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ABSTRACT

With the rapid growth in the availability of digital health-related data, there is a great demand for the utilization
of intelligent information systems within the healthcare sector. These systems can manage and manipulate this
massive amount of health-related data and encourage different decision-making tasks. They can also provide
various sustainable health services such as medical error reduction, diagnosis acceleration, and clinical services
quality improvement. The intensive care unit (ICU) is one of the most important hospital units. However, there are
limited rooms and resources in most hospitals. During times of seasonal diseases and pandemics, ICUs face high
admission demand. In line with this increasing number of admissions, determining health risk levels has become
an essential and imperative task. It creates a heightened demand for the implementation of an expert decision
support system, enabling doctors to accurately and swiftly determine the risk level of patients. Therefore, this study
proposes a fuzzy logic inference system built on domain-specific knowledge graphs, as a proof-of-concept, for
tackling this healthcare-related issue. The system employs a combination of two sets of fuzzy input parameters
to classify health risk levels of new admissions to hospitals. The proposed system implemented utilizes MATLAB
Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system.
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1 Introduction

Over time, intensive care units (ICUs), as one of the most important hospital units, have a limited
number of rooms and resources in most hospitals. During periods of seasonal diseases, disasters, or
world pandemics, such as the ongoing coronavirus disease—that is, COVID-19—pandemic, ICUs face
high admission demand. Because of this increasing number of new cases admitted to hospitals, the
task of accelerating and recognizing health risk levels of new patients accurately has become more
significant and must be considered. Currently, traditional methods continue to be used to diagnose
and identify the level of critical cases who need to be admitted to ICU. Therefore, there is now a
demand to utilize a type of artificial intelligence (AI)-based expert decision-support system to enable
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doctors to determine the risk level of patients in an accurate way, using state-of-art technologies, such
as knowledge graphs (KGs) and fuzzy logic [1–3].

During the past few decades, graph structure has provided effective conceptualization and
management of domain data by depicting real-world entities and concepts, connecting them using a
number of semantically recognized relations. The increasing interest in graphs, by the computer science
and software and system engineering community, is because of its robust underlying abstract structure.
In recent years, domain-specific KGs have become a crucial technology trend that is built on graph
theory for knowledge representation. These are driving the current generation of (big) data-driven
systems and AI applications [4–6]. KGs can represent data semantics for a particular application’s
domain in a machine-readable format using either a particular ontology or schema to solve common
real-world problems of that domains [7–11].

Several domains, such as medical and economics [7,8], continue their ongoing interest in devel-
oping further intelligent information systems, on the basis of domain-specific KGs, to tackle some
of their particular problems. In medical and health-related domains, this type of expert system can
be utilized to manage and store various patient-related data, including information extracted from
medical records. Doctors, clinicians, physicians, and managers are often required to summarize and
retrieve important details from this massive amount of the recorded data (big data) to make better
decisions and maintain the quality of healthcare services. In smart disease diagnosis and detection
systems, for instance, there is a demand to store and manipulate big medical data.

Fuzzy logic, as one of the common techniques used in expert systems for decades, has also
appeared in multiple recent research investigations into tackling various issues in different domains,
including industry, economics, security, and medical and health-related domains [9–12]. In the medical
domain, this type of solution mainly depends on the utilization of a number of input parameters that
are strongly related to disease symptoms, clinical practices, and diagnoses or patient medical records.
These parameters are processed via a designed fuzzy inference engine converting them into human-
readable crisp values and results [11].

This study aims to recognize the health risk level of a patient on the basis of a combination of
vital signs values and Sequential Organ Failure Assessment (SOFA) score [15,16] as health-related
input variables to the Mamdani fuzzy logic inference engine. In addition, it aims to retrieve or extract
information and knowledge about the clinical conditions of patients from a predesigned domain-
specific KG and real-time health condition data that are captured using suitable medical devices and
Internet of Things (IoT) technology in clinics and ICUs, or manually entered by physicians and nurses.
We employ the widely used MATLAB Fuzzy Logic Toolbox [17] to implement a proof-of-concept for
evaluating the proposed system.

