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ABSTRACT

In recent years, with the continuous deepening of smart city construction, there have been significant changes and
improvements in the field of intelligent transportation. The semantic segmentation of road scenes has important
practical significance in the fields of automatic driving, transportation planning, and intelligent transportation
systems. However, the current mainstream lightweight semantic segmentation models in road scene segmentation
face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation
edges. Therefore, this article proposes a lightweight semantic segmentation model based on the LiteSeg model
improvement to address these issues. The model uses the lightweight backbone network MobileNet instead of
the LiteSeg backbone network to reduce the network parameters and computation, and combines the Coordinate
Attention (CA) mechanism to help the network capture long-distance dependencies. At the same time, by
combining the dependencies of spatial information and channel information, the Spatial and Channel Network
(SCNet) attention mechanism is proposed to improve the feature extraction ability of the model. Finally, a multi-
scale transposed attention encoding (MTAE) module was proposed to obtain features of different resolutions and
perform feature fusion. In this paper, the proposed model is verified on the Cityscapes dataset. The experimental
results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union (mIoU) of
the original LiteSeg model by 4.69%. On this basis, the backbone network is replaced with MobileNet, and the CA
model is added at the same time. At the cost of increasing the minimum model parameters and computing costs, the
mIoU of the original LiteSeg model is increased by 2.46%. This article also compares the proposed model with some
current lightweight semantic segmentation models, and experiments show that the comprehensive performance of
the proposed model is the best, especially in achieving excellent results in small object segmentation. Finally, this
article will conduct generalization testing on the KITTI dataset for the proposed model, and the experimental
results show that the proposed algorithm has a certain degree of generalization.
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1 Introduction

In today’s society, road scene segmentation has become a technology of great importance as
urbanization and traffic demand continue to grow. Road scene segmentation aims to accurately
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separate and identify individual objects on the road from their surroundings in digital images or videos.
This technology has a wide range of promising applications in areas such as autonomous driving,
traffic monitoring, and intelligent transportation systems. The goal of road scene segmentation is
to achieve a comprehensive understanding and perception of the traffic environment by accurately
segmenting the vehicles, pedestrians, traffic signs, and other elements on the road. By effectively
separating all objects on the road, road scene segmentation provides autonomous vehicles with the
necessary environment awareness to ensure safe driving. At the same time, road scene segmentation
can be used in traffic monitoring systems to monitor traffic flow in real-time, detect violations, and
optimize traffic signal control, thereby improving road safety and traffic efficiency.

Semantic segmentation is one of the important tasks in the field of computer vision, aiming to
classify each pixel in an image or video into different semantic classes accurately. With the continuous
development of deep learning, semantic segmentation models have also evolved. From the original full
convolutional network (FCN) [1] to various improved methods later, each generation of networks has
introduced new ideas and techniques in feature extraction, contextual information, and multi-scale
features to continuously improve the accuracy and efficiency of semantic segmentation. Common
semantic segmentation models are based on convolutional neural networks to achieve pixel-level
classification. The main feature of these models is the adoption of an encoder-decoder structure
and the combination of improved strategies such as skip connections and contextual coding, which
improve the accuracy of image semantic segmentation. In the ILSVRC2012 vision competition [2],
the AlexNet network [3] achieved state-of-the-art results (SOTA) by improved the accuracy of the
model through techniques such as nonlinear activation functions, Dropout layers, data augmentation,
and multi-GPU training. These ideas and techniques have since been widely used in deep learning
models. In 2014, Long et al. improved the convolutional neural network and proposed FCN, which was
the first successful application of convolutional neural network to semantic segmentation tasks. The
FCN network achieves pixel-level classification by removing the fully connected layer and mapping
the feature map output from the convolutional neural network to the output image of the same
size as the input image. In 2015, Ronneberger et al. proposed the U-Net network [4], which uses
an encoder-decoder structure. The encoder is used to extract the features, while the decoder is used
to gradually recover the position and size of the feature image pixels. This model structure is able
to fuse shallow features of images with deep features to obtain highly accurate segmentation results.
Chen et al. proposed DeepLab network [5], which mainly uses dilated convolutions and multiscale
pyramid pooling to improve segmentation accuracy. Niu et al. proposed the hybrid multi-attention
network HMANet [6], which employs a channel attention module and introduces a region random
playback attention module to reduce feature redundancy and improve the efficiency of the self-
attentive mechanism by representing it in a regional manner. Chen et al. proposed DeepLabv3+
network [7], which employs a series of technical improvements, including atrous spatial pyramid
pooling (ASPP), encoder-decoder structure, and hybrid loss function. Zhao et al. proposed the PSPNet
network [8], which uses a pyramid pooling module to capture the global contextual information of the
input image and combine it with local information to obtain better semantic segmentation results.

