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ABSTRACT

Unmanned Aerial Vehicle (UAV) tracking has been possible because of the growth of intelligent information
technology in smart cities, making it simple to gather data at any time by dynamically monitoring events, people, the
environment, and other aspects in the city. The traditional filter creates a model to address the boundary effect and
time filter degradation issues in UAV tracking operations. But these methods ignore the loss of data integrity terms
since they are overly dependent on numerous explicit previous regularization terms. In light of the aforementioned
issues, this work suggests a dual-domain Jensen-Shannon divergence correlation filter (DJSCF) model address the
probability-based distance measuring issue in the event of filter degradation. The two-domain weighting matrix
and JS divergence constraint are combined to lessen the impact of sample imbalance and distortion. Two new
tracking models that are based on the perspectives of the actual probability filter distribution and observation
probability filter distribution are proposed to translate the statistical distance in the online tracking model into
response fitting. The model is roughly transformed into a linear equality constraint issue in the iterative solution,
which is then solved by the alternate direction multiplier method (ADMM). The usefulness and superiority of the
suggested strategy have been shown by a vast number of experimental findings.
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1 Introduction

Smart cities [1] are increasingly emerging as the primary outcome of urbanization and information
technology integration as social intelligence advances. Six-generation (6G) technology [2] supports
intelligent interconnection of human-machine objects and can generate potential application scenarios
[3] such as full regional coverage by making full use of full spectrum resources. However, smart cities
lack the support of spatial geographic information, and the application scenarios usually require
terminal devices to provide more processing power and are more sensitive to transmission delays.
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However, current devices typically have poor processing power, and the centralized architecture
of traditional cloud computing networks may result in poor transmission latency [4]. With the
development of the Internet of Things (IoT) [5–10], information data is extracted in a timely manner
using big data technologies, and edge computing servers are deployed at the edge of the network
through mobile edge computing (MEC) [11–13]. This can effectively solve the problems of sensitive
transmission delay and insufficient computing power of mobile terminals [14], and facilitate the
provision of sufficient information for smart city construction [15–18]. In MEC networks, UAVs are
highly flexible and operable and can dock space networks with ground networks to collaboratively
build three-dimensional networks [19]. UAVs are able to dynamically adjust their deployment position
in the network by tracking and adaptively responding to changes in the network environment [20].
UAVs’ visual tracking has been used for aerial refueling [21], aerial aircraft tracking [22], and target
tracking [23,24]. Although there have been many successful research results in visual tracking, it still
remains a difficult point to achieve high robustness and accuracy visual tracking with the influence
of environmental factors such as occlusion, target in-plane/out-plane rotation, fast motion, blurring,
lighting, and deformation, etc.

Recently, discriminative correlation filters (DCFs) [25] based tracking methods have received
widespread attention [26–28]. However, these methods have caused the boundary effect problem
with adverse effects on tracking performance while using the circular matrix which is calculated in
the frequency domain to improve the model efficiency. Therefore, if it is affected by aberrance in
challenging scenes. Compared with ordinary target tracking, the targets in the UAV domain are often
very small and the existing DCF methods are definitely sensitive to handle the small targets in this
case [29,30]. The existing DCF methods estimate the center position of the target, and the tracking
model will continue to degenerate in the sequences [28]. Thus, if the target is small and similar to the
background, UAV tracking is more prone to template drift and model degradation during the learning
process.

A variety of visual tracking methods based on DCF have been proposed, and most of the
successful strategies are applied to solve the above model degradation problem. For example, spa-
tially regularized discriminative correlation filters (SRDCF) [31] and spatial-temporal regularized
correlation filters (STRCF) [32] used spatial regularization and space-time regularization to solve
boundary effects. In addition, STRCF mitigates the degradation of time filtering by introducing
penalty terms in the context of SRDCF, which makes the tracker subject to more noise interference
and reduces tracking reliability. And adaptive spatially-regularized correlation filters (ASRCF) [33]
used the adaptive spatial regularization method to further improve the estimation ability of object
perception and obtain more reliable filter coefficients. Many DCFs based trackers have suppressed the
boundary effects by expanding the search area to obtain better tracking effects. The background-aware
correlation filter (BACF) [34] used a cropping matrix to extract patches densely from the background
and expand the search area at a lower computational cost. Group feature selection method for
discriminative correlation filters (GFS-DCF) [35] advocates channel selection in DCF-based tracking
and used an effective low-rank approximation [36]. The filter constraint here can smoothly realize
the temporal information and adaptively integrate historical information to achieve group feature
selection across channels and spatial dimensions. In order to get accurate tracking, a large margin
object tracking method with circulant feature maps (LMCF) [37] and an attentional correlation filter
network (ACFN) [38], tried to suppress the possible abnormalities through some measures. To solve
the aberrance problem of response maps, the aberrance repressed correlation filter (ARCF) [39] added
a regular term on the basis of BACF which can suppress the mutation of the response maps and
used Euclidean distance to define the direct response approximation between the two response maps.
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In addition, in order to deal with the problem of boundary discontinuity and sample contamination
caused by the cosine window, Li et al. [40] proposed a spatial regularization method to remove the
cosine window and further introduced binary and Gaussian shape mask functions to eliminate the
boundary problem.

