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ABSTRACT

In block ciphers, the nonlinear components, also known as substitution boxes (S-boxes), are used with the purpose
to induce confusion in cryptosystems. For the last decade, most of the work on designing S-boxes over the points of
elliptic curves, chaotic maps, and Gaussian integers has been published. The main purpose of these studies is to hide
data and improve the security levels of crypto algorithms. In this work, we design pair of nonlinear components of
a block cipher over the residue class of Eisenstein integers (EI). The fascinating features of this structure provide
S-boxes pair at a time by fixing three parameters. However, in the same way, by taking three fixed parameters only
one S-box is obtained through a prime field-dependent Elliptic curve (EC), chaotic maps, and Gaussian integers.
The newly designed pair of S-boxes are assessed by various tests like nonlinearity, bit independence criterion, strict
avalanche criterion, linear approximation probability, and differential approximation probability.
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1 Introduction

Cryptography was widely used in military, diplomatic, and government applications until the
1970s. In the 1980s, the telecommunications and financial industries installed hardware cryptographic
devices. The mobile phone system was the first cryptographic application in the late 1980s. Nowadays,
everyone uses cryptographic applications in their daily lives. Our daily lives commonly depend on
the secure transmission of information and data. Online shopping, cell phone messages and calls,
ATMs, electronic mail, facsimile, wireless media, and data transfer over the internet all require a
system to maintain the secrecy and integrity of private information. Cryptography offers a mechanism
for everyone to interact safely in a hostile environment. Sensitive data is significantly aided by
cryptography. Communication is encrypted to guarantee that its meaning is hidden, preventing
anybody who reads it from understanding something regarding it unless somebody else manages to
decrypt it [1].
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In cryptography, the S-box is crucial for ensuring secure communication. Shannon suggested the
notion of an S-box in 1949 in [2]. S-boxes serve a pivotal role in causing confusion within the data.
According to Shannon, concealing the relationship between the key and cipher text is referred to as
confusion, while concealing the statistical link between plain text as well as cipher text is referred to as
diffusion. In other words, the non-uniformity in the distribution of individual letters inside plain text
should be redistributed into the non-uniformity in the distribution of much bigger structures in the
encrypted text, which is substantially more difficult to decrypt [3]. The Rijndael algorithm is basically
the same as an iterated block cipher but has a few extra features. Before we talk about the Rijndael
algorithm, we will talk about an iterated block cipher shown in [4].

Many scholars employed diverse algebraic and statistical frameworks to confound data and
produce S-boxes. In [5], the authors suggested S-boxes over the permutation of the symmetric group.
In [6], Javeed et al. constructed the non-linear component of block cipher by means of a chaotic
dynamical system and symmetric group. In [7], the authors described the S-box based on the subgroup
of the Galois field. The author suggested a robust encryption system using a modified Chebyshev map,
Advanced Encryption Standard (AES) S-boxes, and a symmetric group of permutations [8].

In [9], the authors proposed a new scheme for the construction of the S-box based on the linear
fractional transformation (LFT) and permutation function. In [10], the authors proposed S-box over
the Mobius group and finite field. The author proposed S-box on a nonlinear chaotic map in [11]. In
[12], Sajjad et al. designed pair of nonlinear components of a block cipher over Gaussian integers. In
[13,14], the authors constructed cyclic codes over quaternion integers, these quaternion structures can
be helpful for the construction of S-boxes. The authors designed differential cryptanalysis of DES-
like cryptosystems in [15]. Cassal-Quiroga et al. generated the dynamical S-boxes for block ciphers
via an extended logistic map [16]. Tang et al. designed a new method of dynamical S-boxes based on
discretized chaotic maps [17]. Chen et al. extended method for obtaining S-boxes based on three-
dimensional chaotic Baker maps [18]. The authors constructed s-boxes using different maps over
elliptic curves for image encryption [19]. Cavusoglu et al. [20] constructed S-box based on chaotic
scaled zhongtang system. Siddiqui et al. developed a novel scheme of substitution-box design based
on modified Pascal’s triangle and elliptic curve in [21]. Farhan et al. designed a new S-box generation
algorithm based on the multistability behavior of a plasma perturbation model [22]. In [23], the authors
approached the S-boxes and permutation, substitution, based encryption.

Eisenstein integers are named after German mathematician Ferdinand Eisenstein, who first
introduced them in the 1850s while studying the theory of quadratic forms. Like ordinary complex
numbers, Eisenstein integers can be added and multiplied together. However, their properties are
different. Eisenstein integers have important applications in number theory, coding theory, data
security, and algebraic geometry. They also have connections to other areas of mathematics, such as
algebraic number theory and modular forms [24].

An S-box generator is appropriate for cryptographic purposes if it can efficiently make highly
dynamic S-boxes with good cryptographic properties or tests like nonlinearity, bit independence
criterion, strict avalanche criterion, linear approximation probability, and differential approximation
probability. The key contributions of our proposed study are given below:

• Propose an algorithm to generate pair of S-boxes by the cyclic group over the residue class of
Eisenstein integers.

