‘@M Computers, Materials & ]
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2023.043233

ARTICLE Check for

updates

DM Code Key Point Detection Algorithm Based on CenterNet

Wei Wang', Xinyao Tang” , Kai Zhou', Chunhui Zhao' and Changfa Liu’

'School of Information Engineering, Changan University, Xi’an, 710018, China

?Algorithm Research and Development Department, GRGBanking Equipment Co., Ltd., Guangzhou, 510663, China
*Research and Development Department, Xi’an Soar Electromechanical Technology, Ltd., Xi'an, 710043, China
*Corresponding Author: Xinyao Tang. Email: andy19966212@126.com

Received: 26 June 2023  Accepted: 27 September 2023  Published: 29 November 2023

ABSTRACT

Data Matrix (DM) codes have been widely used in industrial production. The reading of DM code usually
includes positioning and decoding. Accurate positioning is a prerequisite for successful decoding. Traditional image
processing methods have poor adaptability to pollution and complex backgrounds. Although deep learning-based
methods can automatically extract features, the bounding boxes cannot entirely fit the contour of the code. Further
image processing methods are required for precise positioning, which will reduce efficiency. Because of the above
problems, a CenterNet-based DM code key point detection network is proposed, which can directly obtain the four
key points of the DM code. Compared with the existing methods, the degree of fitness is higher, which is conducive
to direct decoding. To further improve the positioning accuracy, an enhanced loss function is designed, including
DM code key point heatmap loss, standard DM code projection loss, and polygon Intersection-over-Union (IoU)
loss, which is beneficial for the network to learn the spatial geometric characteristics of DM code. The experiment
is carried out on the self-made DM code key point detection dataset, including pollution, complex background,
small objects, etc., which uses the Average Precision (AP) of the common object detection metric as the evaluation
metric. AP reaches 95.80%, and Frames Per Second (FPS) gets 88.12 on the test set of the proposed dataset, which
can achieve real-time performance in practical applications.
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1 Introduction

DM code appears as a square or rectangular symbol comprising many small squares, and its data
is stored in a combination of white and black square arrangements. It is widely used in industrial
and logistics fields due to its high density, small size, and much-stored information. In practical
applications, the critical steps of DM code reading are positioning and decoding, and an efficient
and accurate positioning algorithm is essential for accurate DM code reading.

Currently, the methods of DM code positioning can be divided into two categories: (1) Traditional
image processing methods. (2) Deep learning methods.
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(1) Traditional image processing methods. To detect the edges and corner points of DM code,
domain transform, threshold segmentation, and feature point operator-based methods are used in
these approaches. Leong et al. [1] proposed a method in which feature points were extracted using
the Speeded Up Robust Features (SURF) operator. The DM code is coarsely localized by feature
point matching, then the DM code is locally segmented using the Otsu thresholding and diffuse filling
algorithms to obtain connected regions, and finally, the DM code is precisely positioned using the
Hough transform. However, this method has a lengthy processing time and high requirements for the
quality of the DM code edge. Hu et al. [2] proposed a Two-Dimensional code detection method based
on the Randon domain transform to extract 2D code features in the Rondon domain. This method
is time-consuming. It cannot address the problem of feature contamination, but it can withstand
noise interference and adapt to perspective-transformed images to a certain extent. Ha et al. [3]
proposed a strategy of contour distance array estimation, which first roughly locates DM code based
on morphological processing to determine the joint region, and then builds an array of boundary
contour distance distribution to estimate the rotational angle of DM code based on their boundary
characteristics, which is more dependent on the complete boundary of DM code and cannot be
applied to cases such as code blurring and wear. To correct and recognize perspective deformation and
column surface distortion DM code, Wang et al. [4] proposed several recognition methods for complex
background and deformation DM code. However, the algorithms are time-consuming and cannot
meet the industrial production demand in real time. Li et al. [5] proposed a feature edge pinpointing
method based on the L-edge of DM code. The method includes fast positioning and priority ranking
of DM code candidate regions based on corner point distribution, contour extraction through DM
code candidate regions to reduce the interference produced by non-interest edges on positioning, and
linear fitting using improved Hough transform and iterative weighted least squares method to pinpoint
L-edge. This technique can significantly speed up the positioning of DM code with low contrast and
poor resolution. Still, it demands excellent integrity for the edges of the DM code features and cannot
be used in scenarios with contamination or wear. Yang et al. [0] proposed a DM code positioning
algorithm based on corner points and region growth. Firstly, Harris corner points are used as high-
frequency features, and a Gaussian pyramid is constructed to filter the background metal texture
corner points. Radial basis functions are introduced to smooth the corner point density map, candidate
regions are coarsely localized by threshold segmentation as well as region growth, and finally, the
minimum outer rectangle is calculated and corrected to achieve fine positioning. This method improves
the detection efficiency of tiny DM code to a certain extent. Omar et al. [7] proposed a particular
solution for Quick Response (QR) code detection in uncontrolled environments. A binary large object-
(BLOB-) based algorithm with subsequent iterative filtering QR symbol position detection patterns is
used in recognizing geometrical features of QR code. The method is not time-consuming. However, it
cannot be adaptive to small codes. Li et al. [§] proposed a DM code recognition algorithm based on
local thresholding and the Otsu algorithm. Firstly, local thresholding and the Otsu algorithm are used
to realize the binarization of the image containing DM code; then, corrosion, expansion, and other
algorithms are used to filter out the background further, and the Canny algorithm is used to detect
the edges of the Data Matrix code; finally, Hough transform is used to extract the L-shape region,
and rotation, interpolation and other operations are carried out to realize the identification of the 2D
code region. This method has high accuracy, but the processing is complicated and time-consuming.
Ladislav et al. [9] have devised and compared various methods for localizing DM code in arbitrary
images, all using a typical L-shaped lookup pattern to detect DM code in images. Although such
approaches have a high detection rate, the immunity to interference is potentially insufficient. These
techniques have high background differentiation and can localize objects quickly and precisely in less
distracting environments. However, scenarios, contamination, and other factors frequently exist in
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actual production, making it difficult for image processing techniques to meet the demand for precise
positioning.

