time series for ANN training needs to be more sampled with seasonal changes. Underestimation
and overtraining of peak values are the flaws. To overcome these problems, several data preprocessing
techniques have been proposed. In most areas of hydrology, multiresolution analysis capacity with
wavelet-based data processing techniques is linked to ANNs to improve modelling efficiency. However,
emotions interact dynamically in AI systems, and others follow suit by building EANN models that
include artificial emotions in the ANN. From a biological standpoint, an animal’s mood and emotion,
resulting from hormone gland activity, can influence its neurophysiological reaction, sometimes by
delivering various behaviours for the same job from different perspectives. In an EANN, a feedback
loop exists between the neurological and hormonal systems, which enhances the training capabilities
of the network. The explicit equation for determining the EANN output value is derived as

x̂i = Fi

[
M∑

h=1

Wih × Fg

(
N∑

k=1

Wphyk + Wha

)
+ Wia

]
(9)

where the input, hidden, and output layers of neurons and bias are represented by p, h, I, and a,
respectively. W denotes the weight applied to the neuron, Fk means the activation function for the
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output, Fh represents the hidden layers, N denotes the number of hidden and input neurons, M denotes
the input layer variable, and x denotes the computed output neuron values.

The EANN model is a more advanced version of the traditional ANN as it involves a sentimental
system that creates artificial hormones to affect the function of every neuron in a feedback mechanism,
with hormonal variables being influenced more by the inputs and outputs of neurons.

When the Feed Forward Neural Network (FFNN) and EANN are compared, it can be shown that,
unlike the FFNN, an EANN neuron may reversibly receive information through inputs and outputs
and provide hormones. These hormones are set up as dynamic coefficient characteristic patterns of
input (and target) samples and then tweaked over time. Throughout the training process, they may
alter all components of the neuron. The outputs of the path neuron in an EANN with three hormone
glands are expressed as follows:

xi = λp +
∑

h

σphGh × F

(∑
p

βk +
∑

h

ζk,hGh +
(∑

h

χp,hGh + αk

)
+

(∑
h

φp,i,KGh

)
Yp,i θp,i + θp,i

)
(10)

where the EANN’s total hormone value is calculated as

Gh =
∑

p

Gp,h (h = a, b, c) (11)

Gp,h = glandityp,h × Xp (12)

Each gland’s hormone level is used as a calibration parameter. Various schemes have been
employed to initialize the value of each hormone (Gh) based on the input pattern, such as the mean
of each sample’s input vector (input parameter values). In every period of the EmBP training phase,
the output neuron (
) containing the error signal is communicated back to change the conventional
weights of the hidden layer (Wih) and bias (Wia) as required.

Wih(New) = Wih(Old) + η.
.XGh + αWih(Old) (13)

Wia(New) = Wia(Old) + η.
 + α.[δWia(Old)] (14)

where the result of the hth hidden neuron is YGh, the last weight is αWih(Old), and the bias-value
alternation is αWia(Old).

In addition, the emotional weight (Wim) has been changed to

WiM(New) = WiM(Old) + μ.
.Xavg + K.[δWiM(Old)] (15)

where Yavg is the emotional weight’s prior variation and αWim(Old) provides the network subjected to
the mean value of the input patterns at every period. Anxiety and confidence factors are also identified.

μ = Xavg + 
 (16)

K = μ0 − μ (17)

where μ0 represents the level of concern upon completion of the first repetition. The weights and bias
from the hidden layer to the input layer are adjusted likewise. It is important to note that networks are
typically enforced with normalized data. The following efficiency criteria were used to evaluate the
model performance in this study:
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dc = 1 −

n∑
p=1

(
Yp − x̂p

)2

n∑
p=1

(
Yp − Yp

)2
(18)

rmse =
√√√√1

n

n∑
p=1

(
Yp − x̂p

)2
(19)

where Yp, Yp, n, and x̂p are the observed data, number of observations, mean of the observed data, and
computed values, respectively. The variable dc denotes the determination coefficient, and rose indicates
the root-mean-square error. Because extreme values are essential in rainfall-runoff modelling, Eq. (20)
represents the model performance test to recognize the maximum values of the runoff time series:

dcpeak = 1 −

nq∑
p=1

(
Yqcp − Yqop

)2

nq∑
p=1

(
Yqop − Yqo

) (20)

Algorithm 2 presents the pseudocode of resource allocation using the EANN algorithm.