However, the complexity of road scenes and the limitations of current semantic segmentation
models lead to a series of challenges in road scene segmentation. (1) Road scenes have complex
diversity, including different road types, changes in lighting conditions, effects of weather conditions,
and vehicle occlusion and overlap. All these factors will lead to a decrease in the accuracy and
stability of the semantic segmentation model. (2) There are objects of different scales in the road
scene, such as pedestrians, vehicles, and traffic signs. Current semantic segmentation models face
difficulties in handing scale variation, and it is difficult to accurately segment objects with different
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scales, especially small-scale targets. (3) In autonomous driving and traffic monitoring systems,
real-time segmentation results of road scenes are highly demanding. However, the current semantic
segmentation models cannot be applied on embedded devices to achieve real-time segmentation,
considering both the number of parameters and inference time. (4) In road scenes, the boundaries
between some semantic categories may be unclear or blurred, and it is challenging for current semantic
segmentation techniques to accurately capture and segment these blurred boundary regions. Therefore,
how to effectively solve these challenges and improve the accuracy and robustness of road scene
segmentation has become a hot spot and focus of current research.

In this paper, we propose a new lightweight semantic segmentation model based on LiteSeg [9] to
address these problems. The work we have done is as follows:

1. The original model backbone network is replaced by the MobileOne [10] network. MobileOne
is an efficient neural network that can effectively reduce the number of parameters and
computation of the network. Also, to ensure the feature extraction capability of the model,
a lightweight and flexible CA attention mechanism [11] is introduced to obtain more efficient
feature information.

2. A multi-scale transposition attention module is proposed. This module can acquire vector
features at different resolutions and fuse the features. A Transformer encoder module is also
incorporated to operate between channels with the help of covariance matrices of key and
query values, which combine the accuracy of global transform networks with the scalability of
convolutional structures.

3. The SCNet module is proposed. This module processes spatial attention and channel attention
in parallel to obtain richer feature information.

2 Related Work

As deep learning models continue to evolve, there is an increasing need to apply these models to
real-world problems, thus requiring more and more models to be deployed on mobile devices. In order
to interact with the real environment in real-time, semantic segmentation models need to have real-time
processing capabilities and meet accuracy requirements. In recent years, the state-of-the-art lightweight
semantic segmentation models can be divided into three main types: encoder-decoder structures, two-
branch structures, and multi-branch structures. The model with an encoder-decoder structure extracts
the features of the input image through the encoder and then maps these features back to the original
image size through the decoder to achieve pixel-level classification. This structure allows for relatively
fast inference while maintaining high accuracy. The model with a two-branch structure divides the
network into two branches, one for the extraction of global contextual information and the other for
capturing local details. This structure can effectively balance global and local information, improve
segmentation accuracy, and enhance inference speed to a certain extent. The model with a multi-
branch structure processes feature information at different scales separately by using multiple parallel
branching networks. These branching networks can extract features in different sense field ranges
and fuse them to obtain more comprehensive contextual information, thus improving the accuracy
of semantic segmentation. The classification of lightweight semantic segmentation models is shown in
Table 1.