(2) Deep learning methods. With the rapid advancement of deep learning in recent years,
several outstanding object detection algorithms have surfaced [10-13], considerably enhancing object
detection accuracy by automatically extracting characteristics. A deep learning-based 2D code iden-
tification system based on the Mask Region-based Convolutional Neural Network (R-CNN) [14]
segmentation model was proposed by Cai et al. [15]. Still, it did not include DM code detection in
industrial environments despite having a greater recognition speed in reflected backlight scenarios.
Yang et al. [16] proposed an improved You Only look Once (YOLOv3-ms) for 2D code detection.
Firstly, adding Spatial Pyramid Pooling (SPP) structure to the original YOLOvV3 network for multi-
scale feature fusion. The K-Means algorithm is used to re-cluster the prior frame for the dataset,
which helps to shorten the training time. Finally, the Mosaic data enhancement method is used to
expand the dataset during the training process, which has high detection speed and accuracy, but is only
limited to high resolution and clear 2D code images. Hu et al. [17] proposed a semantic segmentation-
based DM code positioning method. Firstly, the Semantic Segmentation Network (SegNet) [18] is
used to segment the DM code region from the image and localize and decode the 2D code for
the region. While this method has a high level of accuracy, its inference speed is slow and cannot
keep up with the demands of real-time industrial production. Guney et al. [19] proposed an image
processing and YOLO algorithm based on Electric shore-to-ship charging socket detection, using
image processing techniques to preprocess the input image and extract the relevant features. Then
the YOLO algorithm is used to achieve real-time detection and positioning of charging sockets,
which is faster to reason than the semantic segmentation approach. Still, we are more committed
to getting the results in one inference. Wan et al. [20] proposed a lightweight CenterNet network for
multi-scale 2D code positioning by lightweighting the backbone of the original CenterNet network to
Cross Stage Partial Network Tiny (CSPDarkNet53-Tiny), while adding SPP modules to the network
structure for multi-scale fusion and replacing the normal convolution in the detection head part
with a depth-separable convolution, which realizes fast 2D code recognition in low configuration
conditions. Almeida et al. [21] compared and analyzed several deep neural networks for detecting and
decoding DM code in complex indoor environments. They investigated various deep neural network
architectures ranging from two-stage to single-stage and evaluated their performance detecting DM
code in indoor environments. The experimental results show that deep neural networks perform better
in detecting and decoding DM code with higher accuracy and robustness than traditional methods.
Louetal. [22] proposed a YOLOv5-based QR code recognition algorithm. By designing a customized
neural network architecture for the specific attributes and structure of QR codes, and YOLOVS is
used to model training and inference, the algorithm can quickly and accurately detect and recognize
QR codes in complex images, and the results show that the algorithm performs excellently in terms of
performance and robustness through a large amount of experimental data evaluation and comparison.
Although these techniques can increase detection accuracy, they can only use a horizontal 2D box
for the envelope. Since the detection box contains more background areas, which cannot get the
positioning results of the fit code, it must still use an image processing algorithm, which lowers the
algorithm’s overall effectiveness. In practical applications, 2D codes usually have arbitrary rotational
angles and perspective transformation, and to further improve the positioning accuracy, some scholars
[23] proposed the solution of rotational object detection by increasing the rotational angle based on
the horizontal 2D box, which solves the problem of including more background areas during detection
to the maximum extent. Ma et al. [24] developed a Rotated Region of Interest (RRol) pooling layer
for extracting rotational characteristics based on Region Proposal Network (RPN). They suggested
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an arbitrary orientation text detection framework based on natural scene images, which can effectively
improve text detection accuracy. To generate RRol, Ding et al. [25] proposed a method based on
horizontal prior box learning that effectively solves the misalignment issue between feature regions
and objects. Yang et al. [26] proposed an end-to-end rotational object detector with feature refinement.
They introduce the idea of denoising into the network structure and adjust the refined bounding box
to the corresponding object to achieve feature reconstruction and alignment. Zhou et al. [27] proposed
the polar coordinate system for rotational object detection. They developed a prior frame-free polar
coordinate remote sensing object detection framework, Polar Remote Sensing Object Detector (P-
RSDet), in which the polar coordinates regression approach is used to enhance the correlation between
regression parameters and improve the convergence speed of the network. A two-stage rotational
object detection framework called Oriented R-CNN was proposed by Xie et al. [28] that first generates
directed candidate boxes by Oriented RPN and then extracts fixed-size features by RRol Align to align
features and objects. This framework has higher accuracy but still necessitates setting a priori boxes,
making the process more laborious. Han et al. [29] proposed a rotational object detection network,
Single-shot Alignment Network (S2A-Net), based on feature alignment, which effectively solves the
problem of inconsistency between regression and classification by using a Feature Alignment Module
(FAM) and Orientation Detection Module (ODM). Although these methods can make the detection
box fit the object contour to a certain extent, they still cannot achieve a complete fit for quadrilaterals
with perspective transformation.