• Security Analysis.
• The advantages of the proposed algorithm over EI with some of the existing algorithms over EC.
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This paper is structured as follows: Basic definitions, cyclic group over the residue class of
Eisenstein integers, and some fundamental results are elaborated in Section 2. The scheme of the pair
of new S-boxes is proposed in Section 3. Analysis of the proposed S-boxes including nonlinearity, bit
independence criterion, strict avalanche criterion, linear approximation probability, and differential
approximation probability investigated in Section 4. The comparison of the proposed S-boxes with
some of the existing S-boxes are given in Section 5. Conclusions and future directions are given in
Section 6.

2 Preliminaries

This section provides the key concepts and basic findings that will be used in the study of upcoming
sections. First of all, we recall the definition of Eisenstein integers, cyclic group over a residue class of
Eisenstein integers, and some fundamental results.

Eisenstein Integers

In [24], Eisenstein integers are a subset of complex numbers with real and vector parts.

1. Z[ω] = {b0 + b1ω : b0, b1 ∈ Z}, where Z is the set of integers.
2. Multiplicative identity is 1.
3. ω is the cube root of unity.

Let h = b0 + b1ω be an element of the Eisenstein integer ring, then the conjugate of h is
h = b0 + b1ω

2. Then the norm of h is given by

p = N(h) = hh = b2
0 + b2

1 − b0b1

An Eisenstein integer has only two parts, one is the scalar part b0 and the other is the vector part
b1ω.

Addition of Two Eisenstein Integers

Let h = a1 + b1ω and k = a2 + b2ω be two Eisenstein integers then, the sum of two Eisenstein
integers is also an Eisenstein integer defined as

h + k = (a1 + b1ω) + (a2 + b2ω) = (a1 + a2) + ω (b1 + b2) = a3 + ωb3

Multiplication of Two Eisenstein Integers

Let h = a1 + b1ω and k = a2 + b2ω are two Eisenstein integers then, the multiplication of two
Eisenstein integers is also an Eisenstein integer defined as

hk = (a1 + b1ω) (a2 + b2ω) = (a1a2 − b1b2) + ω (a1b2 + a2b1 − b1b2) = (a1a2 − b1b2, a1b2 + a2b1 − b1b2)

= a4 + b4ω

Theorem: In [24], the set of natural numbers for each odd rational prime p, there is a prime h ∈
Z[ω], such that N (h) = p = hh. In particular, p is not prime in Z[ω].

Theorem: In [24], if the norm of an Eisenstein integer N(h) is prime in Z, then the Eisenstein
integer h is prime in Z[ω].

Definition: In [24], let Z[ω] be the set of Eisenstein integers and Z[ω]h be the residue class of
Eisenstein integers over modulo h, h = a + bω. Then, the modulo function:

s : Z [ω] = {c + dω : c, d ∈ Z} → Z [ω]h
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Then, s (u) = z (modh) = u −
[

uh

hh

]
h.

where z ∈ Z[ω]h and [.] are rounding to the nearest integer. The rounding of an Eisenstein integer can
be done by rounding the real part and coefficients of the vector part separately to the closest integer.

Theorem: In [24], let h be an Eisenstein prime, and the number of Eisenstein integers modulo h is
the norm of h. If ρ �= 0 (mod h), then ρn(h)−1 ≡ 1(mod h).

Remark: The group generated b < ρ > in the above Theorem is named S.

3 Redesign of Pair of n × n S-boxes over Eisenstein Integers

Multiple methods can be employed to cause confusion inside a security system. S-box is one of
the most efficient cryptographic algorithms in use today. The S-boxes are generally formed using the
EI class or the multiplicative cyclic group. As a result, it is feasible to create a variety of S-boxes across
the residue class of EI, which presents a fantastic outlook for the development of secure and consistent
cryptosystems. The subsequent procedures are useful for constructing S-boxes over the residue class
of EI (Multiplicative cyclic group).

Step 1: Construct a cyclic group S of order p − 1 over the residue class of EI.

Step 2: Apply permutation through affine mapping as:

f (x) = (ax + b) (mod 2n)

where b ∈ S and a be the unit element of S.

Step 3: Separate real and vector parts of Step 2.

Step 4: Apply modulo 2n over the separated parts in Step 3.

Step 5: Select the first 2n non-repeated elements from the elements of Step 4.

Step 6: Get a pair of S-boxes.

The construction of S-boxes by Eisenstein integers provides us with better performance instead
of S-boxes by using other structures like as chaotic maps, elliptic curves, finite fields, etc.

3.1 Pair of 4 × 4 S-boxes over the Residue Class of EI

Let h = 2 + 9ω, p = n (h) = 22 + 92 − 18 = 67, and β = 2 + 3ω = (2, 3), then the cyclic group
generated by β is given in Table 1.