For UAV tracking, there are also some special strategies in the DCF framework. Semantic-aware
real-time correlation tracking framework (SARCT) [41] introduced a semantic-aware DCF-based
framework for UAV tracking by combing the semantic segmentation module and sharing features
for the object detection module and semantic segmentation. Also, the part-based mechanism was
also combined with BACF in [42] and the Bayesian inference approach was proposed to achieve a
coarse-to-fine strategy. AutoTrack [43] proposed a new method for online automatic adaptive learning
of spatiotemporal regularization terms, which uses spatial local response map variants as spatial
regularization, so that DCF focuses on the learning of the trusted part of the object, and determines
the update processing of the filter according to the global response map variants. Overall, these existing
methods share some commonalities. In particular, they often heavily rely on a presumed fixed spatial
or temporal filter learning and fixed response map approximation.

In this paper, UAV tracking is sufficiently far away from the object in traditional tracking scenarios
that the small target is fundamentally limited by less knowledge used in online learning and a more
unbalanced sample problem. While many existing works focus on the sparsity [44] in spatial smooth
or temporal smooth, the direct coupling of the several regularization terms used in several works
like [34,41–43] is not a good choice, and the online filter learning will be obfuscated by redundancy.
Therefore, it is interesting to ask the problem concerned in this work: what can we measure in online
learning: probabilistic response fitting or direct response approximation?

From the perspective of actual and observed probability filter distribution in small targets for UAV
tracking, the probabilistic response fitting in temporal smooth is more robust than the direct response
approximation. Although Euclidean distance is useful, it is limited by the largest-scaled feature that
would dominate the others. It is hard to judge the “best” similarity measure or a best-performing
measure here. In general, we are the first work to transfer the statistical distance to correlation response
fitting in the online tracking model. It also could shed light on the performance and behavior of
measures in deep learning works like [45]. Although the insights of this work are the most similar
to our work, the main truth is that the distribution assumption is different.

Furthermore, a novel unsupervised method called maximally divergent intervals (MDI) [46]
searched for continuous intervals of time and region in a space containing anomalous events instead of
analyzing the data point by point and attempted to use KL divergence and unbiased KL divergence to
achieve better detection results. Not only that, but MDI also introduced JS divergence to demonstrate
the superiority of the model and improve its scalability of the model. Similarly, Jiang et al. in [47] also
used KL divergence to search for abnormal blocks in higher-order tensors. At the beginning of signal
processing, the KL and JS divergence was used to fit the matching degree of the two distribution
signals. Inspired by this, we consider the similarity search between the response maps of the filters
as the curve fitting problem between the adjacent frame filters. It should be noted that the original
Euclidean distance is not applicable because it is prone to filter under-fitting learning. Actually, the
under-fitting problem had recently been mentioned in feature embedding problems like [48]. While
it seems to be rather complicated to estimate a probabilistic response fitting by the above KL or JS
procedure, the main benefit of estimating the mean and the covariance lies in the inherent regulation
properties in our correlation filter response term.
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While the KL divergence and JS divergence can achieve a good fitting effect. In addition, since
the fitting object in the KL divergence is the response map of the adjacent frame filter to the image
block [39], the KL divergence term can ensure that the filter has the highest similarity in the response
map in the time domain. Therefore, our model uses a temporal-response calibrated filter based on the
KL divergence. Since the KL divergence does not measure the distance between the two distributions
in space, the KL divergence can be considered as a measure of the information loss of the response
maps in the filter in our algorithm. Then we can find the target with the highest response value in
the time domain according to the principle of function loss minimization, which is considered our
tracking target. Experiments have shown that trackers based on temporal-response calibrated filters
have greatly improved accuracy.

Based on the above-mentioned analysis, we propose a new model named AKLCF. Specifically,
we use KL divergence fitting to mitigate the under-fitting of the Euclidean distance. In addition, to
ensure the validity of the model, we add model confidence terms to avoid the variations of the model
that occurred during the optimization process, which greatly improves the stability of the model.
The algorithm flow chart of AKLCF is shown in Fig. 1a. Specifically, the multi-channel features
are extracted from the previous frame of an image. We use KL divergence to calculate the similarity
between response maps, and then build the learning model of AKLCF. At the same time, we further
use the JS divergence to investigate the impact of the similarity measurement method on the tracking
effect of related filters and propose the AJSCF model. The algorithm flow chart of AJSCF is shown in
Fig. 1b. Notice that AJSCF is different from AKLCF in divergence. Compared with KL divergence, JS
divergence solves the problem of asymmetry of KL divergence and avoids the “gradient disappearance”
problem in the process of KL divergence fitting, thereby improving the tracking effect of the model.
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Figure 1: The algorithm flowcharts of aberrance Kullback-Leibler (KL) divergence correlation filter
(AKLCF) and aberrance Jensen-Shannon (JS) divergence correlation filter (AJSCF). The structure
of the two flowcharts is the same and the main difference is that the former uses KL divergence to
achieve similarity fitting, while the latter uses JS divergence
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The UAV tracking will be further influenced by the imbalance of positive and negative samples
during training DCF. Although kernelized correlation filter (KCF) [49] gave continuous weighting to
samples with different offsets by continuous labeling, and could effectively detect target samples of
interest to a certain extent and improve the accuracy of visual tracking, it does not solve the adverse
effects of imbalance of positive and negative samples on visual tracking. Therefore, inspired by the
collaborative distribution alignment (CDA) model [50], we propose a dual-domain Jensen-Shannon
divergence correlation filter (DJSCF) model, which introduces dual-domain weighting into the data
items of the loss function, uses a weighting method to suppress the influence of the imbalance of
positive and negative samples and combines JS divergence to improve the accuracy of target tracking.
The algorithm flow chart of DJSCF is shown in Fig. 2. DJSCF adds the sorting and selection of
features on the basis of AJSCF, which is realized by dual-domain weighting, and effectively alleviates
the problem of imbalance between samples.