Table 1 summarizes the characteristics of the above two types of methods. Although the traditional
image processing methods have a solid ability for fine positioning, the interference resistance is poor;
deep learning methods are primarily horizontal 2D frame detection but do not achieve fine positioning,
and the rotational object detection lacks the processing of perspective deformation, the model is not
only too complex but slower. In summary, there needs to be a method to achieve DM code fine
positioning directly through neural networks and to meet industrial real-time demands. To address
the above problems, we propose a DM code key point detection network based on CenterNet, which
can directly obtain the four corner point positions of DM code and localize the DM code at the corner
point level. The two contribution goals of this paper are summarized as follows:

a. We proposed a DM code key point detection algorithm based on CenterNet, which can directly
detect the four key points of DM code. In addition, for the geometric characteristics of DM code, we
designed a series of enhanced loss functions to make full use of this characteristic and further improve
the accuracy and speed of the algorithm.

b. We proposed a DM code key point detection dataset, including DM code with complex
backgrounds, contamination, and small objects, to demonstrate the effectiveness and robustness of
our algorithm.
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Table 1: Comparison of literature methods

Category Title Characteristic
Key point selection and line detection [I], = Domain transform,
Traditional image Radon transform [2], Edge detection,
processing methods ~ Similarity transform [3], Hough transform,
Locating L-edges [5], Threshold segmentation,

Feature point operator-based

Deep learning Faster R-CNN [10], Two-stage,

methods YOLOV3 [11], Single-stage,
Single shot multibox detector (SSD) [12], Multi-scale,
CenterNet [13], Anchor-free,
Rotating object detection [23], Horizontal 2D box,
Oriented R-CNN [2£], Lack of perspective
S2A-Net [29] transformation processing,

Rotational 2D box

2 Algorithm Framework

Asshown in Fig. 1, the overall flow chart of the proposed DM code key point detection algorithm
is shown in this paper.
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Figure 1: Flow chart of DM code key point detection
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Firstly, the original image containing the DM code is fed into the designed network after data
enhancement, as shown in Stage 1 in Fig. |; then, the DM code type is decoded by the heat map
obtained from the network, and the image coordinates of DM code center offset and DM key point
offset are also regressed, as shown in Stage 2 in Fig. |; finally, the type and offset information are
decoded into the final results, as shown in Stage 3 in Fig. 1.