Table 1: Cyclic group generated by β

i β i i β i i β i

1 (2, 3) 23 (1, 65) 45 (64, 66)

2 (2, 1) 24 (66, 65) 46 (66, 1)

3 (66, 63) 25 (64, 1) 47 (4, 3)

4 (3, 3) 26 (0, 64) 48 (64, 0)

5 (4, 4) 27 (2, 5) 49 (5, 7)

6 (3, 6) 28 (5, 6) 50 (3, 1)

7 (2, 66) 29 (64, 65) 51 (1, 3)

(Continued)
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Table 1 (continued)

i β i i β i i β i

8 (65, 0) 30 (2, 2) 52 (0, 65)

9 (63, 61) 31 (63, 62) 53 (64, 62)

10 (63, 65) 32 (2, 4) 54 (2, 65)

11 (0, 66) 33 (66, 0) 55 (1, 1)

12 (3, 1) 34 (65, 64) 56 (66, 2)

13 (1, 66) 35 (65, 66) 57 (1, 2)

14 (63, 64) 36 (1, 4) 58 (3, 66)

15 (3, 0) 37 (64, 64) 59 (0, 3)

16 (62, 60) 38 (63, 63) 60 (65, 62)

17 (64, 63) 39 (64, 61) 61 (62, 61)

18 (66, 64) 40 (65, 1) 62 (3, 2)

19 (0, 2) 41 (2, 0) 63 (65, 65)

20 (3, 5) 42 (4, 6) 64 (4, 5)

21 (65, 2) 43 (4, 2) 65 (65, 63)

22 (66, 66) 44 (0, 1) 66 (1, 0)

Apply the affine permutation mapping, f (x) = ((63 + 61ω)x + (63 + 62ω))(mod 16), separate
real and vector parts, and select the first 16 non-repeating entries for real and vector parts, which are
given in Tables 2 and 3.

Table 2: 4 × 4 S-box by the scalar part of EI

15 3 1 6
12 9 10 14
11 5 8 7
2 4 0 13

Table 3: 4 × 4 S-box by the vector part of EI

13 0 12 4
11 9 2 8
14 6 3 5
15 1 10 7

3.2 Pair of 8 × 8 S-boxes over the Residue Class of EI

Example 1: Let h = 81 + 71ω, p = n (h) = 812 + 712 − (81)(71) = 5851, and β =
2 + 3ω = (2, 3), then apply the same procedure of 3.1, we get pair of S-boxes by affine mapping
f (x) = ((59 + 29ω)x + (14 + 8ω)) (mod256) given in Tables 4 and 5.
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Table 4: 8 × 8 S-box by the scalar part of EI = S1

211 83 202 126 152 145 182 135 141 76 148 131 228 224 209 67
173 162 230 115 231 4 94 23 151 242 140 77 226 109 89 127
128 0 17 54 64 161 178 22 106 3 38 253 91 179 185 156
9 66 194 27 130 206 149 113 249 84 44 186 180 212 63 216
58 219 11 2 166 222 69 183 114 153 190 49 188 52 146 241
203 133 134 129 239 29 184 223 159 235 30 75 254 120 245 195
200 160 255 32 150 174 252 214 250 72 48 119 40 21 199 103
82 116 108 105 225 171 81 37 240 46 147 154 78 187 15 165
125 101 18 68 215 20 123 170 74 237 137 201 192 56 85 248
157 14 86 207 90 217 213 121 98 191 251 92 19 41 61 93
10 25 167 112 122 117 124 80 62 221 42 26 227 176 204 168
34 243 218 181 197 220 1 31 55 198 57 164 7 50 6 99
100 246 232 193 210 172 87 163 35 132 205 28 70 60 196 236
107 142 144 39 138 155 238 12 104 102 8 96 73 110 43 247
33 233 79 139 24 36 51 177 143 244 189 118 65 229 169 45
158 111 175 88 47 16 97 5 13 136 208 234 53 95 71 59

Table 5: 8 × 8 S-box by the vector part of EI = S2

255 210 207 147 9 173 68 243 182 132 231 122 196 238 100 59
181 145 48 169 165 72 40 242 234 6 62 80 186 221 151 154
184 216 150 116 253 119 30 103 35 128 134 146 85 63 138 39
78 53 157 152 167 55 254 244 185 143 127 183 87 76 218 248
19 198 71 208 32 106 37 174 104 84 60 200 107 125 15 20
176 11 13 233 79 111 114 16 38 230 180 33 88 50 43 226
209 187 199 219 61 64 189 124 14 188 2 142 66 73 123 133
137 99 250 175 197 118 69 22 5 23 246 126 232 96 141 105
90 140 131 247 241 49 129 170 77 213 225 81 168 98 21 102
8 27 54 12 236 36 101 139 109 193 7 57 74 205 228 144
211 24 117 112 4 83 240 201 34 215 179 91 178 47 115 120
46 86 192 135 65 153 28 136 204 0 56 156 177 223 52 235
190 149 202 206 94 97 70 148 44 222 229 220 26 161 203 75
93 58 18 159 42 95 113 191 212 158 171 249 194 10 82 1
110 51 237 31 166 217 108 121 17 67 160 239 3 155 29 195
45 25 130 92 41 251 224 172 227 163 162 245 214 164 89 252
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Example 2: Let h = 81 + 71ω, p = n (h) = 812 + 712 − (81)(71) = 5851, and β =
2 + 3ω = (2, 3), then apply the same procedure of 3.1, we get pair of S-boxes by affine mapping
f (x) ((59 + 29ω)x + (7 + 5836ω)) (mod256) given in Tables 6 and 7.