Figure 2: The flow chart of dual-domain Jensen-Shannon divergence correlation filter (DJSCF)

The main contributions of this work are shown as follows:

• To address the under-fitting of the response approximation in the Euclidean distance domain,
we suggest the AKLCF model, which makes use of KL divergence fitting. The distortion
brought on by noise can be efficiently reduced by the filter based on temporal response
calibration. To further assure the model’s validity, we also include model confidence terms.

• We introduce JS divergence to propose the AJSCF model, which validates the impact of
measurement methods on tracking accuracy and enhances the richness and verifiability of
article content, in order to address the asymmetry of KL divergence and the disappearance
of gradient.

• In order to address the issue of sample imbalance, we present a DJSCF model with JS divergence
fitting that incorporates two-domain weighting due to two diagonally weighted matrices in the
sparse data item. Several tests were carried out to demonstrate the excellence of our DJSCF.

2 Preliminaries
2.1 Distance Measurement

Target tracking mainly uses the tracking algorithm to select the one with the highest similarity
to the target object as the target of the next frame, and then obtains the motion trajectory of the
target object in the entire video sequence. Therefore, how accurately represent the similarity between
the candidate block and the target block is an important factor that determines the accuracy of target
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tracking. As the research of target tracking and the difficulty of tracking tasks continue to increase, the
distance similarity measurement methods used by tracking algorithms are also continuously improved.
In image processing and analysis theory, common similarity measurement methods include Euclidean
distance, block distance, checkerboard distance, weighted distance, Bart Charlie coefficient, Harsdorf
distance, etc. Among them, Euclidean distance is the most applied and simplest.

The most commonly used mathematical expression of the Euclidean distance is the norm, which is
mainly divided into four norms. Among them, the target tracking algorithm often uses the L1 norm and
the L2 norm to extract sample sparsity characteristics and measure similarity between samples. With
the complex changes in the target tracking scene, the Euclidean distance cannot meet the performance
requirements of target tracking. Researchers try to apply similarity measurement algorithms in the
signal domain to target trackings, such as KL divergence and JS divergence.

When the probability of an event is p (x), its information quantity is − log (p (x)), and the
expectation of information quantity is entropy. Relative entropy is also known as KL divergence.
If we have two separate probability distributions P (x) and Q (x) for the same random variable
x, we can use KL divergence to measure the difference between the two distributions. In machine
learning, P is often used to represent the true distribution of the sample, and Q is used to represent the
distribution predicted by the model. Then the KL divergence can calculate the difference between the
two distributions, that is the loss value.

DKL (p||q) =
∑

i

P (xi) log
p (xi)

q (xi)
(1)

From the KL divergence formula, we can see that the closer the distribution of Q is to P (the
more fitting the Q distribution is to P), the smaller the divergence value is, that is, the smaller the loss
value is. Because the logarithmic function is convex, the value of KL divergence is non-negative. KL
divergence is sometimes called KL distance, but it does not satisfy the property of distance. Because
KL divergence is not symmetric and KL divergence does not satisfy triangle inequality. In machine
learning, KL divergence can be used to evaluate the gap between label and predictions. In the process
of optimization, we only need to pay attention to the cross entropy.

In probability statistics, JS divergence has the same ability to measure the similarity of two
probability distributions as KL divergence. Its calculation method is based on KL divergence and
inherits the non-negative nature of KL divergence. However, there is one important difference: JS
divergence has symmetry. The formula of JS divergence is as follows: set two probability distributions
as P and Q, M = 0.5 × ( P + Q ).

JS (P1||P2) = 1
2

KL (P||M) + 1
2

KL (Q||M) (2)

If the two distributions P and Q are far apart and completely do not overlap, then the KL
divergence value is meaningless, while the JS divergence value is a constant log 2. This has a great
impact on the deep learning algorithm based on gradient descent, which means that the gradient is 0,
that is, the gradient disappears.

2.2 Dual-Domain Weighting

Due to the differences in background, light, sensor resolution, and other aspects, the data collected
by UAVs in different scenes may be in different data domains. There are different numbers of positive
samples and negative samples in each domain, and the number of negative samples (background) is far
greater than the number of positive samples (target) in single-target tracking. The problem of sample
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imbalance will lead to the over-fitting of a large sample proportion, and the prediction will tend to
classify with more samples. Therefore, there is a strong need to align the number of samples between
different domains and train the data to find samples suitable for the target domain. Inspired by the
trilateral weighted sparse coding scheme (TWSC) in [51] and the dual-domain collaboration in [50],
we use the method of two-field weighting to increase the weight of samples, that is, to add a larger
weight to the samples with a smaller number of samples, and to add a smaller weight to the samples
with a larger number of samples.

In the model, we introduce two diagonal matrices, wa and wb, as weighted matrices. wa is a block
diagonal matrix, with each block having the same diagonal element to describe sample attributes in
different channels. wb is used to describe the sample variance in the corresponding patch. The formula
can be expressed as:

Lm = 1
2

‖wax − wby‖2
F (3)

where x is the positive sample, y is the negative sample. Our method also introduces the idea of dual-
domain weighting, and the supporting materials show the specific processing operations of wa and wb.
In other words, two weight matrices are introduced into the data fidelity term of the sparse coding
frame to adaptively represent the statistics of positive and negative samples in each patch of the multi-
channel, which can make better use of the sparse prior of the natural image.