3 DM Code Key Point Detection Network
3.1 Network Structure

CenterNet is a representative anchor-free object detection algorithm with a simple design and
good scalability, so it is chosen as the base network and improved with the application of the algorithm
in this paper. The overall structure of the network in this paper is shown in Fig. 2, which contains
three parts: the backbone feature extraction network, the enhanced feature extraction network, and
the multi-task detector.

High-resolution feature maps
| I | <

aly === 5

i :

ResNet- '

=
50
R 16
iz, L 1 ;
Input Image Backbone 128212864 128x128x12
64
Enhanced feature extraction
Heat map of
key points

Figure 2: Network structure of DM code key point detection

In the structure, we define the input image as I € R”*">, and obtain three outputs from the multi-
task detection head DM code type heat map M. € [0, l]gx%xc (C is the number of DM code types),
DM code center offset feature map M, € [0, 1]%X%X2 (‘2 is the DM code center offset coordinates),
and DM code key point offset feature map M,, € RS*5x@3 (‘4’ is the four key points of the DM
code, ‘3’ is the distance between the key points of the DM code and the center, and the sin and cos
values of the angle formed with the center, respectively), where H = W = 512 and the down-sampling
factor of the whole network is S = 4.

In Fig. 2, we use ResNet-50 [30] as our backbone feature extraction network. Engineering applica-
tions and experiments show that the backbone has a substantial feature extraction and generalization

capability, and the number of parameters is smaller. As a result, we can obtain three feature maps from
the backbone with size 64 x 64 x 512, 32 x 32 x 1024 and 16 x 16 x 2048.

To improve the detection ability of multi-scale DM code, we weigh and fuse the three feature
maps obtained from the backbone feature extraction network and get a fused high-resolution feature
map with size 128 x 128 x 64. In Fig. 2, in the multi-task detector, we use the 1 x 1 convolution,
normalization, and Rectified Linear Unit (ReLU) activation functions for the fused high-resolution
feature map, and finally obtain the above outputs. Moreover, in the DM code type heat map M., €

[0, 1]%X%XC, we only focused on positioning the DM code key points, so only one type of DM code
Direct Part Mark (DPM) code is considered, namely C = 1. To ensure the stability of the data during
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training, we normalize the coordinates in M,, and M,, to the fused high-resolution feature map with
size H/S, W/S.

3.2 Loss Function

Compared with the traditional loss function design based on the 2D detection box, the DM code
of the detection object in this paper contains more directional randomness, so it is necessary to utilize
some geometric constraints in the loss function to obtain accurate detection results. Therefore, in
the training process of the algorithm, we divide the loss function into the base loss function and the
enhanced loss function. The base loss function comprises three parts: DM code classification loss, DM
code center offset coordinate regression loss, and DM code key point offset coordinate regression loss.
And the enhanced loss function consisted of three other components: DM code key point heat map
loss, standard DM code projection loss, and DM code polygon IoU loss.

3.2.1 Basic Loss Function

(1) DM code classification loss. DM code occupies a few areas in the image with typical positive
and negative sample imbalance characteristics. To solve the problem of positive and negative sample
imbalances, we use the modified Focal Loss with the following equation:

c 18 138 (1 ﬁ(ﬁ)dlog (f)c’_]_) if po; =1

2 D I 0

k=1 i=1 j=1 ( p(,y)ﬁf?:j log (1 —]30/./.) ifp(.l.j <1

where N is the number of positive samples, C is the total number of classes, i and j is the horizontal
and vertical coordinates under the feature map with size 128 * 128, & and 8 are hyperparameters used
to adjust the loss weights of positive and negative samples, respectively, which we set to 2 and 4 in

this paper. For each accurate labeled DM code, a set of response values p,, is generated in the heat
x2+V2

signature diagram M, using a Gaussian kernel function e” 22 , where o = 1 is the standard deviation
of the Gaussian distribution, and 130./. denotes the predicted response value.