1. Encoder-decoder architecture. In 2016, Paszke et al. proposed the ENet [12] model, which is
the first semantic segmentation model that takes real-time into account, but its segmentation
accuracy is low. In the same year, Eduardo et al. improved on ENet by proposing the
ERFNet [13] model to obtain more information by interleaving the use of null convolution
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and ResNet blocks. The RGPNet [14] model consists of an asymmetric encoder-decoder and
an adapter, which helps to preserve and refine the distributed representation of multiple levels
and facilitates the flow of gradients between different levels. The LiteSeg model proposed by
Emara et al. explores a deeper version of the ASPP module and applies short and long residual
connections and deeply separable convolution to provide a faster and more efficient model. The
MSCFNet [15] model uses decomposed convolution blocks and asymmetric residual blocks
of dilated convolution to construct the encoder and uses deconvolution instead of the high
computational cost of the FPANet [16] model extracts high-level semantic information by
aggregating spatial pyramids with feature pyramids and uses a bidirectional directed feature
pyramid network to fuse feature information at different levels. Besides, the LETNet [17] model
combines U-shaped Convolutional Neural Networks (CNN) with Transformer, the ELANet
[18] model designs an effective lightweight attention-guided network, and the ELUNet [19]
model provides an efficient and lightweight U-shaped network architecture. The EACNet [20]
model uses convolutional decomposition to enhance the feature representation capability and
robustness to rotating objects by using depth-oriented convolutional decomposition as a basic
feature layer and point-by-point convolution for fusion. The CFPNet [21] model combines the
Inception module and null convolution to extract feature maps and contextual information
of various sizes. MobileOne is an ultra-lightweight backbone network for mobile devices that
achieves significant improvements in latency and accuracy through the introduction of linear
branching.

2. Double branch structure. In 2018, Yu et al. proposed BiSeNet [22], a bilateral segmentation
network containing spatial and contextual paths, and they introduced a feature fusion module
and an attention refinement module to further improve accuracy at an acceptable cost. To
handle communication between parallel branches, the authors proposed BiseNetV2 [23] by
adding an effective fusion layer to the BiSeNet model, which enhances the connection between
the two paths. Despite the significant progress in speed and accuracy of BiseNetV2, there
are still some redundancies in the initial downsampling phase and the fusion layer, which
limit the information exchange between spatial and semantic branches. To address this issue,
Faster BiSeNet [24] adopts a cleaner design that reduces redundant network architecture
and enhances the relationship between the two branches. Aerial-BiSeNet [25] proposes a
feature attention module and a channel attention-based feature fusion module based on the
channel attention mechanism, effectively refining and combining features to improve the
model’s performance. Additionally, Poudel et al. proposed Fast-SCNN [26], which introduces
a learning downsampling module based on the existing two-branch fast segmentation method
to compute low-level features of multiple resolution branches simultaneously and combine
high-resolution spatial details with low-resolution depth features. This method is suitable for
low-memory embedded devices with efficient computational power.

3. Multi-branch structure. In 2018, Zhao et al. proposed ICNet [27] with multi-scale input, using
few convolutions at high resolution and a deeper network at low resolution, and finally features
fusion. In 2019, Li et al. proposed DFANet [28] to aggregate discriminative features through
a series of subsidiary stages. DFANet is based on multi-scale feature propagation, which
reduces the model parameters while maintaining a good perceptual field and enhancing the
learning ability of the model. In the same year, Liu et al. proposed FDDWNet [29], which
uses decomposition-expanded depth-separable convolution to learn feature representations
from different scale receptive fields. The MSFNet [30] model designs a multiscale feature
network consisting of an enhanced diverse attention module and an upsampling phase fusion
module that uses high-level semantic information to complement low-level detail information
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to improve prediction. In 2021, Fan et al. proposed the Short-Term Dense Concate (STDC)
network [31], which constructs the basic modules of the STDC network by reducing the
dimensionality of the feature map and using feature map clustering for image representation.
NDNet [32] eliminates redundant information through pruning and is suitable for real-
time segmentation tasks with narrow width and large depth. To further optimize the output
resolution of the segmentation network, NDNet uses point-by-point convolution to connect
feature maps, facilitating the aggregation of information from two different levels. DFFNet [33]
proposes a lightweight multiscale component of the semantic pyramid module, which improves
the efficiency of context encoding through depth decomposition.

Table 1: Lightweight semantic segmentation model classification

Structure Network

Encoder-decoder architecture ENet, ERFNet, RGPNet, LiteSeg, FPANet
Double branch structure BiseNet, BiseNet V2, Faster BiseNet, Fast-SCNN, Aerial-BiseNet
Multi-branch structure ICNet, DFANet, DFFNet, MSFNet, FDDWNet