3 The Dual-Domain Collaboration and Distances Correlation Filters

In this section, we first introduce the AKLCF and explain the role of KL divergence in the model
tracking process. We further make the derivation of the optimization process in detail. Then, we
introduce and derive DJSCF in detail, and introduce how dual-domain weighting and JS divergence
can jointly improve the accuracy and robustness of target tracking. Considering that our model is based
on the similarity of response maps, Fig. 2 shows the response effect graphs of the three methods. The
trackers learn both positive samples (red sample) of objects and negative samples (green sample) in
the background.

3.1 Aberrance Kullback-Leibler Divergence Correlation Filter (AKLCF) Model

Our AKLCF optimizes the response approximation in Euclidean distance to the KL divergence
to achieve the curve fitting of the filters. In addition, the AKLCF increases the model confidence
to improve the reliability of the model. Below we detail the construction of model functions. For

simplicity, let Mk =
D∑

d=1

Bxd
k ∗ f d

k , Mk−1 =
D∑

d=1

Bxd
k−1 ∗ f d

k−1, where x ∈ RM×N×D, fk ∈ RM×N×D, fk−1 ∈ RM×N×D,

y ∈ RM×N. Here, we get the simplified form:

argminf

1
2

‖Mk − y‖2
F +
∑D

d=1
‖ f d

k ‖2
2 + r

2
‖Mk

[
ψp,q

]− Mk−1

[
ψp,q

] ‖2
2 (4)

Then, we replace the third term of Eq. (4) with the function R (Mk|Mk−1; xk−1) to obtain the loss
function of AKLCF:

argminf

1
2

‖Mk − y‖2
F + λ

2

∑D

d=1
‖ f d

k ‖2
2 + R (Mk|Mk−1; xk−1) (5)

As discussed above, in the formula with Eq. (5) add of is replaced by the Kullback-Leibler
divergence term. In addition, we add a model confidence term to ensure the reliability of the model.
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Then we improve the loss functions by minimizing the following unconstraint objective:

argminf

1
2

‖Mk − y‖2
F + λ

2

∑D

d=1
‖ f d

k ‖2
2 + β

2
Rmc + α

2
Rkl (6)

where β and α are penalty parameters.
β

2
Rmc is the model confidence term and Rmc =

D∑
d=1

(
xd

k−1

)T ∗ φd
k ∗

xd
k−1, where φd

k is a covariance matrix.

To better reflect the effect of the KL divergence term, we first analyze it in detail to obtain the
specific expression of the KL divergence term. Since the KL divergence is a measure of the asymmetry
of the difference between the two probability distributions. In our model, the KL divergence is used to
measure the difference between the convolution matrix of the current frame and the previous frame,
that is:

Rkl = Rkl(N (Mk, �k) |N (Mk−1, �k−1)) (7)

where φk, φk−1 are covariance matrixes. Mk =
D∑

d=1

Bxd
k ∗ f d

k , Mk−1 =
D∑

d=1

Bxd
k−1 ∗ f d

k−1 are the convolutions of

the image matrix and filter coefficients, which denote the response maps from the current and previous
frame respectively. k and k − 1 represent the current and previous frame, respectively.

For convenience, we assume that the value vectors of filter and image blocks have multivariate
Gaussian distributions, then the convolution matrix also has a Gaussian distribution, i.e., M ∼
N (M0, �), where M0 is the mean value vector of the convolution matrix distribution and � represents
the covariance matrix of distribution. In the previous section, the function Mi =∑D

d=iBxd ∗f d indicates
the convolution prediction of the class label f i and the sample xi in i − th dimension with the given
multivariate Gaussian distribution. For better understanding, we regard each value f i in the i − th
dimension as the models knowledge about the corresponding feature xi and regard the diagonal entry
of covariance matrix �i,i as the confidence of feature Mi. The smaller the value of �i,i is, the more
confident the learner is in the mean weight value Mi. Expect diagonal values, other covariance terms
�i,j can be took as the correlations between two weight value Mi and Mj for image feature

∑D

d=iBxi ∗ f i

and
∑D

d=jBxj ∗ f j. In this way, we model parameter confidence for each element of along all channels
with a diagonal Gaussian distribution. Thus, we construct the kullback-leibler divergence term based
on the divergence between empirical distribution and probability distribution. As a result, we get the
Rkl as following:

Rkl (N (Mk, �k) | N (Mk−1, �k−1)) =
∑D

d=1

[
log

det�d
k−1

det�d
k

+ tr
((

�−1
k−1

)d
�d

k

)
+ (Mk − Mk−1)

T
(
�−1

k−1

)d
(Mk − Mk−1)

]
(8)

We substitute the specific expression of the model confidence term and Eq. (8) into Eq. (6) to get:

argminf

1
2

‖Mk − y‖2
F + β

2

∑D

d=1

(
xd

k−1

)T ∗ �d
k ∗ xd

k−1 + λ

2

∑D

d=1 ‖ f d
k ‖2

2

+α

2
Rkl (N (Mk, �k) |N (Mk−1, �k−1))

(9)

In general, the first term of the formula is data fidelity, the second is the space penalty, and the
third and fourth terms are our improved contents, namely the model confidence term and the KL
divergence term.
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3.2 The Dual-Domain Jensen-Shannon Divergence Correlation Filter (DJSCF) Model