(2) DM code offset coordinate regression loss. We use L1 regression loss with the following
equationS'
128 128

ZZI””’ = (pa/S — Ba)| )

=1 j=1

128 128

Ly

=1 j=1

mj{o - (pkp/S _pkp) ‘ (3)

where 1;” indicates whether there is a DM code object at 7,j of the output feature map, p,, and p,,
indicate the true image coordinates of the DM code center point and key point in the original map,
D.. indicates the actual image coordinates of the DM code center point in feature map M,,, and p,,
indicates the true image coordinates of the DM code key point in feature map M,,, S is the down-
sampling factor in this paper. m’ and myj, denote the coordinate values at 7,/ in the feature map M,
and M,,, respectively.
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3.2.2 Enhanced Loss Function

To further improve the DM code key point detection accuracy, we designed the enhanced loss
function by adding the geometric constraints of the DM code into the loss function as follows:

(1) DM code key point heat map loss. A set of key points in the graph can correspond to a group
of responding heat maps. When the key point locations are predicted accurately, the corresponding
heat map responding values will also be located at the exact locations, so we use heat maps to further
constrain the key point locations. As shown in Fig. 3, the DM code key point offset is recovered to

the DM code key point coordinates, and a set of response values p,,, is generated at the key point
location using the Gaussian kernel function e 22 , where o = 1 is the standard deviation of the

Gaussian distribution, which constitutes a set of constraints with the response value py,. of the DM
code generated through accurate annotation. We also use the modified Focal Loss as follows:

Gt (l —f)kpl.j)a log (]A)kpij) if Prpy =1
Y > o1 M @
k=t i=l =1 (1 _pkf’i/') Py log (1 _pkﬂi/) lfpk/’i/’ <1

Heat map
generated by
predicted key

point

|, Key point heat map loss
(Focal Loss)

Heat map
generated by
real key point

Figure 3: Diagram of heatmap loss of DM code key point detection

(2) Standard DM code projection loss. Since the DM code has the same number of grids in the
width and height directions, they are presented as squares in physical space. Each DM code in the
image can be perspective transformed to obtain the corresponding standard square DM code image,
so we use the perspective transformation projection to constrain the DM code key point prediction
further. The real perspective transformation matrix is generated from the actual annotation, defined
as the standard DM code perspective transformation, and the obtained center and key points are
considered standard. As shown in Fig. 4, the network output’s DM code center and key point offset
are recovered to the predicted DM code center and key point coordinates. Then the predicted standard
DM code center and key point are obtained by the perspective transformation of the corresponding
standard DM code, which constitutes a set of constraints with the actual standard DM code center
and key point. We use L1 regression loss with the following equation:

1 128 128 4
Lyy = 55 22 DN |haaadist (et et)) + Ay D dist (kpy, kpjy) (5)

=1 j=I1 i=1
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where 1;” denotes whether there is a DM code object at i,/ of the output feature map, ¢z and ctyl!
denote the predicted and ground-truth values of the standard DM code center at i,j of the output
feature map, kp" and kp;* denote the predicted and actual values of the standard DM code key
points at 7, of the output feature map, dist (-) is the coordinate finding distance function, A, and

Aqar, are the weight values, which are set to 0.5 and 0.25 in this paper, respectively [13].

Standard DM | aw #

code projection
of predicted key
point

Standard DM
code projection
of real key

points

Standard DM code
projection loss
(L1 Loss)

Figure 4: Diagram of standard DM code projection loss

(3) DM code polygon IoU loss. The IoU loss can reflect both the correlation between key point
coordinates and the matching degree of key points enclosing polygons, which is conducive to faster
convergence of the network. Since the DM code is an irregular quadrilateral, we use polygonal loU
loss to constrain the DM code key point locations further. As shown in Fig. 5, the IoU of the polygon
formed by the true DM code key points and the polygon formed by the coordinates of the DM code
key points, which is recovered by decoding the DM code key point offset from the network output,
constitute a set of constraints using the L1 regression loss as follows:

128 128

Ly, = ZZ 12 10U (R, - R, (6)

i=1 j=1

where 1” denotes whether there is a DM code object at 7,/ of the output feature map, R),, and R;fob
denote the polygon enclosed by the predicted and actual values of DM code key points at i, j of the
feature map M,, respectively, JoU denotes the operation strategy of Intersection-over-Union loss, and

we use polygon IoU loss in this paper.