1.1 Related Literature

Fuzzy logic has been implemented in previous studies for different health-related purposes, such
as in [11–14]. A post-surgery medical risk assessment prediction system is developed to analyzed health
indicators of acupuncture points and classify the severity after medical operations [11]. Another main
health-related area is diagnosis of heart diseases [12]. In In the United States and many European
countries, heart disease has one of the highest rates of incidence, with over 3.5 million people diagnosed
every year. This high rate has led to the creation of significant budgets for prevention and treatment,
which approximately constitutes around 3% of the global healthcare budget. In [12], for instance, a
decision-based diagnosis model for heart diseases is presented. This multi-attribute model is built upon
a generalization set of two fuzzy parameterized sets: fuzzy hypersoft set (�-set) and Riesz summability.
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A case study built on a Cleveland dataset that contains real attributes and some associated sub-
attributes is utilized for heart ailments-based diagnoses. These values are transformed into fuzzy values
on the basis of determined criteria and have produced reliable diagnoses results.

In [13], a modified algebraic operation and other basic notions of the possibility neutrosophic
hypersoft set (pNHs-set) were conducted to propose a modified fuzzy-based algorithm for heart
disease diagnosis. Two main concepts were integrated in this study: the pNHs-set and the modified
Sanchez method. Values of the input parameters, including attributes and associated sub-attributives,
were extracted from the Cleveland dataset to evaluate real scenarios of the proposed fuzzy-based
model. These real values were also transformed on the basis of appropriate mathematical criteria,
into fuzzy-based grades, producing reliable results.

Moreover, another interesting study that utilized electrocardiogram (ECG) signals via dual event-
related moving average with FrlFT-based fusion technique is discussed in [11]. The presented technique
was used to construct an intelligent model for identifying the heart condition and classifying it into
five types on the basis of heartbeats: premature ventricular contraction, left bundle branch block,
right bundle branch block (RBBB), PACE, and atrial premature contraction (APC) [14]. The proposed
model was trained using support vector machine and K-nearest neighbor algorithms, and it was able
to analyze the detected ECG signals to categorize the cardiac condition of patients. The experiment
was conducted on two datasets: MIT-BIH arrhythmia and SPNH, producing around 99.99% accurate
results.

1.2 Contributions

From Section 1.1, it can be clearly observed that various investigations have considered parameters
related to heart diseases. In the promising research of this study, various types of health-related
parameters were considered fuzzy input parameters to the system. The main contributions of this
study can be summarized as follows:

• Only three types of vital signs are utilized as fuzzy input parameters.
• Another six SOFA score attributes are considered fuzzy input parameters.
• Domain-specific KG schema are designed for storing and retrieving all critical parameters.
• Proof-of-concepts of a fuzzy logic inference system are outlined for risk level assessment.

1.3 Paper Organization

The remainder of this paper is structured as follows. Section 2 discusses in depth a conceptual
architectural design of the proposed system, a Mamdani fuzzy logic-based KG inference system and
its major components, including the structure of the developed KG and the fuzzy inference engine.
Section 3 presents details of the experiments conducted, an analysis of the results, and an evaluation
of the proposed proof-of-concept of the introduced system. Last, Section 4 provides the conclusion of
this study.

2 System Architecture

On the basis of the discussion presented in the Section 1, this study recommends, as a main
contribution, a conceptual architectural design of a Mamdani fuzzy logic-based KG inference system.
It is considered a promising framework solution for one of the common challenges in healthcare
services and management, which is monitoring and forecasting bed occupancy and resource utilization
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inside ICUs, using, mainly, a combination of two groups of parameters: SOFA score parameters and
patients’ vital signs parameters [15,16].

The main functions of the recommended system are collecting various vital signs of patients using
appropriate and remote IoT sensors or devices, analyzing and evaluating the collected health-related
data using fuzzy logic-based system to decide whether the patient status requires urgent care in ICU
or not, then storing these health data in a KG. The block diagram of the system and its associated
layers are illustrated in Fig. 1. This section provides an overview of the most important components
of the overall architecture, which are the KG structure and fuzzy logic-based engine. In subsection
“Fuzzy Logic-based Graph Data Store Design,” we explain the fuzzification of data and discuss the
development of the rule-based engine.

IoT Medical 
Devices 

Network 
infrastructure 

Knowledge Graph +  
Fuzzy logic engine

Smart Hospital 
System 

Perception Layer 

Network Layer 

Cloud Layer 

Application Layer 

Figure 1: IoT architecture layers and components of the proposed framework

Moreover, in subsection “Knowledge Graph Development Approach,” we discuss the development
strategy of a recommended KG model that integrates heterogeneous patients’ vital signs information,
collected from different healthcare-related resources, to improve the utilization and management of
available ICU resources in hospitals, as a common critical healthcare service. Fig. 2 demonstrates the
overall architecture of the recommended approach with detail of its main internal components and
the suggested data transformational pipeline.