DJSCF adds dual-domain weighted matrices and JS divergence in the response map which need
to be considered in the optimization process, therefore the construction of the loss function in DJSCF
tracker is described in detail below:

argminf

1
2

‖∑D

d=1wa

(
Bxd

k ∗ f d
k

)− wb · y‖2
F + λ

2

∑D

d=1 ‖ f d
k ‖2

2

+γ

2
‖∑D

d=1

(
Bxd

k−1 ∗ f d
k−1

) [
ψp,q

]−∑D

d=1

(
Bxd

k ∗ f d
k

) [
ψp,q

] ‖2
2

(10)

Let Mk =∑D

d=1 Bxd
k ∗ f d

k , Mk−1 =∑D

d=1 Bxd
k−1 ∗ f d

k−1. The objective function is converted into:

argminf

1
2

‖ waMk − wby‖2
F + λ

2

∑D

d=1
‖ f d

k ‖2
2 + γ

2
‖ (Mk − Mk−1)

[
ψp,q

] ‖2
2 (11)

Similar to AKLCF, we use JS divergence and model confidence to improve the third term of the
objective function, and get the objective function as follows:

argminf

1
2

‖ waMk − wby‖2
F + λ

2

∑D

d=1
‖ f d

k ‖2
2 + R (Mk|Mk−1; xk−1) (12)

It equals to:

argminf

1
2

‖ waMk − wby‖2
F + λ

2

∑D

d=1
‖ f d

k ‖2
2 + β

2
Rmc + α

2
RJS (13)

Since the JS divergence is proposed based on the KL divergence, we use two covariance matrices
(�d

k and �d
k−1) to derive the DJSCF model according to the previous derivation, then RJS =

RJS(N(Mk, φk)|N(Mk−1, φk−1). Finally, we get the loss function as follows:

argminf

1
2

‖ waMk − wby‖2
F + β

2

∑D

d=1

(
xd

k−1

)T ∗ �d
k ∗ xd

k−1 + λ

2

∑D

d=1 ‖ f d
k ‖2

2

+α

2
RJS (N (Mk, �k) |N (Mk−1, �k−1))

(14)

The AJSCF model is a version that only replaces the KL divergence of AKLCF with JS divergence.
The comparison between AJSCF and AKLCF shows the superiority of JS divergence in similarity
fitting. At the same time, the latter DJSCF is obtained by adding dual-domain weighting based
on AJSCF. And comparing AJSCF with DJSCF can verify the effect of dual-domain weighting on
tracking performance.

3.3 ADMM Decomposition of AKLCF and DJSCF

AKLCF: The model in Eq. (9) is a convex problem and can be minimized with the ADMM
algorithm to obtain the global optimal solution. Since Eq. (9) has a convolution calculation in the
time domain, Pasival’s theorem is used to facilitate the calculation by converting the problem into the
frequency domain. Then we get the objective function in the frequency domain as follows:

ε (fk) = 1
2

‖ M̂k − ŷ‖2
F + β

2

∑D

d=1

(
X̂ d

k−1

)T

�d
kX̂ d

k−1 + λ

2

∑D

d=1
‖ f d

k ‖2
2

+ α

2
Rkl

(
N
(

M̂k, �k

)
|N
(

M̂k−1, �k−1

))
(15)
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where the superscript ∧ denotes a signal that has been performed discrete Fourier transformation
(DFT). In Eq. (15), M̂k =∑D

d=1X̂
d
k

(
ID ⊗ BT

)
f d

k . Xk is the matrix form of input sample. ID is an identity
matrix whose size is D ×D. Operator ⊗ and superscript T indicate respectively Kronecker production
and conjugate transpose operation. Similar to the BACF tracker, the alternative direction method of
multipliers (ADMM) is used to speed up calculation and achieve a global optimal solution of Eq. (15)
for its convexity. Therefore, the augmented Lagrangian form of Eq. (15) can be written as follows:

1
2

‖ X̂kĝk − ŷ‖2
F + ξ̂ T

(
ĝk −∑D

d=1

√
N
(
ID ⊗ BT

)
f d

k

)
+ β

2

∑D

d=1

(
X̂ d

k−1

)T

�d
kX̂ d

k−1 + μ

2
‖ ĝk

−∑D

d=1

√
N
(
ID ⊗ BT

)
f d

k ‖2
2 + λ

2

∑D

d=1 ‖ f d
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According to Eq. (8) and Pasival’s theorem, the KL divergence term in the frequency domain is
expressed as follows:

Rkl

(
N
(
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) |N (M̂k, �k−1

) =
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)]
(17)

Substitute Eq. (17) into Eq. (16), and using Pasival’s theorem, then we get the specific optimization
function.
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ĝk − √

N
(
ID ⊗ BT

)
fk

)+ μ

2
‖ ĝk

− √
N
(
ID ⊗ BT

)
fk‖2

2 + β

2

(
X̂k−1

)T
�kX̂k−1 + α

2

[
log

det�k−1

det�k

+ tr
(
�−1

k−1�k

)
+ (M̂k − M̂k−1

)T
�−1

k−1

(
M̂k − M̂k−1

)]
(18)

where μ is a penalty factor. In the current frame, since the response map in the previous frame is already
generated, ̂Mk−1 can be treated as a constant signal, which can simplify the further calculation. The
ADMM algorithm is used to divide the optimization function into several sub-problems as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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‖ ĝk − √

N
(
ID ⊗ BT

)
fk‖2

2

}
ĝ∗
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DJSCF: Similar to AKLCF, according to Pasival’s theorem, we get:
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(20)
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We get the optimization formulation:
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ĝk − √
N
(
ID ⊗ BT