With the above six loss functions, the multi-task loss function can be defined as follows:
L=AL.+A,Ly~+ MoLio+ AiyLyy 4 Xproi Loy + Mg Lo (7)
where A denotes the weights of the losses of each component. We refer to the weight settings of

CenterNet [13] and Focal Loss [31], and use A, = 1, A, =1, 4, = 0.1, 4, = 0.1, 1, = 0.1, &, = 1
in the experiment.

proj
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The polygon enclosed by the predicted key point
The Polygon enclosed by real key point

The intersection of the polygon enclosed
by the predicted and true key point

Polygon [oU=
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\ =

Figure 5: Diagram of DM code polygon IoU loss

4 Experimental Results and Analysis
4.1 DM Code Key Point Detection Data Set

To perform DM code key point detection, we produced a DM code key point detection dataset
with two types of acquisition devices: fixed and non-fixed. Fixed type for industrial camera shooting,
non-fixed type for ordinary camera shooting. The DM code type is DPM code, mainly used for DM
code marked on parts in industrial production environments. For the annotation tool, we use the
polygon annotation tool named LabelMe, and the DM code center is represented by the intersection
of the two diagonals of the label. Finally, we obtained 3112 samples for the dataset, including 2956 for
the training set and 156 for the validation test set. As shown in Fig. 6, sample examples of the data
set are shown, including cases of small codes, worn codes, and complex backgrounds. In Table 2, the
number of images acquired by each device and the number of each particular sample are shown.

(a) Taken by ordinary camera

H

(b) Taken by industrial camera

Figure 6: Examples of samples in the dataset
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Table 2: DM code sample statistic

Ordinary camera Industrial camera  Small codes Worn codes Complex backgrounds
1558 1554 370 161 262

4.2 Implementation Details

4.2.1 Hardware and Software Environment

The algorithm in this paper is implemented using the PyTorch deep learning framework with a
Core 17-8700 CPU and a GTX 1080Ti GPU. We used the above homemade dataset for experimental
validation. The dataset is divided into training and validation test sets in the ratio of 9.5:0.5. During
training, we use the Adam optimizer with an initial learning rate of 0.001, and the backbone
feature network is selected as ResNet-50 for feature extraction, with migration learning accelerating
convergence using a pre-trained model of the ImageNet dataset.

4.2.2 Data Enhancement Method

The actual shooting scenes are complex and variable, and the limited locations in the dataset are
far from being able to simulate all the acquisition environments. Therefore, to expand the number of
samples in the dataset and prevent the network from overfitting, data enhancement, including random
contrast transformation, horizontal flipping, and rotation, is performed during the training process.
Meanwhile, according to the camera imaging principle, the changes in camera spatial position, view
angle, and internal parameters correspond to the changes in the projection matrix. Thus, we use the
perspective transformation in the image to simulate this projection change for simulating the variable
image acquisition view angle. After data enhancement, the training validation set can be expanded
from 3112 images to 5 times the original. Fig. 7 shows the diagram of data enhancement, we padded
the image with gray pixels to prevent scale distortion.

Original image

Central rotation Perspective transformation

Figure 7: Diagram of data augmentation
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4.2.3 Evaluation Metrics

We refer to AP [32], a common evaluation metric for object detection, for the evaluation of
algorithm accuracy, and use polygon IoU to calculate the Intersection-over-Union ratio as follows:

1
AP = T interp (7
i P @ ®)

Pinery (r) = max p (F)
where r denotes the recall interval sampling value and p;,.., () denotes the precision value at the recall
rate 7 > r.
The algorithm speed is expressed using FPS with the following equation:
FPS =1/t )

where ¢ denotes the processing time of a single image in seconds (s).

4.3 DM Code Key Point Detection Results

Table 3 shows the statistical detection results of this paper using Eqs. (8) and (9) on the test set of
the DM code key point detection dataset. As shown in Fig. 8, a visualization of the DM code detection
results on the test set of the DM code key point detection dataset, including the positioning results
and the heat map, is shown. From Table 3 and Fig. §, it can be seen that our algorithm can locate DM
code accurately in a variety of environments while meeting the real-time requirements in practical
applications. And Fig. 9 shows a graph of the AP results for DM code key point detection.