Table 6: 8 × 8 S-box by the vector part of EI = S3

83 211 74 254 24 17 54 7 13 204 20 3 100 96 81 195
45 34 102 243 103 132 222 151 23 114 12 205 98 237 217 255
0 128 145 182 192 33 50 150 234 131 166 125 219 51 57 28
137 194 66 155 2 78 21 241 121 212 172 58 52 84 191 88
186 91 139 130 38 94 197 55 242 25 62 177 60 180 18 113
75 5 6 1 111 157 56 95 31 107 158 203 126 248 117 67
72 32 127 160 22 46 124 86 122 200 176 247 168 149 71 231
210 244 236 233 97 43 209 165 112 174 19 26 206 59 143 37
253 229 146 196 87 148 251 42 202 109 9 73 64 184 213 120
29 142 214 79 218 89 85 249 226 63 123 220 147 169 189 221
138 153 39 240 250 245 252 208 190 93 170 154 99 48 76 40
162 115 90 53 69 92 129 159 183 70 185 36 135 178 134 227
228 118 104 65 82 44 215 35 163 4 77 156 198 188 68 108
235 14 16 167 10 27 110 140 232 230 136 224 201 238 171 119
161 105 207 11 152 164 179 49 15 116 61 246 193 101 41 173
30 239 47 216 175 144 225 133 141 8 80 106 181 223 199 187

Table 7: 8 × 8 S-box by the vector part of EI = S4

127 82 79 19 137 45 196 115 54 4 103 250 68 110 228 187
53 17 176 41 37 200 168 114 106 134 190 208 58 93 23 26
56 88 22 244 125 247 158 231 163 0 6 18 213 191 10 167
206 181 29 24 39 183 126 116 57 15 255 55 215 204 90 120
147 70 199 80 160 234 165 46 232 212 188 72 235 253 143 148
48 139 141 105 207 239 242 144 166 102 52 161 216 178 171 98
81 59 71 91 189 192 61 252 142 60 130 14 194 201 251 5
9 227 122 47 69 246 197 150 133 151 118 254 104 224 13 233
218 12 3 119 113 177 1 42 205 85 97 209 40 226 149 230
136 155 182 140 108 164 229 11 237 65 135 185 202 77 100 16
83 152 245 240 132 211 112 73 162 87 51 219 50 175 243 248
174 214 64 7 193 25 156 8 76 128 184 28 49 95 180 107
62 21 74 78 222 225 198 20 172 94 101 92 154 33 75 203
221 186 146 31 170 223 241 63 84 30 43 121 66 138 210 129
238 179 109 159 38 89 236 249 145 195 32 111 131 27 157 67
173 153 2 220 169 123 96 44 99 35 34 117 86 36 217 124
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4 Analysis of S-boxes

There are the following tests to analyze the properties of S-boxes.

4.1 Non-Linearity

The nonlinearity of the S-box refers to the property of the substitution box used in cryptographic
algorithms, which is designed to introduce nonlinearity into the encryption process. In particular,
the S-box is used in block ciphers to perform the substitution of plaintext bits with cipher text bits,
and its nonlinearity is important for the security of the cipher. The nonlinearity of the S-box is
usually measured using a metric called the “nonlinearity coefficient” or “nonlinearity index”. This
metric quantifies the degree of nonlinearity introduced by the S-box and is based on the Walsh-
Hadamard transform of the S-box. A high nonlinearity coefficient indicates that the S-box is highly
nonlinear, which is desirable for cryptographic purposes. Nonlinear S-boxes make it more difficult for
an attacker to find patterns or correlations between the plaintext and cipher text, which can be used to
break the cipher [25]. To achieve high nonlinearity, S-boxes are often constructed using mathematical
functions that are highly nonlinear, such as power functions or finite field operations. The upper
bound of nonlinearity is N (f ) = 2n−1 − 2

n
2 −1, for S-box. The optimal value of non-linearity is 120.

The nonlinearity of the proposed S-boxes is given in Table 8.