)
fk

)
+ μ

2
‖ ĝk

− √
N
(
ID ⊗ BT

)
fk‖2

2 + β

2
X̂ T

k−1�kX̂k−1 + α

2
RJS

(
N
(

M̂k, �k

)
|N
(

M̂k−1, �k−1

))
(21)

According to the principle of JS divergence and Eq. (8), we get:
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Then the optimization solution of DJSCF is implemented by ADMM and is divided into the
following subproblems:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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ĝ∗

k+1, �k = argming,�

{
1
2

‖ WaX̂kĝk − Wbŷ‖2
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3.4 Solution of Sub-Problems of Two Models

From Eqs. (19) and (23), it is easy to find that except for the subproblem g∗
k+1, the solutions of

other subproblems in the two models are the same. Thus, we talk about the solution integration of the
two models and only discuss them separately on subproblem g∗

k+1.

Solution to subproblem f ∗
k+1:

The solution to subproblem f ∗
k+1 can be easily obtained as follows:

f ∗
k+1 − (λ + μN)

−1
√

N
(
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)
ξ̂ + μ

√
N
(
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)
ĝk −

(
λ

N
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)−1

(ξ + μgk) (24)
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where⎧⎪⎪⎨⎪⎪⎩
gk = 1√
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(25)

Solution to subproblem: ĝ∗
k+1 and �k:

In AKLCF model, the augmented Lagrangian form is expressed as follows:
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Using the ADMM algorithm, two sub-problems can be obtained, namely:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Unfortunately, since subproblem ĝ∗
k+1 contains X̂kĝk, it would be highly time consuming to solve

ĝ∗
k+1 subproblem and it is more difficult than to solve subproblem f̂ ∗

k . And the calculation of ĝ∗
k+1 needs

to be carried out in every ADMM iteration. Therefore, the sparsity of X̂k is exploited. Each element
of ŷ, i.e., ŷ (n) , n = 1, 2, · · · , N, is solely dependent on each x̂k (n) = [
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. Operator conj (.) denotes the complex
conjugate operation.

The subproblem ĝ∗
k+1 can be thus further divided into N smaller problems as follows solved over

n = [1, 2, · · · , N]:
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Each smaller problem can be efficiently calculated and the solution is presented below:
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where⎧⎪⎨⎪⎩
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Finally, the solution of g∗
k+1 is expressed as follows:
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According to the ADMM algorithm, the φk in Eq. (31) appears as φ−1
k , thus we only need to

calculate the result of φ−1
k . We first obtain the derivation of φk from Eq. (26).
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Then the solution of φ−1
k can be obtained.
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In the actual calculation process, φ−1
k is directly substituted into the calculation, thus we allow the

solution for �−1
k to produce a full matrix implicitly, and then project it to a diagonal matrix, where the

non-zero off-diagonal entries are dropped. Unlike the AKLCF, DJSCF introduces the dual-domain
weighted matrices, therefore the solution of ĝ∗

k involves the solutions of the weighted matrices Wa or
Wb. It can be obtained from Eq. (23) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Similar to Eq. (28), the subproblem g∗
k+1 of DJSCF also can be divided into N smaller problems

as follows:
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After iterative calculation, g∗
k+1 and φk can be updated as follows:
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The solutions of the weighted matrices Wa or Wb are as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wa = exp
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−‖∑D

d=1

(
xd

t ∗ f d
) ‖2

2
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2
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where the parameter τ is calculated as 0.6. To make better use of the constraints and selection of
the weighting matrix, we use the sorting method to sort and assign the matrix elements calculated
by Eq. (38), thereby getting new matrices as the weighted matrices for the next iteration. The specific
processing steps are as follows.

The core idea of matrix update is to set non-diagonal elements to 0 and reorder the diagonal
elements to assign values [52,53]. The specific method is to arrange the elements on the diagonal
from small to large and replace the original value with the sort position number of each element.
For example, if the j − th element of the diagonal is ranked at the N − th position, the value of the
element becomes W(j) = N, and then use the following formula to obtain the j − th new element:

Wi (j) = 1 + (N − 1) · ai (39)

where α is the weight parameter and the value of i is a or b. Finally, we convert all the elements on the
diagonal to get a new matrix Wa or Wb.

Update of Lagrangian Parameter:

The Lagrangian parameter is updated according to the following equation:

ξ̂
(i+1)

k+1 = ξ̂
(i)
k+1 + μ

(
ĝ∗(i+1)

k+1 − f̂ ∗(i+1)

k+1

)
(40)

where the subscript i and i + 1 denote the i − th and the i + 1 − th iteration, respectively.
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Updating of appearance model:

The appearance model updating takes an important influence on visual tracking. The appearance
of tracked objects often changes in the tracking process under the effect of posture, scale, occlusion,
and rotation. Therefore, we apply an online update strategy to update the appearance model and
improve the robustness of our method. The appearance model at frame t can be updated as follows:

X̂ model
k = (1 − η) X̂ model

k−1 + τ X̂k (41)

where η is the learning rate of the appearance model.