Table 3: DM key point detection results on the test set of the DM key point detection dataset

Method Backbone AP/%  FPS
CenterNet-DM (ours) ResNet-50  95.80 88.12

Figure 8: (Continued)
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Figure 8: Visualization of DM code detection results on the test set of DM key point detection dataset
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Figure 9: AP of DM key point detection

4.4 Comparison Experiments

To demonstrate that our algorithm is more accurate in DM code positioning with perspective
transformation, we selected the object detection algorithms of the horizontal 2D box and the rotational
2D box for training and testing on the above dataset. The comparison results are shown in Table 4.
Besides, the visualization of detection results of the six algorithms on perspective transformation,
small, worn, and multiple codes are shown in Fig. 10. From Table 4 and Fig. 10, it can be revealed
that although the horizontal 2D box detection algorithms can achieve the best AP and FPS, the fit
degree of DM code is low with more background left. While the rotational 2D box detection algorithm
can get better performance in fitting the code, however, AP and FPS are lower than horizontal 2D
detection. In contrast, our algorithm can achieve precise code alignment with high AP and FPS. In
addition, in Table 4, the calculation of AP depends on the detection methods. Horizontal IoU is used
in the horizontal 2D box, while polygonal IoU is used in rotational 2D box and key point detection.
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Table 4: DM code detection results on the test set of DM key point detection dataset

Method Backbone AP/%  FPS
YOLOv3 [11] DarkNet-53 98.74  91.47
Horizontal 2D box YOLOVS [33] CSPDarkNet  99.89 95.65
CenterNet [12] ResNet-50 98.33 98.05
. R-CenterNet+ [34] ResNet-50 71.56 70.60
R 12D

otational 2D box S2A-Net [29] ResNet-50 95.18  14.12
Key point detection CenterNet-DM (ours)  ResNet-50 95.80  88.12
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Figure 10: (Continued)
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Figure 10: Comparison of detection results of six algorithms on perspective transformation codes,
small codes, worn codes, and multiple codes

4.5 Ablation Experiments

To further demonstrate the effectiveness of our proposed enhanced loss function and data-
enhanced perspective transformation, we conducted ablation experiments on the test set of the DM
code key point detection dataset, and the benchmark model M1 is a network without adding any
modules designed in this paper by using the backbone feature network as ResNet-50, on which the
modules we created are added one by one for validation, and the validation results are shown in Table 5.
It is apparent from Table 5 that the three enhanced loss functions and data-enhanced perspective
transformation we designed improved the AP by 0.67%, 1.65%, 0.69%, and 1.26%, respectively, on
the test set. Among them, the standard DM code projection loss in the enhanced loss function takes
full advantage of the geometric properties of DM code in space and therefore is most influential for
network performance improvement.

Table 5: Ablation results of the proposed algorithm

Model Block AP/%  FPS
Data Key point heat Standard DM code DM code polygon
enhancement  map loss projection loss ToU loss
Ml 92.19  85.82
M2 W/ J Vi 95.11 86.19
M3 J J J 95.13  89.98

(Continued)
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Table 5 (continued)

Model Block AP/%  FPS
Data Key point heat Standard DM code DM code polygon
enhancement  map loss projection loss IoU loss
M4 Vi v Vi 94.15  88.10
M5 J J J 94.54  88.86
M6 v N v N 95.80  88.12

5 Conclusion and Future Studies

Our proposed algorithm can directly obtain the four key points of the DM code compared to
the current method, which is more accurate in fitting the DM code and facilitates the subsequent
direct decoding, and improves the overall efficiency of the algorithm. In this paper, the contributions
include: (1) According to the actual application requirements, a network capable of directly obtaining
the four key points of DM code is designed with CenterNet as the base network, and three enhanced
loss functions (DM code key point heat map loss, standard DM code projection loss, and DM code
polygon IoU loss) are designed by making full use of the spatial geometric characteristics of DM code
in the loss function, which is conducive to further improve the positioning accuracy of DM code. (2)
The proposed dataset for DM code key point detection. From the experimental analysis, it can be
revealed that the AP of the algorithm in this paper is 95.80%, and the processing frame rate is 88.12,
which can achieve the real-time requirement while ensuring accuracy. However, there is still a limitation
to the current method. Future work can be carried out in the following aspects:

a. Detection method. The fit of the positioning results to the DM code contour can be further
improved by introducing an image segmentation prior. The fitting ability of network fine positioning
can also be continued to be enhanced by adding constraints.

b. Dataset. The current dataset has relatively few data samples of small codes, worn codes,
and complex backgrounds, and such data can be expanded subsequently to enhance the overall
performance of the algorithm.

c. Reading system. Combined with the detection algorithm proposed in this paper, a complete
reading system can be further developed for DM code reading in real scenarios. The system can include
functions such as image preprocessing, DM code detection, DM code recognition, result output, etc.
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