Table 8: Non-linearity of proposed S-boxes

S1 108.0 108.0 108.0 108.0 102.0 108.0 108.0 106.0
S2 108.0 106.0 108.0 108.0 108.0 106.0 104.0 106.0
S3 108.0 108.0 108.0 108.0 102.0 108.0 108.0 106.0
S4 108.0 106.0 108.0 108.0 108.0 106.0 104.0 106.0

The average non-linearity of proposed S-boxes is 107, 106.75, 107.0, and 106.75.

4.2 Bit Independent Criterion (BIC)

The bit independence criterion of an S-box is a measure of its resistance to linear and differential
cryptanalysis attacks. Specifically, it refers to the property that no linear relationship exists between any
two output bits of the S-box and any two input bits of the S-box. In other words, the bit independence
criterion of an S-box ensures that changing one input bit or one output bit of the S-box will not affect
the other output bits or input bits, respectively, in a linear way [26]. This property makes it more
difficult for an attacker to analyze the S-box using linear or differential cryptanalysis. To achieve high
bit independence, S-box designers often use mathematical structures, such as finite fields and Boolean
functions, to construct the S-box lookup table. They also perform extensive testing and analysis to
ensure that the S-box meets the required bit independence criteria and other cryptographic properties.
The results of the BIC are given in Tables 9–12.
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Table 9: Bit independent criterion of S1

0.0 0.498046875 0.49609375 0.517578125 0.501953125 0.5078125 0.509765625 0.4765625
0.498046875 0.0 0.4921875 0.509765625 0.48828125 0.513671875 0.5 0.5078125
0.49609375 0.4921875 0.0 0.5234375 0.5234375 0.515625 0.513671875 0.50390625
0.517578125 0.509765625 0.5234375 0.0 0.498046875 0.490234375 0.49609375 0.5234375
0.501953125 0.48828125 0.5234375 0.498046875 0.0 0.51953125 0.494140625 0.53515625
0.5078125 0.513671875 0.515625 0.490234375 0.51953125 0.0 0.529296875 0.513671875
0.509765625 0.5 0.513671875 0.49609375 0.494140625 0.529296875 0.0 0.5078125
0.4765625 0.5078125 0.50390625 0.5234375 0.53515625 0.513671875 0.5078125 0.0

Table 10: Bit independent criterion of S2

0.0 0.49609375 0.53125 0.529296875 0.484375 0.5234375 0.4921875 0.4921875
0.49609375 0.0 0.505859375 0.509765625 0.494140625 0.490234375 0.486328125 0.513671875
0.53125 0.505859375 0.0 0.4921875 0.5 0.5078125 0.48828125 0.494140625
0.529296875 0.509765625 0.4921875 0.0 0.498046875 0.517578125 0.501953125 0.486328125
0.484375 0.494140625 0.5 0.498046875 0.0 0.5 0.48046875 0.509765625
0.5234375 0.490234375 0.5078125 0.517578125 0.5 0.0 0.521484375 0.498046875
0.4921875 0.486328125 0.48828125 0.501953125 0.48046875 0.521484375 0.0 0.498046875
0.4921875 0.513671875 0.494140625 0.486328125 0.509765625 0.498046875 0.498046875 0.0

Table 11: Bit independent criterion of S3

0.0 0.498046875 0.49609375 0.517578125 0.501953125 0.5078125 0.509765625 0.4765625
0.498046875 0.0 0.4921875 0.509765625 0.48828125 0.513671875 0.5 0.5078125
0.49609375 0.4921875 0.0 0.5234375 0.5234375 0.515625 0.513671875 0.50390625
0.517578125 0.509765625 0.5234375 0.0 0.498046875 0.490234375 0.49609375 0.5234375
0.501953125 0.48828125 0.5234375 0.498046875 0.0 0.51953125 0.494140625 0.53515625
0.5078125 0.513671875 0.515625 0.490234375 0.51953125 0.0 0.529296875 0.513671875
0.509765625 0.5 0.513671875 0.49609375 0.494140625 0.529296875 0.0 0.5078125
0.4765625 0.5078125 0.50390625 0.5234375 0.53515625 0.513671875 0.5078125 0.0

Table 12: Bit independent criterion of S4

0.0 0.49609375 0.53125 0.529296875 0.484375 0.5234375 0.4921875 0.4921875
0.49609375 0.0 0.505859375 0.509765625 0.494140625 0.490234375 0.486328125 0.513671875
0.53125 0.505859375 0.0 0.4921875 0.5 0.5078125 0.48828125 0.494140625
0.529296875 0.509765625 0.4921875 0.0 0.498046875 0.517578125 0.501953125 0.486328125
0.484375 0.494140625 0.5 0.498046875 0.0 0.5 0.48046875 0.509765625
0.5234375 0.490234375 0.5078125 0.517578125 0.5 0.0 0.521484375 0.498046875
0.4921875 0.486328125 0.48828125 0.501953125 0.48046875 0.521484375 0.0 0.498046875
0.4921875 0.513671875 0.494140625 0.486328125 0.509765625 0.498046875 0.498046875 0.0

Hence S1, S2, S3 and S4 satisfied the bit-independent criterion close to the best possible value.