3.5 Complexity Analysis

In each iterative calculation of subproblem f, the transformation of Fast Fourier Transform (FFT)
and Inverse Fast Fourier Transform (IFFT) needs to be performed, then the computational complexity
is O(DMN log(MN), and if the number of iterations is K, the total computational complexity of
the model is O(KDMN(log(MN) + 3)). Considering the DFT and inverse DFT into account, the
whole complexity of solving f is O(DMN log(MN) to take. As for g, the computational complexity
of “KL” is O(DMN), and then the computational complexity of g is O(DMN), which is same as
φ and ξ . Hence, if the maximum number of iterations is NI , the whole cost of the AKLCF model is
O(DMN log(MN)+3(DMN)Ni). In addition, the DJSCF is improved based on the AKLCF by adding
the dual-domain constraint and the JS divergence, thus its robustness and performance of tracks
are better than the AKLCF with higher computational complexity. As for the iterative calculation,
DJSCF mainly becomes more complicated to solve g. The JS divergence is equivalent to calculating
the average of the two KL divergences, thus the computational complexity of g is also O(3DMN),
and the calculation amount of W is O(DMN). The calculation of f and ξ is consistent with that of
AKLCF, thus the final calculation complexity of DJSCF reaches O(DMN log(MN) + 6(DMN)Ni).
The fps of DJSCF, AJSCF, and AKLCF are 2.6149, 4.9097, and 5.9699, respectively in UAV123.

4 Experiments and Results

To demonstrate the superiority and effectiveness of our proposed models, we compare them
with several state-of-the-art trackers with the HOG and deep features. We chose the 19-layer deep
convolutional neural network VGG19 [54] (Visual Geometry Group) to extract the deep features in our
experiments. In order to better explore the robust performance of the models, we conduct comparative
experiments on different data sets. The value of α is set to 0.71, the ADMM iteration is set to 5 and the
learning rate η is 0.0192. All experiments of all 21 trackers are carried out by MATLAB R2017a on a
computer with an i7-8700 K processor (3.7 GHz), 48 GB RAM, and NVIDIA Quadro P2000 GPU.

4.1 Experiment Datasets and Baseline Methods

We evaluated the performance of AKLCF, AJSCF, DJSCF, and other trackers on four bench-
mark datasets, including UAV123@10fps [55], DTB70 [29], UAVDT-S [30], UAVDT-M [30] and
VisDrone2018-test-dev [56] datasets. UAV123 contains 123 video sequences, which is the most com-
monly used and most comprehensive data set for UAV tracking. DTB70 contains 70 video sequences.
UAVDT-S and UAVDT-M are made up of 50 challenging videos respectively. It is worth noting that
the UAVDT-M data set is used to detect the performance of multi-target tracking, and we modified it
to make it also able to judge the performance of our single-target tracker. The VisDrone2018-test-dev
dataset has 35 challenging videos. All evaluation criteria are according to the original protocol defined
in three benchmarks, respectively [29,30,55]. We measured the performance of the tracking methods
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with one-pass evaluation (OPE) [57]. The evaluation method of OPE makes use of marking the real
target frame in the first frame of the video sequence, no longer marks the target in the next frame
number of images, and carries out a complete tracking of the entire video sequence. The common
indicators of OPE are success plots and precision plots. The average pixel error averages the detection
error of all frames. If the tracking fails due to accidental factors, it will have a certain impact on the
result of this indicator, and the size of the impact is related to the number of frames of accidental
factors. When the overlap rate of a frame is greater than the set threshold, take the horizontal axis as
the threshold of the overlap threshold and the vertical axis as the success rate to obtain the success
plots. The precesion plots are similar to the success plots. The horizontal axis is the threshold, and
the vertical axis is the ratio of the number of frames below a certain threshold to the total number
of frames. The threshold setting condition is the distance between the detection center and the real
target center. When the distance is less than a certain threshold, it is considered to meet the precision.
The results are compared with 15 state-of-the-art trackers with both HOG feature-based trackers (i.e.,
ARCF-HC [39], LADCF [52], STRCF [32], SRDCF [31], DSST [58], SAMF [59], KCF [49], GFSDCF
[35], AutoTrack [43], ECO-HC (with gray-scale) [60], Histograms of Oriented Gradients (HOG-LR)
[61]) and deep-based trackers (i.e., ECO [60], CCOT [62], ASRCF [33], MDNet [63], ADNet [64],
CFNet [65], CREST [66], MCPF [67], SiamFC [68], and HDT [69]).

4.2 Quantitative Analysis of Tracking Dataset

First of all, we compared the overall performance of AKLCF, AJSCF, and DJSCF with other
state-of-the-art hand-crafted trackers on UAV123@10fps [55], DTB70 [29], UAVDT-S [30], UAVDT-
M [30] and VisDrone2018-test-dev [56] datasets. The comparison results are shown in Fig. 3. From the
resulting graph, it can be seen that each comparison method performs best on the dataset UAVDT-
M. Due to the limitations of feature extraction ability and computational process, traditional HOG-
based methods perform slightly worse than correlation filters and deep learning-based methods.
A class of methods based on discriminant correlation filters, combined with spatial adaptation or
structured support vector machines, have good computational efficiency and positioning performance
and perform well on various datasets. However, the method based on deep learning pays more
attention to accuracy and therefore has greater computational complexity. On five different datasets,
our method has an accuracy rate that exceeds the lower-performing method by nearly 25%. Even in
this individual case on the UAVDT-M dataset, our method is only 0.1% less accurate than the first-
place AutoTrack. Therefore, experimental results comparing multiple datasets show that our method
has strong competitiveness in tracking target detection.