Algorithm 2: Resource allocation using EANN
Input: Task requests, sorted requests, control metrics
Output: Allocate resources

(
X

(
x̂p

))
Step 1: Initialize the best population
Step 2: Output value of FFNN

x̂i = Fi

[
M∑

h=1

Wih × Fh

(
N∑

p=1

Wphyp + Wh a

)
+ Wia

]
Step 3: While doing Gh = ∑

p

Gp, h

Step 4: Compute overall hormone value
Step 5: Emotional weight (Wim ) is updated as

WiM(New) = WiM(Old) + μ.
.Xavg + K .[δWiM(Old)]
Step 6: Anxiety and confidence factors μ = Xavg + 


Step 7: Generate a new solution by flying randomly
Step 8: Compute Heidke Skill Score

hss =
1
n

a∑
p=1

X
(
x̂p, Yp

) − 1
n2

a∑
p=1

X
(
Yp

) × X
(
x̂p

)
1 − 1

n2

a∑
p=1

X
(
Yp

) × X
(
x̂p

)
Step 9: End

The Multicategory Heidke Skill Score (HSS) for evaluating and comparing the forecasting model
performance in multiple flow categories, such as low- and high-flow regimes, is given by

HSS =
1
n

a∑
p=1

X
(
x̂p, Yp

) − 1
n2

a∑
p=1

X
(
x̂p

) × X
(
Yp

)
1 − 1

n2

a∑
p=1

X
(
x̂p

) × X
(
Yp

) (21)
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Both forecasts and observations were included in the HSS computation. The dataset (37) intervals
are divided into groups. The number of estimates in Category K with the total number of predictions
and observations in Category J are counted and used in Eq. (21). HSS calculates the percentage of
correct projections that would be accurate based on pure randomness after eliminating those forecasts.
Algorithm 2 presents the pseudocode of the resource allocation process using EANN.

4 Results and Discussion

In this section, the performance of the proposed EC-scheduler for green cloud computing is
evaluated and validated. The EC-scheduler was tested using the GreenCloud simulator and compared
with state-of-the-art scheduling techniques, such as energy-aware scheduler (E-aware), Energy Trade-
off Multi-Resource Cloud Task Scheduling Algorithm (ETMCTSA), Proactive and Reactive Schedul-
ing (PRS), time-critical (TC), Time NonCritical (TNC), Enhanced Conscious Task Consolidation
(ECTC), Energy-Efficient Hybrid (EEH), Best Heuristic Scheduling (BHS), and Multi-Heuristic
Resource Allocation algorithm (MHRA). The experiments were carried out in different cases, such
as i. testing scheduling algorithm’s parameters against the number of user applications, ii. testing
scheduling parameters against the number of user requests, and iii. comparison of essential metrics
of EC-scheduler with those of state-of-the-art schedulers.

4.1 Performance Measures

Different parameters, such as Throughput (TP), Data Centre Energy Productivity (DCEP), Power
Usage Effectiveness (PUE), Average Execution Time (AET), Energy Consumption, and Makespan,
were used to validate the performance of our proposed EC-scheduler. The simulation parameters were
as follows: PUE is a metric for determining the effectiveness of a data centre’s power consumption.
Eq. (22) defines PUE. Eq. (23) defines DCEP.

PUE = DCTP

IT − DCTP

(22)

DCEP = DCWt

DCEt

(23)

The variables represent the total work done as Wt in the data centre DC during time t. The quantity
of electrical energy consumed during this period is Et. Customers care about the average execution time
(AET). Customers wish to handle requests within the shortest possible time. The following formula
was used to calculate the AET:

AET =

N∑
i=1

LTi

Sspeed

n
(24)

where LT is the request length, Sspeed is the switch speed, and n is the number of requests. TP refers to
the number of requests used for a data centre at a particular time as follows:

TP = DCQt

t
(25)

where Qt denotes the request amount for data centre DC at time t.
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4.2 Comparative Analysis

In this subsection, the proposed EC-scheduler is evaluated and compared with existing schedulers
using different scenarios, such as the impact of user applications, user requests, and vital factors.

4.2.1 User Application Impacts

The authors performed this test to evaluate the EC-scheduler performance concerning the number
of user applications and compared it with state-of-the-art scheduler performances through metrics.
In this test scenario, between 100 and 1000 user applications are generated consistently, with user
time requirements ranging from 10 to 1000 h. In terms of the impact of user applications, Table 2
presents the metrics of our proposed EC-scheduler and existing state-of-the-art schedulers TC, TNC,
and E-aware [37]. The parameters evaluated were PUE, DCET, AET, and TP for different numbers
of user application executions. When the number of applications increased, the PUE value for the
existing schedulers increased. Compared to the TC, TNC, and E-aware schedulers, the proposed EC-
scheduler’s PUE, DCEP, and AET were reduced. Thus, execution time is reduced in our proposed
system. According to the TP of EC-scheduler, it returns high values compared to existing schedulers
for different numbers of user applications varying from 200 to 1000.