2.1 Fuzzy Logic-Based Graph Data Store Design

Analysis of the overall core processes in the healthcare domain revealed that there are a variety of
core processes that can be grouped into independent healthcare-related information subsystems, such
as laboratory, radiology, pharmacy, and hospital management systems. Some of these information
systems are automated, and the rest are paper-based. In the proposed data storage design, a graph-
based database is recommended as a design choice of the backend datastore for each related system that
has been considered. The suggested graphs are patient electronic medical records (PEMRs), ICU vital
signs data, ICU nurse notes, and hospital information subgraphs. All these elements are considered
input parameters for the promising fuzzy logic inference system, which it will be presented, in detail,
in the following subsections.

These subgraphs are considered parts of the overall domain-specific KG infrastructure developed
in this study. Each graph serves the proposed fuzzy logic engine as a source of data collected/captured
and stored for patients in the previously mentioned healthcare-related information subsystems.
Sections 2.1.1–2.1.4 briefly highlight the types of data utilized in each subgraph and represent the
selected parameters used as inputs for the fuzzy logic engine.
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Figure 2: The detailed framework and the suggested data transformational pipeline

2.1.1 Patient Electronic Medical Record

The PEMR subgraph represents various information aspects that appear in the medical record,
such as patient characteristics, medical history, laboratory results, and presenting illness history notes.
Data can be inserted into this graph, updated, and enriched periodically by hospital front desks,
doctors, or nurses, with every patient visit via different hospital units, such as outpatient clinics,
radiology units, laboratories, inpatient admission units, and even pharmacies.

Notably, the PEMR consists of the three common formats of data: structured, semi-structured,
and unstructured. The personal information, checklists, and choice fields are considered structured
data formats, whereas the historical sections, illness history notes, and other written parts are
considered semi-structured or unstructured data formats. From this, it can be stated that all types
of data formats are recorded to be retrieved and analyzed later using the most suitable technique on
the basis of the format.

2.1.2 ICU Vital Signs

Furthermore, elements in the ICU vital signs subgraph represent different living factors of a
patient, including five key parameters: (1) blood pressure, (2) body temperature, (3) oxygen gas level
and blood gas analysis, (4) heart activity and pulse parameters, (5) respiratory rate (asthma), and
glucose level. Detecting these signs accurately and measuring them correctly is extremely critical for
assessing patients’ health in the ICU and even in clinics. For this reason and more, suitable tools must
be utilized for collecting all adequate vital signs information. These living factors are captured as raw
and unformatted data, via various IoT-based intelligent monitoring systems, connected to different
common sensor-based ICU medical devices, or sensors, available in ICU rooms. Table 1 illustrates the
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selected crucial parameters for ICU patients’ vital signs to be considered in the fuzzy model and their
normal values that are built upon patient ages and the allocated score for each category.

Table 1: Parameters for ICU patients’ vital signs in the fuzzy model

Parameter Fuzzy rules

0 (Low) 1 (normal) 2 (high)

Heart rate (Hr) if Hr(x) < 60 if Hr(x) >= 60 AND <= 100 if Hr(x) > 100
Body temperature (Bt) if Bt(x) < 36.2 if Bt(x) >= 36.2 AND <= 37.6 if Bt(x) > 37.6
Oxygen saturation (POS2) if

POS2(x) < 95
if POS2(x) >= 95 AND <= 100 if

POS2(x) > 100

It is worth mentioning that there are a variety of IoT applications designed to support medical and
healthcare professionals in the domain. These applications are based on Fuzzy logic, such as [18,19].

A detailed discussion of the suggested IoT system architecture and design is out of the scope of
this study. However, to summarize, the recommended architecture of this IoT-based subsystem for
capturing vital signs of patients falls under the proposed architecture in Fig. 2, which consists of four
major layers: perception, networking/middleware, service/business logic, and application layers. In the
perception layer, various smart medical devices/sensors are used for collecting living factors and data
and monitoring their health status. Indeed, microcontroller sensors can also be used for the same
purposes, such as an LM35 sensor for measuring body temperature, a glucometer sensor for measuring
the glucose level in the blood, an electrocardiogram (ECG) for monitoring heart activity and detecting
cardiac abnormalities, and a photoplethysmogram device [20].