4.3 Linear Approximation Probability (LP)

The linear approximation probability for a substitution box (S-box) is a measure of the probability
that a linear approximation of the S-box will hold. In other words, it is a measure of the correlation
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between a set of input bits and a set of output bits of the S-box [27]. The linear approximation
probability of an S-box is defined as Pr[a · x = b · S (x)], where a and b are two-bit vectors of the
same length as the input and output of the S-box, respectively, x is an input to the S-box, and S(x)
is the output of the S-box. The symbol · denotes the bitwise inner product of the two-bit vectors.
The linear approximation probability is a value between 0 and 1. A value of 0 means that there is no
linear approximation of the S-box, while a value of 1 means that the linear approximation holds with
certainty. We have calculated the linear approximation probability of the S-boxes S1, S2, S3 and S4. The
maximum value of LP is 0.1484375, 0.1328125, 0.1484375, and 0.1328125.

4.4 Differential Approximation Probability (DAP)

The differential approximation probability for a substitution box (S-box) is a measure of the
probability that a differential approximation of the S-box will hold. In other words, it is a measure
of the correlation between a set of input differences and a set of output differences of the S-box.
The differential approximation probability of an S-box is defined as Pr [Δx → Δy = Δu → Δv] ,
where Δx and Δy are two input differences of the S-box, Δu, and Δv are the corresponding output
differences, and → denotes the S-box operation. The differential approximation probability is a value
between 0 and 1. A value of 0 means that there is no differential approximation of the S-box, while
a value of 1 means that the differential approximation holds with certainty. The DAP results of the
proposed work are given in Tables 13–16.

Table 13: Differential approximation probability of S1

0.023 0.031 0.016 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.031 0.031 0.031
0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.016 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031
0.023 0.031 0.023 0.023 0.023 0.031 0.031 0.039 0.023 0.023 0.023 0.031 0.031 0.023 0.039 0.023
0.031 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.031 0.031 0.031 0.023 0.031 0.023 0.031 0.031
0.023 0.023 0.039 0.031 0.023 0.023 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023
0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.031 0.031 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.023
0.023 0.039 0.031 0.023 0.031 0.031 0.023 0.039 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023
0.031 0.023 0.023 0.023 0.047 0.016 0.023 0.023 0.039 0.031 0.031 0.031 0.031 0.031 0.023 0.039
0.023 0.023 0.023 0.031 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.031 0.016
0.023 0.031 0.031 0.039 0.031 0.031 0.031 0.031 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.031
0.023 0.023 0.031 0.023 0.023 0.039 0.023 0.023 0.023 0.031 0.031 0.031 0.023 0.023 0.023 0.023
0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.039 0.023 0.031 0.023 0.031
0.023 0.031 0.023 0.031 0.031 0.031 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.023 0.016
0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0
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Table 14 Differential approximation probability of S2

0.023 0.023 0.016 0.023 0.023 0.023 0.023 0.031 0.023 0.039 0.031 0.023 0.023 0.023 0.023 0.031
0.031 0.023 0.031 0.031 0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.031
0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.023 0.039 0.023 0.023 0.023
0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.031
0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023
0.023 0.023 0.031 0.031 0.031 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031
0.023 0.031 0.023 0.023 0.039 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.031 0.023 0.031 0.031
0.023 0.023 0.023 0.031 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.031
0.023 0.023 0.023 0.023 0.023 0.023 0.039 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023
0.031 0.016 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023
0.031 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.031 0.031 0.023
0.023 0.023 0.023 0.039 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.039 0.023 0.023 0.031 0.023 0.023 0.039 0.031 0.023
0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.023
0.016 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0

Table 15: Differential approximation probability of S3

0.023 0.031 0.016 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.031 0.031 0.031
0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.016 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031
0.023 0.031 0.023 0.023 0.023 0.031 0.031 0.039 0.023 0.023 0.023 0.031 0.031 0.023 0.039 0.023
0.031 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.031 0.031 0.031 0.023 0.031 0.023 0.031 0.031
0.023 0.023 0.039 0.031 0.023 0.023 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023
0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.031 0.031 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.023
0.023 0.039 0.031 0.023 0.031 0.031 0.023 0.039 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023
0.031 0.023 0.023 0.023 0.047 0.016 0.023 0.023 0.039 0.031 0.031 0.031 0.031 0.031 0.023 0.039
0.023 0.023 0.023 0.031 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.031 0.023 0.031 0.016
0.023 0.031 0.031 0.039 0.031 0.031 0.031 0.031 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.031
0.023 0.023 0.031 0.023 0.023 0.039 0.023 0.023 0.023 0.031 0.031 0.031 0.023 0.023 0.023 0.023
0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.039 0.023 0.031 0.023 0.031
0.023 0.031 0.023 0.031 0.031 0.031 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.023 0.016
0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0