3 Proposed Method

LiteSeg is one of the current excellent lightweight semantic segmentation models. It is designed
based on the encoder-decoder architecture, ASPP, dilated convolutions, and depth-wise separable con-
volutions. By employing depth-wise separable convolutions and ASPP, the model reduces parameter
count while improving segmentation accuracy. The use of dilated convolutions expands the receptive
field, enabling better capture of object information at different scales. On the Cityscapes dataset,
LiteSeg achieves an impressive mIoU accuracy of 67.81%. It is a lightweight, efficient real-time
semantic segmentation model. However, we noticed that the LiteSeg model does not consider the
positional information of features and the semantic correlations of long-distance features, resulting
in difficulties in accurately segmenting object boundaries and small objects. Therefore, in this paper,
we propose a lightweight semantic segmentation model with higher accuracy based on LiteSeg while
maintaining the model volume, and the structure is shown in Fig. 1. Building upon LiteSeg, this paper
utilizes the MobileOne backbone network module and incorporates the CA attention mechanism and
SCNet attention module to extract feature information. Additionally, the multi-scale transposition
attention coding module is used to extract long-range global features.

3.1 Feature Extraction Based on CA Attention Mechanism

The CA attention mechanism is used to enhance the receptive field of deep neural networks,
primarily by weighting the feature maps of different channels in the network. Its structure diagram
is shown in Fig. 2. The CA attention module encodes channel relationships and long-term depen-
dencies through precise location information, and the specific operations are divided into two parts:
Coordinate information embedding and Coordinate Attention generation.

The CA Attention module encodes channel relationships and long-term dependencies through
precise location information, and the specific operations are divided into two parts: Coordinate
information embedding and Coordinate Attention generation.
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Figure 1: Improved LitSeg network structure

Figure 2: CA attention mechanism
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Coordinate information embedding: the global pooling approach is used for the global encoding
of spatial information for channel attention encoding, but it makes it difficult to maintain location
information because it pushes global spatial information into the channel description. To induce the
attention unit to capture distant spatial interactions with accurate location information, the global
pooling is decomposed according to the formula in Eq. (1) and transformed into a one-to-one feature
encoding operation.

Zc = 1
H ∗ W

∑H

i=1

∑W

j=1
xc (i, j) (1)

Specifically, given the input, each channel is encoded along the horizontal or vertical coordinates
using pooling kernels of size (H, 1) or (1, W), respectively. This channel attention captures long-term
dependencies along one spatial direction and preserves precise position information along the other
spatial direction, which helps the network to locate the target of interest more accurately.

Coordinate Attention generation: After passing through the transformations in the information
embedding, this part splices the above transformations and then uses the convolutional transform
function to process them.

f = δ
(
F1

(
[zh, zw]

))
(2)

Eq. (2) represents the concatenation operation along the spatial dimension, encoding spatial
information in both the horizontal and vertical directions. It is then decomposed into two separate
tensor sums along the spatial dimension. Utilizing two additional convolutional transforms, zh and zw

are individually transformed into tensors with the same number of channels, as shown in Eqs. (3) and
(4).

gh = σ(Fh(f h)) (3)

gw = σ(Fw(f w)) (4)

Finally, the output of the CA module can be expressed as shown in Eq. (5).

yc (i, j) = xc (i, j) ∗ gh
c (i) ∗ gw

c (j) (5)

The global pooling layer in the network pools the input feature maps globally on average to obtain
the global average of each channel. The channel weighting layer multiplies the original feature maps
with the channel weights to obtain the weighted feature maps. Finally, the feature reconstruction layer
reconstructs the weighted feature maps into the final feature maps. The addition of the CA module
helps MobileOne extract more feature information at a very small additional computational cost.

3.2 SCNet Attention Module

Combined attention modules have achieved wide application in the field of image processing, and
in [34], a spatial, temporal, and channel attention module was proposed to achieve the extraction of
spatio-temporal features using three attention modules. Since using three attention modules in series
would add extra computation, this paper aims to balance the accuracy and speed of the model and
thus designs the SCNet attention module. The SCNet attention module uses the spatial and channel
attention mechanisms and performs feature extraction on the input separately in parallel, and finally
fuses them using one-dimensional convolution. The structure of the SCNet attention module model
is shown in Fig. 3.
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Figure 3: SCNet attention module

The SCNet attention module consists of a spatial attention module (SAM) and a channel attention
module (CAM). The SAM module is capable of assigning different levels of attention to each region.
The equations for this module are shown in Eq. (6).