2.1.3 ICU Nurse and Physician Notes

Nurses and physicians can adopt different methods to collect and track a patient’s status during
their stay in an ICU room. One such method is monitoring the organ functions and their rate of failure
using an appropriate scoring system. The SOFA is a scoring system that can be used to determine the
rate of organ failure in ICU patients. It measures six organs or systems: the respiratory, cardiovascular,
liver, coagulation, kidneys (renal), and nervous system. Each system involved in the overall, customized
SOFA score (from 0 to 4) has its own attributes and scales, measured by ICU nurses. The recommended
subgraph of the proposed KG includes a number of nodes to store these values for predicting the
clinical outcomes of patients in critical condition in the ICU. Table 2 shows the SOFA parameters that
are considered in the promising fuzzy model, their associated fuzzy rules, and the allocated score for
each given category.

Table 2: SOFA parameters considered in the promising fuzzy model

Parameter Fuzzy rules

0 1 2 3 4

Mean blood
pressure (Bp)

if Mbp(x) >= 70 if Mbp(x) < 70 if dopamine(x)
<= 5

if dopamine(x) >5
AND <15

if dopamine(x)
>= 15

Respiratory
rate (Rr)

if ration(x) >=
400

if ration(x) > 300
AND < 400

if ration(x) > 200
AND <= 300

if ration(x) > 100
AND <= 200

if ration(x) <=
100

(Continued)
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Table 2 (continued)
Parameter Fuzzy rules

0 1 2 3 4

Coagulation if platelets(x) >=
150

if platelets(x) <

150 AND >= 100
if platelets(x <

100 AND >= 50
if platelets(x) < 50
AND >= 20

if platelets(x) < 20

Liver if bilirubin(x) <

1.2
if bilirubin(x) >=
1.2 AND < 1.9

if bilirubin(x) >=
2.0 AND < 5.9

if bilirubin(x) >=
6.0 AND < 11.9

if bilirubin(x) >
12.0

Renal if creatinine(x)
<= 1.2

if creatinine(x) >
1.2 AND <= 1.9

if creatinine(x) >
2.0 AND < 3.4

if creatinine(x) >
3.5 AND <= 4.9

if creatinine(x) > 5

Central
nervous
system

if GCS(x) == 15 if GCS(x) >= 13
AND <= 14

if GCS(x) >= 10
AND <= 12

if GCS(x) >= 6
AND <= 9

if GCS(x) < 6

2.1.4 Hospital Management Information System

Hospital information systems are utilized to simplify daily core financial, operational, clinical,
and workflow processes within hospitals. This type of information system requires a robust backend
database that stores all related data. In the introduced subgraph, the types of data include hospital
profile information (e.g., name, type, and location), number of rooms, number of ICU rooms, number
of beds, available medical devices, doctor and staff details, and patient admission flow.

2.2 Knowledge Graph Development Approach

As aforementioned, there are several approaches to construct KGs. One of the main approaches
involves developing a data pipeline for extracting data (graph nodes) and their interrelations (graph
edges between nodes), on the basis of various techniques, such as machine learning, natural language
processing, graph embedding, and other smart data-driven techniques. Nodes and edges of KGs are
inferred or automatically generated by the utilized algorithms. The proposed approach is built upon a
predefined meta-graph schema that is constructed considering different types of data models utilized in
the related healthcare systems. The proposed meta-graph is used as a hierarchical structure of medical
and health-related information in which every meta-node appears in the graph associated with a set
of other nodes.

2.2.1 Meta-Graph Schema Design

Constructing a comprehensive graph-based schema is considered a compulsory first step toward
building a KG to define all core concepts and describe how they relate one to another. This one-time
step can be considered equivalent to the process of building a targeted domain ontology. Notably,
both machine learning and graph-embedding techniques can also be utilized for building ontologies,
but these techniques are beyond the scope of this study.