Table 2: Comparative analysis concerning user applications

No. of
applications

PUE DCEP

TC TNC E-aware EC-scheduler TC TNC E-aware EC-scheduler

200 4.8 4.3 3.5 2.5 48 43 35 29
400 5.5 5 3.6 2.55 49 44 36 31
600 6.7 6 3.65 2.6 52 46 37 32
800 8.5 8 3.7 2.65 54 48 38 34
1000 9.6 8.5 3.75 2.75 55 49 39 35

AET (mins) TP (Requests/s)

TC TNC E-aware EC-scheduler TC TNC E-aware EC-scheduler

200 1.5 1.2 0.8 0.4 5 6 7 8
400 2.2 1.5 1.2 0.8 4 5 6 7
600 2.6 2.2 1.5 1.2 3 4 5 6
800 2.9 2.6 2.2 1.5 2 3 4 5
1000 3.3 2.9 2.6 2.2 1 2 3 4

Fig. 2a shows that the PUE values of our proposed EC-scheduler are 62.821%, 58.962%, and
28.297% more efficient than the existing TC, TNC, and E-aware schedulers, respectively, as shown
by the black curve, which is lower than the other coloured curves; hence, the PUE consumption is
low. Fig. 2b shows the DCEP values of the proposed and existing state-of-the-art schedulers. This
implies that as the number of applications increases, the DCEP value increases for all schedulers
(indicated by the coloured curves). The DCEP value of our proposed EC-scheduler (black curve) is
37.597%, 30.000%, and 12.973% more efficient than the existing TC, TNC, and E-aware schedulers,
respectively, indicating that the energy consumption of the data centre is lower than that using the other
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schedulers. Fig. 2c shows the AET values of our proposed and existing state-of-the-art schedulers.
When the number of applications grows, the value of AET increases for all schedulers. The black curve
represents the EC-scheduler, which is lower than the coloured curves; hence, the EC-scheduler requires
less execution time. The AET value of our proposed EC-scheduler is 51.2%, 41.346%, and 26.506%
more efficient than those of the existing TC, TNC, and E-aware schedulers, respectively. Fig. 2d shows
the Throughput of our proposed and existing state-of-the-art schedulers, and the black curve, which
is above the other coloured curves, indicates that EC-scheduler’s Throughput is higher than that
of all other schedulers. This shows that as the number of applications increased, the Throughput
for both schedulers decreased. However, when employing the TC, TNC, and E-aware schedulers,
the optimization rate for the EC-scheduler was faster. The throughput value of our proposed EC-
scheduler is 50%, 33.333%, and 16.667% more efficient than those of the existing TC, TNC, and E-
aware schedulers, respectively.

Figure 2: EC-scheduler comparative analysis

4.2.2 Impact of Requests

The authors performed this test to evaluate the EC-scheduler performance for the number of user
requests and compared it with state-of-the-art scheduler performances through metrics. The number
of user requests in this test scenario ranges from 1000 to 5000, with the request times ranging from 10
to 1000 h. Table 3 presents a comparative analysis of the proposed EC-scheduler and existing state-of-
the-art PRS, ECTC, ETMCTSA, and EEH schedulers [38] with user request impacts.
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Table 3: Comparative analysis concerning user requests

No. of applications PUE

PRS ECTC ETMCTSA EEH EC-scheduler

1000 1.6 1.7 1.9 1.52 1.32
−2000 1.7 1.72 2 1.65 1.34
3000 1.8 1.82 1.7 1.68 1.36
4000 1.7 1.75 1.75 1.69 1.38
5000 1.75 1.82 2 1.7 1.45

DCEP

PRS ECTC ETMCTSA EEH EC-scheduler

1000 310 300 250 330 360
2000 300 300 240 310 345
3000 280 275 230 280 325
4000 270 260 220 270 310
5000 260 240 200 260 295

AET (mins)

PRS ECTC ETMCTSA EEH EC-scheduler

1000 0.3 0.35 0.5 0.3 0.1
2000 0.6 0.65 0.8 0.6 0.15
3000 0.95 1.25 1.35 0.8 0.2
4000 1.3 1.35 1.75 1.2 0.25
5000 1.48 1.5 2 1.5 0.3

TP (Requests/s)