Ms = δ(MaxPool (fin) + AvgPool(fin)) (6)

where fin denotes the input features and δ (·) denotes the Sigmoid activation function. The spatial
attention map Ms is multiplied with the input feature map to perform adaptive refinement in terms of
residuals.

The channel attention module is used to extract channel features from the region feature map in
the image frame. The formula for this module is shown in Eq. (7).

Mc = δ(gc(MaxPool (fin) + AvgPool(fin))) (7)

where δ (·) denotes the Sigmoid activation function, where gc denotes the multilayer perceptron (MLP),
and Mc denotes the channel attention map. The channel attention map Mc is multiplied with the input
feature map in a residual manner for adaptive refinement.
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After the input features pass through the two attention modules separately, the concat function
is used to concatenate the two feature maps in parallel, as shown in Eq. (8), where concat denotes the
concatenation operation.

M = concat(Ms, Mc) (8)

The improved SCNet attention module features the spatial and channel attention modules in
parallel to extract the input features separately. The features of each module are multiplied with the
input features in the form of residuals for adaptive refinement. The two features in parallel are then
concatenated together and finally input to a 1 D convolutional network for fusion.

3.3 Multiscale Transposed Attention Encoding Module

In this paper, different regions of the feature map are segmented using the MTAE module,
which encodes the feature map to extract multiscale features. The encoder model is used to extract
long-distance global features. The encoder module is a component of the Transformer model, which
can reduce the strict neighborhood constraint of graph convolution and focus on the connection
between pixels that are physically far away, while also being able to focus on local information. The
feature encoding module can associate more features between regions, establish long-distance feature
dependencies, and extract richer features.

The traditional Transformer uses a self-attentive mechanism to interact with image blocks to
model image data. However, the complexity of the self-attentive mechanism itself makes it difficult
to handle high-resolution images. In this paper, the encoder module uses a transposed attention
mechanism, which operates between channels of features with the help of covariance matrices of key
and query values. The transposed attention mechanism combines the accuracy of traditional global
transform networks with the scalability of convolutional structures with linear complexity in sequence
length, thus allowing efficient processing of high-resolution images.

The mutual covariance attention mechanism is an improvement on the self-attentive mechanism,
and the former is capable of handling high-resolution images. In the self-attentive mechanism, the
input vectors can form a matrix X . The query matrix Q, the key matrix K , and the value matrix V are
obtained by multiplying X with three learnable transformation matrices Wq, Wk and Wv, respectively.

For each query vector qi, calculate its dot product scores with all key vectors kj and input these
scores into the softmax function to obtain a weight vector wi, where each element represents the
correlation between qi and the different key vectors kj, as shown in Eq. (9).

wi = softmax
(

QKT

√
d

)
(9)

Due to the limitations of the self-attention mechanism, this paper adopts the mutual covariance
attention mechanism to interact with image features. The mutual covariance attention is a transposed
form of the self-attention mechanism, which improves the attention mechanism based on the mutual
covariance matrix. In the self-attention mechanism, the attention score is first calculated using the
query matrix Q, the key matrix K, and the value matrix V . Then, the values are weighted and summed
by the attention scores to get the output. In contrast, in the mutual covariance attention, the mutual
covariance matrix between features needs to be calculated first, as shown in Eq. (10).

KTQ = W T
k X TXWq (10)
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The formulation of the mutual covariance attention is shown in Eq. (11), where both Q and K
are generated by the coding layer, t denotes the learnable parameter, and T denotes the transpose
operation. The XCA module is shown in Fig. 4, and each mutual covariance attention is preceded by
a LayerNorm layer, which serves to normalize all the data.

XCAttention (Q, K, V) = V ∗ softmax
(

KTQ
t

)
(11)

The multiscale perception module based on the transposed attention mechanism is shown in
Fig. 5. From the figure, it can be seen that the module inserts residual connection structures with
hierarchies in the residual units. The encoder structure is used as a filter in the module, while connecting
different filter groups in a hierarchical residual-like manner. After chunking, the input is divided into
three subsets: x1, x2, and x3. Each feature has the same scale size, but the channels are 1/3 of the input
features. The encoder first extracts features from a set of feature maps, and then the output features
from the previous set are sent to the next set of encoder filters and another set of input feature maps.
This process is repeated several times until all the input feature maps have been processed. Finally, all
the feature maps are concatenated to obtain the fusion information. Due to the combination effect,
many equivalent feature scales are obtained.