To organize the collected data from different health-related resources into concepts that form
subgraphs, data were classified into six categories at the meta-graph level: (1) patient characteristics
to represent the basic personal information section of the medical record of a patient, including name,
date of birth, gender, marital status, demography, and alcohol and smoking status; (2) patient history
for expressing various aspects of historical information recorded in the medical record, including
surgical history, medical history, medications history, family history, pregnancy history, and PHI;
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(3) ICU components to represent information about different types of resources available in ICU
rooms, including monitoring medical devices and beds; (4) actual readings for recording vital signs
and other critical health parameters of an ICU inpatient, captured by ICU monitoring devices during
daily time intervals, including body temperature, oxygen level in the blood and blood gas analysis;
(5) SOFA score, which is used for predicting in-hospital mortality based on the worst parameters
for six organ systems every 24 h from patient admission to the ICU until discharge; (6) hospital
facilities and infrastructures for storing basic hospital information, such as name and location, as
well as information of available ICU beds and equipment, including identities, names, and allocated
rooms.

The Neo4j graph database is used here to construct the KG core schema and all related subgraphs
in this study. A graph database can be defined as a graph-based data representation that consists
of a number of vertices (nodes) and edges (relationships). Each node represents an entity, and
each relationship represents the association between nodes. The graph model proposed in this study
consists of three clusters of subgraphs framed around the process or the types of collected data [21].
Fig. 3 depicts a demonstration of the meta-graph data model designed for the proposed KG of the
recommended system. It consists of six meta nodes, defined at the conceptual schema level, connected
by some directed relationships that are implemented using the Neo4j graph-based database.

Figure 3: The meta-graph schema structure of the knowledge graph

The detailed KG structure is illustrated in Fig. 4. It shows, for each core meta-node, all connected
nodes that represent properties for crucial actual values.
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Figure 4: The detailed structure of the KG. Different colors are used to illustrate the group of nodes
connected to every core meta-node in the KG schema

2.2.2 Data Processing Pipeline

The development strategy for constructing the proposed KG follows a three-step linear process
(pipeline). These steps are data acquisition, data transformations, and KG generation and enrichment.
The overall data processing pipeline encompasses some internal data transformations processes for
each subgraph. The Unified Modelling Language (UML) activity diagram (Fig. 5) demonstrates the
KG creation process pipeline.

• Data acquisition: This step includes defining the strategy for data extraction (collecting), from
different sources in different formats, for each core concept defined in the meta-graph schema.
It is an initial step of the proposed data transformational pipeline. The sources of data include
patient EMRs, ICU medical devices, IoT sensor readings, nurse notes, and information about
hospital and ICU facilities.

• Data transformations: As a part of the developed knowledge representation framework pro-
posed in this study, an extract–transform–load (ETL) data pipeline for converting structured,
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semi-structured and unstructured healthcare-related data into the proposed domain-specific
KG is considered part of the overall proposed data transformational approach.

• The data preprocessing strategy consists of a collaboration between two types of data transform-
ers: data translators and data transformers. Data transformers are responsible for transforming
source data, collected in a raw format (unstructured and semi-structured), into a structured
format. For instance, the natural language processing transformer is used for transforming
raw data extracted from medical records, such as symptoms and doctor notes, after applying
a set of internal text processes, including tokenized lexical and semantic analysis. Moreover,
data translators are responsible for translating the structured data format into a graph data
schema expressed using the Neo4j cypher query language. For example, the IoT data translator
is utilized to translate every row stored in the relational-based IoT data into graph triples written
in Neo4j cyphers.

• KG generation and enrichment: The third phase is KG generation and enrichment, which
includes (1) generating the final KG after executing the translated Neo4j cypher script and (2)
constructing relationships (edges) between core elements (or triples) to form a new instance
of knowledge. These generated cyphers are executed periodically to supply the KG with new
knowledge in terms of new nodes and relationships.

Figure 5: The detailed data transformational steps of the recommended data processing pipeline

The following snapshots of Neo4j cypher script are utilized for generating the KG. It includes the
statements used for generating graph nodes and main edges.