Table 16 Differential approximation probability of S4

0.023 0.023 0.016 0.023 0.023 0.023 0.023 0.031 0.023 0.039 0.031 0.023 0.023 0.023 0.023 0.031
0.031 0.023 0.031 0.031 0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.031
0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.023 0.039 0.023 0.023 0.023

(Continued)
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Table 16 (continued)

0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.031
0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.031 0.023 0.023 0.031
0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031 0.023
0.023 0.023 0.031 0.031 0.031 0.023 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.031
0.023 0.031 0.023 0.023 0.039 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.031 0.023 0.031 0.031
0.023 0.023 0.023 0.031 0.031 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023 0.031
0.023 0.023 0.023 0.023 0.023 0.023 0.039 0.023 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.023
0.031 0.016 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.031 0.023 0.023 0.023 0.023 0.023
0.031 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.031 0.031 0.023
0.023 0.023 0.023 0.039 0.031 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
0.031 0.023 0.031 0.023 0.023 0.023 0.031 0.039 0.023 0.023 0.031 0.023 0.023 0.039 0.031 0.023
0.023 0.023 0.031 0.023 0.023 0.031 0.023 0.023 0.031 0.031 0.023 0.023 0.031 0.031 0.023 0.023
0.016 0.023 0.023 0.023 0.023 0.023 0.031 0.023 0.031 0.023 0.031 0.031 0.023 0.023 0.023 0

The maximum value of differential approximation probability for both S-boxes S1, S2, S3, and S2

is 0.046875, 0.0390625, 0.046875, and 0.0390625.

4.5 Strict Avalanche Criterion (SAC)

The Strict Avalanche Criterion (SAC) is a measure of the cryptographic strength of a substitution
box (S-box). The SAC measures how much a change in one input bit affects the output bits on average,
and is defined as follows: For every pair of input bits i and j, and for every pair of output bits k and l,
the difference between the output bits when i and j are flipped is denoted by �

{k,l}
{i,j} . The SAC requires

that the average over all pairs of input and output bits of the total number of output bit differences
that occur when a single input bit is flipped is at least 1/2:∑

{i, j = 1}{n} ∑ {k, l = 1}{m} abs
(

Pr
[
�{k,l}

{i,j} = 1
] − 1

2

)
≤ ε

where n is the number of input bits, m is the number of output bits, and ε is a small positive constant,
typically set to 0.01 or smaller. The results in Tables 17–20 show that the value of the strict avalanche
criterion of S-boxes based on the residue of a prime number is ∼1/2.

Table 17: Strict avalanche criterion of S1

0.53125 0.453125 0.5 0.421875 0.421875 0.546875 0.5 0.5
0.53125 0.53125 0.484375 0.484375 0.421875 0.5 0.4375 0.484375
0.515625 0.484375 0.515625 0.484375 0.53125 0.515625 0.5 0.515625
0.5 0.5625 0.484375 0.515625 0.546875 0.484375 0.484375 0.484375
0.5 0.5625 0.515625 0.53125 0.421875 0.5 0.546875 0.5
0.484375 0.46875 0.484375 0.46875 0.5 0.578125 0.578125 0.515625
0.40625 0.46875 0.453125 0.5 0.484375 0.515625 0.546875 0.4375
0.453125 0.515625 0.5625 0.484375 0.515625 0.5 0.453125 0.46875
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Table 18: Strict avalanche criterion of S2

0.421875 0.515625 0.484375 0.53125 0.515625 0.46875 0.53125 0.484375
0.484375 0.375 0.53125 0.484375 0.515625 0.4375 0.515625 0.5
0.578125 0.53125 0.53125 0.515625 0.5 0.578125 0.5625 0.484375
0.515625 0.484375 0.453125 0.53125 0.53125 0.484375 0.546875 0.484375
0.5 0.546875 0.46875 0.5 0.46875 0.5625 0.578125 0.5
0.53125 0.5 0.453125 0.4375 0.5 0.484375 0.453125 0.453125
0.546875 0.515625 0.46875 0.484375 0.46875 0.546875 0.453125 0.5
0.53125 0.46875 0.53125 0.515625 0.484375 0.515625 0.5625 0.46875

Table 19: Strict avalanche criterion of S3

0.53125 0.453125 0.5 0.421875 0.421875 0.546875 0.5 0.5
0.53125 0.53125 0.484375 0.484375 0.421875 0.5 0.4375 0.484375
0.515625 0.484375 0.515625 0.484375 0.53125 0.515625 0.5 0.515625
0.5 0.5625 0.484375 0.515625 0.546875 0.484375 0.484375 0.484375
0.5 0.5625 0.515625 0.53125 0.421875 0.5 0.546875 0.5
0.484375 0.46875 0.484375 0.46875 0.5 0.578125 0.578125 0.515625
0.40625 0.46875 0.453125 0.5 0.484375 0.515625 0.546875 0.4375
0.453125 0.515625 0.5625 0.484375 0.515625 0.5 0.453125 0.46875