Figure 4: Reciprocal covariance attention

Figure 5: Multi-level transposed attention encoding module

The module partitions the feature map into 3 subsets: x1, x2, and x3, and then performs the
operations using the transpose attention mechanism in the encoder, respectively. The formula is shown
in Eq. (12).
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yi =
{

xi, i = 1
A (xi + yi−1) , 2 ≤ i ≤ 3

(12)

It is specified that each passing encoder is an operation Ai, and the output is yi. Meanwhile, the
output yi−1 of Ai−1 is added to the feature subset xi, and then input to Ai to complete the feature
extraction.

4 Experimental Results and Analysis
4.1 Experimental Environment Configuration

The software and hardware environments for the experiments in this paper are shown in Table 2.

Table 2: Experimental environment configuration

Software and hardware Version and model

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz
GPU Nvidia GeForce RTX 1080Ti
Memory 32 G
Operating system Ubuntu20.04
Frame Pytorch1.7.1, CUDA10.1

Hyperparameter setting: Optimizer, SGD (stochastic gradient descent); momentum, 0.937; weight
decay, 0.0005; learning rate, 0.001; epoch, 150.

4.2 Experimental Data and Evaluation Index

In this paper, we use Cityscapes dataset as the experimental data. Cityscapes dataset is a large-scale
dataset for computer vision, focusing on providing training and performance testing for autonomous
driving environment perception models. It covers various street scenes, road scenes, and seasons, with a
total of 5000 images. The dataset includes 2975 images in the training set, 500 images in the validation
set, and 1525 images in the test set.

Before training, the Cityscapes dataset was divided into 19 classes, namely: road, sidewalk,
building, wall, fence, pole, traffic light, traffic sign, vehicle, terrain, sky, person, rider, car, truck, bus,
train, motorcycle, and bicycle, In the training process, the size of the images is scaled from 1024 ∗ 2048
to 321 ∗ 512 according to the server’s computing power and time efficiency, and the number of images
loaded in each batch is 8. The experiments use the pre-training weights of the official LiteSeg model
to initialize the model parameters, and the other network parameters are kept constant during the
training process.

The evaluation metric used in the experiment is mIoU, which is the average of the IoU of all
categories. In semantic segmentation, the IoU value of a category is calculated as the ratio of the
intersection of the set of pixels predicted by the semantic segmentation model as the set of pixels in
that category to the real set of pixels in that category and the union set. The IoU is calculated as shown
in Eq. (13). The mIoU is calculated as shown in Eq. (14).

IoU =
∑k

i=0

pii∑k

i=0 pij + ∑k

i=0 pji − pii

(13)
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mIoU = 1
k + 1

∑k

i=0

pii∑k

i=0 pij + ∑k

i=0 pji − pii

(14)

where, k is the number of categories, k + 1 includes background categories, i denotes the true value,
j denotes the predicted value, pij denotes the prediction of i to j, pii denotes the prediction of i to i, pji

denotes the prediction of j to i.

Params refers to the number of parameters to be trained in the model, including all the weights
and bias terms, and is used in this paper to measure the complexity of the model. Giga Floating Point
Operations (GFLOPs) refers to the number of floating-point operations performed by the model when
performing a single forward computation, in billions of operations per second, which is used in this
paper to measure the computational complexity of the model.

4.3 Analysis of Experimental Results

4.3.1 Comparison of Different Algorithms

To validate the effectiveness of the proposed algorithm in this paper, we compared it with LiteSeg,
ICNet, ENet, ERFNet, BiSeNetV2, STDC1-Seg50, and SeaFormer [35] algorithms. The experimental
results are shown in Table 3. The proposed algorithm in this paper increases the mIoU value by
2.46%, the Params value by 0.19M, and the GFLOPs value by 0.46 compared to the original LiteSeg,
which proves that the improvements in this paper are effective. Compared to ICNet, the mIoU value
increased by 11.57%, the Params value decreased by 4.86M, and the GFLOPs value decreased by
22.94. Compared to ENet, the mIoU value increased by 4.95%, the Params value increased by 1.40M,
and the GFLOPs value decreased by 3.15. Compared to ERFNet, the mIoU value increased by 5.57%,
and the Params value decreased by 0.25. Compared to BiSeNetV2, although the mIoU value decreased
by 1.57%, our model size is much smaller, the Params value decreased by 39.43M, and the GFLOPs
value decreased by 15.78. Compared to STDC1-Seg50, the mIoU value increased by 0.53%, the Params
value increased by 6.58M, and GFLOPs value increased by 4.55. Compared to SeaFormer, although
the mIoU value decreased by 0.07%, our model size is much smaller, the Params value decreased by
2.18M, and the GFLOPs value increased by 3.37. It can be seen that the proposed algorithm balances
accuracy and model size and has the best overall performance among the eight algorithms.