2.3 Fuzzy Logic System

The layout of the overall proposed fuzzy system is illustrated in Fig. 6. The processed information
moves from left to right, starting with the fuzzification step toward the defuzzification step. The system
processes data, which are related to nine inputs (parameters), resulting in a single output that represents
the patients’ health status. The fuzzy system was designed to determine the risk level of a patient to
decide whether there is a demand to transfer them to ICU or not. MATLAB Fuzzy Logic Toolbox
was used to implement the system as a proof-of-concept. The introduced fuzzy system with nine inputs
and the one output is presented in Fig. 7.
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Figure 6: Flow of creation and utilization of the proposed fuzzy logic system

Figure 7: Fuzzy logic system that is built upon center-of-gravity method and Mamdani-based inference
approach with nine input variables and one output

2.3.1 Inputs Fuzzification

The fuzzification step is responsible for converting a real input variable into a degree of belonging,
of a calculated score, toward a corresponding linguistic variable. To achieve this, membership functions
are used, and a search process is conducted. The total score is calculated for a patient using the nine
parameters extracted from two groups of health-related parameters available in the KG, as is shown
in Tables 1 and 2, namely, heart rate (Hr), body temperature (Bt), oxygen saturation (POS2), mean
blood pressure (Bp), respiratory rate (Rr), coagulation, liver, renal and central nervous system. Each
parameter value for each patient is cross-referenced against the fuzzy model, represented in Tables 1
and 2, and a total score from 0 to 30 is allocated. The scores for each parameter are then added to
provide the total score.

A total score that falls in the range between 0 and 10 shows that the patient health level is normal;
such patients do not need to be taken to the ICU. A total score between 10 and less than 15 shows
that the patient is in a mild risk status, which might require them to be taken to the ICU with low
priority. Conversely, a score of 15 or more shows that the patient is in a high-risk status, and an
admission to an ICU is highly recommended. In addition, to enable the proposed intelligent decision-
making system to determine the risk level of a patient and to what degree they need to be admitted
to a room in the ICU, the categories were defined using a number of sub-scores. Each sub-score was
mapped into a linguistic term that represents the risk degree of a patient health. Furthermore, each
group of parameters (category) was identified using a fuzzy set, a range, and a membership function.
For instance, three linguistic terms were determined for the first group of parameters to define the
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associated categories: normal, medium risk, and high risk. Similarly, four terms were identified to
define the second category: normal, low risk, high risk, and extremely high risk.

2.3.2 Inference Engine

The inference step aims to define the mapping between the inputs, provided to the system, to
an output using a set of fuzzy logic rules that are of the if-else type with the AND operator. This
mapping enables the system to make the most accurate decision. Overall, the inference process consists
of three main components: fuzzy rules, membership functions, and a proper reasoning mechanism
for producing output. As mentioned previously, the fuzzy inference system adopted in this study is
Mamdani and the following steps are applied to accomplish this inference step:

1. Define the set of fuzzy rules.
2. Fuzzify the inputs using membership functions.
3. Apply fuzzy operation (in our system “AND” operator).
4. Apply the fuzzy rule to combine the fuzzified inputs.
5. Defuzzify the output.

In this regard, the number of risk levels for all categories is used for calculating the total number of
rules to be implemented in the system. As clearly discussed in Section 2.1.4 and presented in Tables 1
and 2, the number of levels can be summarized as follows: Hr = 3, Bt = 3, POS2 = 3, Bp = 5, Rr = 5,
liver = 5, coagulation = 5, renal = 5, and the central nervous system = 5. Eq. (1) is utilized to compute
the total number of rules in the fuzzy system:

M = a1 × a2 × a3 × . . . × an (1)

where M is the maximum number of rules, n is the number of categories, and a is the number of risk
levels for each category. Therefore, the maximum number of the possible fuzzy rules in the proposed
system is M = 3 ∗ 3 ∗ 3 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 ∗ 5 = 421,875 rule.

2.3.3 Defuzzification

The defuzzification step is responsible for converting the fuzzy quantity of the output to a crisp
value. In the proposed system, the center-of-gravity method is adopted for the defuzzification process,
which can be mathematically defined using Eq. (2):

x∗ =
∫

μc (x) · x dx
∫

μc (x) dx
(2)

In the proposed system, the calculated result of the fuzzy inference process determines the health
risk level to which the patient belongs. This result is considered one fuzzy set for each output variable.
As the output of the proposed fuzzy system is a degree of health risk level in the patient status. We
have identified four fuzzy sets for representing the out degree of the demand to take the patient to the
ICU: normal, low risk, high risk, and extremely high risk.
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Listing 1: Neo4j cypher script for generating the knowledge graph

3 Experiment and Evaluation

To evaluate the developed fuzzy logic system, a proof-of-concept that consists of 27 fuzzy rules
and three input variables (parameters)—heart rate, body temperature, and oxygen saturation—was
implemented using MATLAB Fuzzy Logic Toolbox and has been demonstrated in this section. Fig. 8
illustrates the introduced fuzzy system, designed around Mamdani fuzzy rule inference and the center-
of-gravity method, with three inputs and one output.