PRS ECTC ETMCTSA EEH EC-scheduler

1000 5.5 3.8 3.7 6.5 10
2000 8 6.5 5 10 13.5
3000 11 6.8 6.5 13.2 14.56
4000 10 9 6.8 13.5 15.89
5000 9 9.3 7.5 14 16.23

The PUE value for the EC-scheduler is significantly less than that of the existing PRS, ECTC,
ETMCTSA, and EEH; hence, the EC-scheduler utilizes much less server energy. The value of DECP
of the EC-scheduler is more than that of PRS, ECTC, ETMCTSA, and EEH, which implies that the
EC-scheduler maximizes Data Centre Energy production. AET for EC-scheduler shows lower values
than PRS, ECTC, ETMCTSA, and EEH, meaning that EC-scheduler takes minimal execution time.
The Throughput of the EC-scheduler is also high compared to PRS, ECTC, ETMCTSA, and EEH,
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which implies that the number of instructions executed by our scheduler is more than that of others
for the user requests ranging from 1000 to 5000.

Fig. 3a shows the PUE values of the proposed and existing state-of-the-art schedulers. It shows
that when the number of user requests increases, the value of PUE for all schedulers increases. The
increase in the rate for the proposed EC-scheduler is more significant than those of the PRS, ECTC,
ETMCTSA, and EEH schedulers. The PUE value of the proposed EC-scheduler is 19.883%, 22.247%,
26.738%, and 16.869% more efficient than those of the existing PRS, ECTC, ETMCTSA, and EEH
schedulers, respectively. The DCEP of the proposed scheduler and existing state-of-the-art schedulers
is shown in Fig. 3b. The figure shows that the DCEP value increases for all schedulers when the number
of user requests grows. The increase in the rate for the proposed EC-scheduler is more significant than
that for the PRS, ECTC, ETMCTSA, and EEH schedulers. The DCEP value of the proposed EC-
scheduler is 13.150%, 15.902%, 30.275%, and 11.315% more efficient than those of the existing PRS,
ECTC, ETMCTSA, and EEH schedulers, respectively.

Figure 3: EC-scheduler comparative analysis

Fig. 3c shows the average execution time of the proposed and existing state-of-the-art schedulers
as the user request number increases and the average execution time for all schedulers increases.
The growth rate for the proposed EC-scheduler is more significant than those of the PRS, ECTC,
ETMCTSA, and EEH schedulers. The average execution time of our proposed EC-scheduler is
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78.402%, 80.392%, 84.375%, and 77.273% more efficient than those of the existing PRS, ECTC,
ETMCTSA, and EEH schedulers, respectively. Fig. 3d shows the Throughput of the proposed and
existing state-of-the-art schedulers. As the number of user requests increases, the Throughput of all
schedulers increases. The increase in the rate for the proposed EC-scheduler is more prominent than
those of the PRS, ECTC, ETMCTSA, and EEH schedulers. Our proposed EC-scheduler’s Throughput
is 38.017%, 49.558%, 57.965%, and 18.495% more efficient than those of the existing PRS, ECTC,
ETMCTSA, and EEH schedulers, respectively.

4.2.3 Comparative Analysis for Important Metrics

In this section, we increased the significance factor (α) from 0.0 to 1.0 in increments of 0.1 for
1000 tasks. According to the results shown in Fig. 4a, performing this work is more appropriate than
other approaches and produces more optimal outcomes. The graph shows that our EC-scheduler is
34.2% and 19.73% more energy efficient than the current state-of-the-art BHS and MHRA schedulers,
respectively.

Figure 4: Energy consumption and makespan performance by EC-scheduler

The time spans of the proposed and existing scheduling strategies are shown in Fig. 4b. From
the figure, the average energy utilization of our proposed EC-scheduler clearly shows 33.549%
and 12.0378% improved efficiency compared with the existing state-of-the-art BHS and MHRA
schedulers, respectively.

5 Conclusion

For green cloud computing, we proposed the EC-scheduler, which optimizes data centre utilization
of energy and traffic load. In EC-scheduler, an MLSS algorithm is used for task sorting, which ensures
traffic load balancing. Then, an EANN is utilized for resource allocation for cloud user requirements,
which jointly optimizes energy consumption and communication costs. Our proposed EC-scheduler
was implemented with the GreenCloud simulator, and the simulation outcome proved that it is efficient
in terms of increased TP, DCEP, PUE, and AET and less decreased energy consumption compared to
other scheduling techniques that focus on the path of green environment sustainability, although user
load increases in cloud computing systems.
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