Table 3: Comparison of metrics of mainstream algorithm

Model mIoU(%) Params(M) GFLOPs

LiteSeg 68.57 1.63 4.91
ICNet 59.46 6.68 28.31
ENet 66.08 0.42 8.52
ERFNet 65.46 2.07 53.48
BiSeNetV2 72.60 41.25 21.15
STDC1-Seg50 70.50 8.40 0.82
SeaFormer 71.10 4.00 2.00
Ours 71.03 1.82 5.37

To further verify the validity proposed in this paper, the metrics on the 19 categories of datasets in
Cityscapes were analyzed and compared, and the experimental results are shown in Table 4. The IoU
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values for sidewalk, building, wall, fence, pole, traffic light, terrain, car, train, motorcycle, and bicycle
categories are higher than the other four models. The IoU values of the proposed algorithm in the road
category are slightly lower than those of the ERFNet model. In the traffic sign and rider categories,
the IoU values of the proposed algorithm are lower than those of the LiteSeg and ERFNet models. In
the vehicle category, the IoU of the proposed algorithm is lower than the other four models. In the sky,
bus, and track categories, the IoU value of the proposed algorithm is lower than that of the LiteSeg
model. In the person category, the IoU of the proposed algorithm is lower than the LiteSeg and ENet
models. The proposed model optimizes the feature extraction results by using attention mechanism
and multi-scale structure and can extract higher quality feature information of low-resolution targets
compared to the original model and other models. However, the resolution of targets such as vehicle,
road, and traffic sign are higher, so the improvement of segmentation effect for them is relatively low.

Table 4: IoU comparison of dataset categories

Category Ours LiteSeg ICNet ENet ERFNet

Road 0.9614 0.9591 0.9529 0.9588 0.9663
Sidewalk 0.8237 0.7787 0.7808 0.7725 0.8012
Building 0.8441 0.8186 0.8203 0.8256 0.8011
Wall 0.6120 0.4956 0.4177 0.5314 0.5463
Fence 0.4996 0.4728 0.3669 0.4860 0.4627
Pole 0.6478 0.5232 0.4215 0.5495 0.3945
Traffic light 0.5261 0.4817 0.4011 0.4650 0.4279
Traffic sign 0.6143 0.6475 0.5113 0.5652 0.6996
Vegetation 0.8411 0.8551 0.8509 0.8659 0.8457
Terrain 0.7198 0.6871 0.5958 0.6350 0.6422
Sky 0.9294 0.9297 0.8877 0.9123 0.8902
Person 0.7538 0.7952 0.6052 0.7656 0.7154
Rider 0.5169 0.5266 0.3622 0.4698 0.5620
Car 0.9225 0.8786 0.8359 0.8472 0.8120
Truck 0.6173 0.6306 0.4102 0.5649 0.5647
Bus 0.6918 0.7225 0.6198 0.6535 0.6215
Train 0.6243 0.6160 0.4157 0.5664 0.5480
Motorcycle 0.6164 0.5101 0.4594 0.4957 0.5940
Bicycle 0.7334 0.6987 0.5829 0.6245 0.5428
mIoU 0.7103 0.6857 0.5946 0.6608 0.6546

This article also analyzed and compared the Class mIoU metric of five algorithms, with 150
iterations in the experiment. The mIoU change curve is shown in Fig. 6, from which it can be seen
that the proposed algorithm and LiteSeg present a stable growth trend (smooth curve fluctuation)
with the increase of epoch and gradually stabilize when epoch reaches 140. ICNet, ENet and ERFNet
show small fluctuations in mIoU values with the increase of epochs, and ENet has stabilized when
epoch reaches 100, and ERFNet stabilizes only when epoch reaches 140, while the mIoU value of
ICNet is not only the lowest but also always in oscillation during the training process.
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Figure 6: mIoU variation graph

4.3.2 Ablation Experiments

To further verify the effectiveness of the added modules, they are compared with the original
algorithm, and the experimental results are shown in Table 5. It can be seen that adding SCNet and
MTAE can increase the mIoU value of LiteSeg by 4.96%. However, the Params and GFLOPs of
the algorithm will also increase by 1.61M and 7.14, respectively. In this paper, considering the model
size and computation, we use MobileOne instead of the original backbone network and introduce
a lightweight and flexible CA attention mechanism. As a result, we achieve a 2.46% increase in the
mIoU of the algorithm without significantly increasing the Params and GFLOPs.