Figure 8: A proof-of-concept of the fuzzy logic system that is framed around the center-of-gravity
method and Mamdani-based inference approach with three input variables and one output
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As mentioned previously, on the basis of the three selected input variables, 27 rules are generated,
which must be combined in some manner to arrive at a decision about the risk level of a given patient
case. Three different sets of values for each input variables are generated to demonstrate the variation
of the decisions made by the developed system. These are classified into three categories: low, normal,
and high, joined with AND operator for each given input variable and three categories for the output:
level_0, level_1, and level_2.

According to the first experiment demonstrated in Table 3, the three variables associated with
heart rate, body temperature, and oxygen saturation were set at values located in the predefined
“normal” category as Hr = 65, Bt = 37AND POS2 = 97.5. The risk level category was expected
to be “level_0” with 0.42/3, which represents a low level of health risk.

Table 3: Experiment details for evaluating the proposed system

Experiment No. Heart rate Body temperature Oxygen saturation Risk level (output)

1 65 37 97.5 0.42
2 55 37 97.5 1.49
3 101 37 97 2.66
4 81 38 95.5 1.5
5 58 36 93 2.55
6 68 37 97 0.38
7 105 38 102 2.67
8 55 38 101 1.7

Moreover, in the second experiment, only two variables associated with body temperature and oxy-
gen saturation were set at values located in the predefined “normal”category as Bt = 37AND POS2 =
97.5, whereas, the third input variable (heart_rate) was set at a value located in the predefined “low”
category as Hr = 55. The risk level category was expected to be “level_1” with 1.49/3, which reflects a
medium level of health risk.

In addition, the third experiment was performed using two variables, which are associated with
heart rate and body temperature and were set at values located in the predefined “high” category as
follows: Hr = 101 AND Bt = 37. The third input variable (oxygen saturation) was set at a value
located in the predefined “normal” category as POS2 = 97.5. The risk level category was expected to
be “level_2” with 2.66/3, which reflects a high level of health risk.

From the presented experiments in Table 3, it can be clearly observed the differences between the
resulting health risk level categories from the designed fuzzy logic system according to the variation of
the given values of the input variables. These results were utilized as a proof-of-concept to evaluate the
proposed system and indicate that fuzzy models might be expanded with the rest of the nine selected
input variables to become more accurate for measuring the health risk level of patients.

Aside from that, it is worth emphasizing that implementation or experimental evaluation of the
KG performance is not within the scope of this study. Experiments were limited to the utilization of
only three major input parameters of the fuzzy logic inference algorithm. They demonstrated good
results to validate the idea via the developed proof-of-concept. However, we can recommend a further
evaluation strategy that can be conducted to evaluate this part of the framework. Because many types
of applications can be developed alongside the constructed KG in an independent form, such as
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questioning and answering systems, chatbots, or even simple applications with queries, all function
as decision-support systems in ICUs. Graph query processing and resulting visualization techniques
can be utilized at this stage to measure the quality and accuracy of the query results. Several procedures
or graph-based queries can be designed using the Neo4j cypher script command and run as test cases
to retrieve certain results and use them in predictions and decision support.

4 Conclusion

In summary, a recommended fuzzy logic-based framework for recognizing patient health risk
level, on the basis of a combination of vital signs and SOFA score parameters of patients, was
introduced. A Mamdani fuzzy logic inference engine was utilized and implemented using MATLAB
Fuzzy Logic Toolbox as a proof-of-concept. The fuzzy logic system should be able to retrieve, or
extract, information and knowledge about clinical condition of patients from a predesigned domain-
specific KG and real-time health condition data that are captured using suitable medical devices and
IoT technology in clinics and ICUs, or manually entered by physicians and nurses.

Regarding the KG construction process, two levels of graph-based nodes were discussed with a
supporting design of a data processing pipeline and strategy. A three-phase linear process that includes
data acquisition, data transformations, and KG generation and enrichment, was also discussed, along
with the possible evaluation strategy of the overall recombined framework. On the basis of this
information and ICUs resources data, the decision-makers at hospitals can manage and organize the
ICU admission process when managing a large number of patients with different health risk levels.
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