Table 20: Strict avalanche criterion of S4

0.421875 0.515625 0.484375 0.53125 0.515625 0.46875 0.53125 0.484375
0.484375 0.375 0.53125 0.484375 0.515625 0.4375 0.515625 0.5
0.578125 0.53125 0.53125 0.515625 0.5 0.578125 0.5625 0.484375
0.515625 0.484375 0.453125 0.53125 0.53125 0.484375 0.546875 0.484375
0.5 0.546875 0.46875 0.5 0.46875 0.5625 0.578125 0.5
0.53125 0.5 0.453125 0.4375 0.5 0.484375 0.453125 0.453125
0.546875 0.515625 0.46875 0.484375 0.46875 0.546875 0.453125 0.5
0.53125 0.46875 0.53125 0.515625 0.484375 0.515625 0.5625 0.46875

5 Comparison

The former tests are performed on well-known S-boxes over EC, chaotic maps, and finite fields
presented in [19–23,26,27] in order to compare them to the proposed S-boxes S1, S2, S3, and S4 over EI.
Table 21 shows the results of the EC, chaotic maps (CM), and EI analyses for the various parameters.
It is discovered that the proposed S-boxes have a higher nonlinearity value than EC, CM, and other S-
boxes. The intriguing features of the proposed technique provide S-boxes pair at a time by fixing three
parameters a, b, and p. However, the prime field, which is dependent on the EC via various techniques,
provides one S-box at a time by fixing three parameters a, b, and p. Table 21 and Fig. 1 show the
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nonlinearity of the proposed S-box. The proposed S-box LAP results are lower than those presented
in [19–23,26,27] and Fig. 2. As a result, the proposed S-boxes generate more data confusion and are
more resistant to linear attack [17] than [19–23,26,27]. The proposed S-boxes’ SAC and BIC results
are comparable to those of other S-boxes used in Table 21 and Fig. 2. As a result, the S-box generated
by the proposed technique and the S-boxes shown in Table 21 cause equal magnitude diffusion in the
data. The proposed DAP is comparable to the DAP of S-boxes in [19–23,26,27] and Fig. 2. Thus, when
compared to the others, the proposed technique generates an S-box with high resistance to differential
cryptanalysis [18]. Table 21 shows the analysis results of newly generated paired S-boxes by the EI
cyclic group. Table 21 shows that the performance of paired S-boxes by the cyclic group over EI is
comparable to that of S-boxes over EC.

Table 21: Proposed S-boxes comparison with EC S-boxes for different primes

S-boxes Type NL LAP DAP SAC Max SAC Ave SAC Min BIC Max BIC Ave BIC Min
S1 (Proposed) E1 107.00 0.148 0.047 0.578 0.497 0.406 0.625 0.507 0.375
S2 (Proposed) E1 106.75 0.133 0.039 0.578 0.502 0.375 0.625 0.502 0.391
S3 (Proposed) E1 107.00 0.148 0.047 0.578 0.497 0.406 0.625 0.507 0.375
S4 (Proposed) E1 106.75 0.133 0.039 0.578 0.502 0.375 0.625 0.502 0.391
[19] EC 104.00 0.148 0.047 0.610 0.516 0.422 0.543 0.503 0.463
[20] CM 104.00 0.148 0.039 0.625 0.508 0.391 0.531 0.501 0.471
[21] EC 104.00 0.145 0.039 0.610 0.5 0.390 0.531 0.501 0.471
[22] CM 106.00 0.148 0.039 0.641 0.5235 0.406 0.537 0.504 0.471
[23] CM 106.00 0.148 0.047 0.625 0.5155 0.406 0.539 0.505 0.471
[26] CM 106.00 0.188 0.039 0.610 0.508 0.406 0.527 0.496 0.465
[27] CM 106.00 0.148 0.023 0.609 0.5 0.391 0.525 0.499 0.473

Figure 1: Comparison of NL of proposed work with existing works
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Figure 2: Comparison of BIC, SAC and LAP of proposed work with existing works

6 Conclusion and Future Directions

We propose a novel construction of substitution boxes by using affine mapping and fixing
three parameters a, b, and p. By fixing the three parameters, the prime field dependent on the EC,
chaotic maps, and Gaussian integers provide one S-box at a time. Here, the Prime p must be greater
than or equal to 257 and belong to the cyclic group over the residue class of Eisenstein integers in
order to produce cryptographically robust S-boxes. The newly proposed S-boxes are tested by using
different available algebraic and statistical tests. Additionally, the proposed S-boxes cryptographic
characteristics are contrasted with some of the currently used S-boxes over EC, Gaussian integers,
and chaotic maps. The results indicate that the proposed algorithm can generate paired S-boxes with
high resistance to linear and differential attacks.

The proposed S-boxes over the residue class of EI integers may extend to the S-boxes over the
residue class of quaternion and octonion integers. These structures may also use for watermarking
and image encryption.
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