Table 5: Ablation experiment

Model Class mIoU Params GFLOPs

LiteSeg 68.57% 1.63M 4.91
LiteSeg+SCNet+MTAE 73.26% 3.24M 12.05
LiteSeg-MobileOne 69.53% 1.12M 2.43
LiteSeg-MobileOne+CA+SCNet+MTAE 71.03% 1.82M 5.37

4.3.3 Comparison of Visualization Results

To directly validate the effectiveness of the proposed model in this paper, we compare the
segmentation results of seven different algorithms on the Cityscapes dataset, as shown in Fig. 7. The
yellow box indicates areas where other models have incomplete segmentation compared to our model.
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Figure 7: (Continued)
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Figure 7: Visualization results of multiple models on Cityscapes validation set. From top to bottom 1-
Input RGB image; 2-Our model; 3-LiteSeg model; 4-ICNet model; 5-ENet model; 6-ERFNet model;
7-BiSeNetV2; 8-STDC1-Seg50; 9-SeaFormer

To verify the generalization ability of the model proposed in this article, we conducted experiments
on the KITTI dataset. We selected three models with similar segmentation accuracy as the proposed
model in this article, BiSeNetV2, STDC1-Seg50, and SeaFormer, and visually compared their gener-
alization ability, as shown in Figs. 8–10. The yellow box represents the part of the model that has not
been segmented.

Figure 8: Visualization results of KITTI dataset. From top to bottom 1-Input RGB image; 2-Our
model; 3-BiSeNetV2
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Figure 9: Visualization results of KITTI dataset. From top to bottom 1-Input RGB image; 2-Our
model; 3- STDC1-Seg50

Figure 10: Visualization results of KITTI dataset. From top to bottom 1-Input RGB image; 2-Our
model; 3-SeaFormer

5 Conclusion

To achieve the segmentation task of complex road scenes, this paper proposes a lightweight
semantic segmentation algorithm based on LiteSeg. To reduce the size of the model, the MobileOne
backbone network is used to extract features. A lightweight and efficient CA attention mechanism
and SCNet module are used to enhance the feature extraction capability of the network, enabling it to
focus on discriminative regions in the image and efficiently distinguish differences between different
regions to achieve accurate segmentation. Furthermore, cross-dimensional feature fusion is achieved
by adding the MTAE module, introducing the encoder module of Transformer in each scale space,
and establishing jump connections in each dimensional space to fuse the features from different
dimensional spaces. In this paper, the proposed algorithm is tested on the Cityscapes dataset, and the
experimental results show that the algorithm improves the mIoU to 71.03% with only a slight increase
in Params and GFLOPs compared to LiteSeg, while the IoU of all 12 categories on Cityscapes is
higher than that of the LiteSeg algorithm, with only 7 categories having slightly lower IoU values.
At the same time, this article will also test the generalization ability of the proposed model on the
KITTI dataset, and the experimental results show that the proposed model has a certain degree of
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generalization ability. This demonstrates that the proposed algorithm meets the demand for accurate
and fast segmentation of road images. However, the algorithm proposed in this paper also has some
limitations. For example, for the compactness of the model, we abandon the downsampling process in
the final stage, which makes the receptive field of the model insufficient to cover large target objects,
resulting in limited improvement in segmentation accuracy for high-resolution objects. Due to the
limitation of the computing power of the device, the image is cropped during the model training
process, resulting in the loss of spatial details in the image, which leads to unsatisfactory segmentation
of the boundary part of the image. Future work will conduct in-depth experiments on the power
consumption of the model while improving segmentation accuracy. We will use knowledge distillation
to further reduce the computational resources of the model and conduct experiments on different
datasets captured on smart cars.
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