4.3 Quantitative Analysis of Variants and Deep Feature Configuration

We carried out comparative studies in several representative scenarios, such as background clutter,
illumination changes, partial occlusion, size changes, and viewpoint shifts, to reflect the tracking
performance of DJSCF in various contexts. Fig. 4 also displays the attribute-based performance of
each tracker, with each group representing a distinct attribute. In general, a tracker that uses deep
learning outperforms other trackers by a large margin. We discovered that all trackers had the lowest
scores when it came to background clutter problems, additionally, some trackers struggle with scale
change characteristics. Since particle filter frameworks can more effectively explore state space, we can
find that particle filter-based approaches (i.e., HOG-LR) are superior to local sliding window-based
methods (i.e., DSST and KCF) for qualities relevant to motion models.
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Figure 3: Precision and success plots of proposed methods as well as other HOG feature-based trackers
on (a) UAV123@10fps (first column), (b) DTB70 (second column), (c) UAVDT-S (third column), (d)
UAVDT-M (fourth column) and (e) VisDrone2018-test-dev (fifth column). Precision and AUC are
marked in the precision plots and success plots, respectively

Figure 4: Attributes of proposed methods as well as other HOG feature-based trackers including (a)
background clutter (first column), (b) illumination variation (second column), (c) partial occlusion
(third column), (d) scale variation (fourth column), and (e) viewpoint change (fifth column). Precision
and area under the curve (AUC) are marked in the precision plots and success plots, respectively

To further accurately assess the performance of our AKLCF, AJSCF, and DJSCF, we compared
the trackers on the UAVDT-S dataset with deep features. DJSCF, AJSCF, and AKLCF took the top
three positions on both the precision and success plots, as shown in Fig. 5. Due to the introduction
of a weighting matrix to balance the number of positive and negative samples in DJSCF, the effect
is better than AJSCF, with values greater than AJSCF by about 1.5%. In terms of precision plots,
DJSCF, AJSCF, and AKLCF outperform ECO (0.702), which has good performance on numerous
datasets, by 8.83%, 6.27%, and 4.84%, and MDNet (0.725), which was rated fourth. The DJSCF score
is significantly greater than that of other trackers when it comes to success plots. In comparison to
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MDNet, which is in fourth position, DJSCF is 3.45% higher, while ECO, which is in fifth place, is
6.43% higher.

Figure 5: Comparison between DJSCF, AJSCF, and AKLCF trackers and different state-of-the-art
deep-based trackers. The value of average precision and average success rate is calculated by OPE
results from dataset UAVDT-S

To better demonstrate the superiority of our model in tracking performance, we selected 4 sets of
video sequences in the DTB70 dataset to show the performance of the proposed method. As shown
in Fig. 6, the different methods in each frame of the image The target tracking results are represented
by different colored frames, which are ARCF-HC (red), LADCF (green), AKLCF (blue), DJSCF
(black), and STRCF (pink). Because the target of UAV tracking is small, it is difficult to maintain a
good tracking effect. For example, in Figs. 6a, 6d, the LADCF has a serious tracking offset, resulting
in tracking failure, and STRCF also has the problem of expanding the tracking area in the Bike video.
In short, our methods have always maintained a good tracking effect, and the tracking frame always
surrounds the tracking target.

4.4 Ablation Analysis

To study the influence of parameter setting on the tracking effect, we carried out a corrosion
analysis on the main parameters of the weighting matrix and obtained the parameter setting with
the best tracking effect. Because there are two weighting matrices, namely two variable parameters
ai, i = 1 when calculating the weighting matrix Wa, and i = 2 when the weighting matrix is Wb. We
use the control variable method to discuss the tracking performance of our method under different
parameters. As shown in Fig. 7, we conducted two experiments on the UAV123 dataset. In Fig. 7a, we
first define a2 = 0.018 and then take different a1 values. In Fig. 7b, we define a1 = 0.02, and then take
different values of a2. As can be seen from Fig. 7. (a) when a2 = 0.018, the tracking effect of a1 = 0.02
is the best. It can be seen from Fig. 7. (b) that when a1 = 0.02, a2 = 0.018 has the best tracking effect.
Therefore, these two values are taken as the final tracking results of the DJSCF algorithm.

4.5 Robustness Analysis

To reflect the superior robustness of DJSCF, we conducted comparative experiments between
DJSCF, ARCF, and AKLCF based on the motorbike video sequence in the DTB70 dataset. As shown
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in Fig. 8, the robustness of the tracker is mainly reflected by the overlap rate of the target frame
estimated by the model and the initial target frame in different frames of images and the overlap value
shown on the ordinate. Among them, the blue line represents the ARCF tracker, and the red and green
line represents the AKLCF and DJSCF, respectively. It can be seen from Fig. 8 that the overlap rate
of DJSCF in different frames is higher than the other two, especially between 31 and 51 frames. This
shows that although ARCF or AKLCF are affected by a complex environment and reduce the tracking
effect, DJSCF can still maintain a high tracking accuracy and demonstrate good robustness.

Figure 6: Comparison of tracking performance on the DTB70 dataset

Figure 7: Comparison of tracking results based on different parameters
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Figure 8: Comparison of robustness on the motorbike video sequence in the DTB70 dataset

5 Conclusion

To solve the distortion problem of correlation filter caused by boundary effect and background
noise, this paper proposes a distorted KL dispersion correlation filter model by introducing KL
dispersion, which improves the Euclidean distance of the original model and reduces the tracking
offset caused by distortion caused by noise in the filter. In addition, a filter model of JS divergence
correlation is proposed based on the two-domain weighted constraint. A large number of experimental
results show that the proposed method can improve the accuracy of UAV video target tracking with
less speed loss. However, due to the complexity of the DJSCF algorithm, the real-time requirements
will be limited. In future work, adding convolution or depth network to the model may further improve
the precision and success rate.
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