.W\ Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2023.041774

ARTICLE Check for

updates

Programmable Logic Controller Block Monitoring System for Memory Attack
Defense in Industrial Control Systems

Mingyu Lee', Jiho Shin’ and Jung Taek Seo™

'Department of Information Security, Gachon University, Seongnam, 13120, Korea
?Police Science Institute, Korean National Police University, Asan, 31539, Korea
*Department of Computer Engineering, Gachon University, Seongnam, 13120, Korea
*Corresponding Author: Jung Taek Seo. Email: seojt@gachon.ac.kr

Received: 05 May 2023 Accepted: 05 September 2023 Published: 29 November 2023

ABSTRACT

Cyberattacks targeting industrial control systems (ICS) are becoming more sophisticated and advanced than in the
past. A programmable logic controller (PLC), a core component of ICS, controls and monitors sensors and actuators
in the field. However, PLC has memory attack threats such as program injection and manipulation, which has long
been a major target for attackers, and it is important to detect these attacks for ICS security. To detect PLC memory
attacks, a security system is required to acquire and monitor PLC memory directly. In addition, the performance
impact of the security system on the PLC makes it difficult to apply to the ICS. To address these challenges, this paper
proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory. The
proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from
the same layer as the PLC and then comparing them in bytes with previous data. Experiments with Siemens S7-300
and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on
PLC. The experimental results demonstrate that the proposed system detects all malicious organization block (OB)
injection and data block (DB) manipulation, and the increment of PLC cycle time, the impact on PLC performance,
was less than 1 ms. The proposed system detects PLC memory attacks with a simpler detection method than earlier
studies. Furthermore, the proposed system can be applied to ICS with a small performance impact on PLC.

KEYWORDS

Programmable logic controller; industrial control system; attack detection

1 Introduction

ICS controls and monitors infrastructures such as transportation, power plant, water treatment,
factory. These environments are closed operational technology (OT) unlike information technology.
Also, OT has high availability and real-time requirements, so it is hard to apply security solutions
[1,2]. With the development of the Internet, ICS is under constant threat of cyberattacks. Starting
with Stuxnet in 2010 [3], cyberattacks targeting ICS such as TRITON, BlackEnergy, and Havex are
increasing day by day, becoming more sophisticated [4]. A programmable logic controller, a core
component of ICS, controls and monitors a number of field devices on ICS. Hence, attackers remotely

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.041774
https://www.techscience.com/doi/10.32604/cmc.2023.041774
mailto:seojt@gachon.ac.kr

2428 CMC, 2023, vol.77, no.2

inject and manipulate the PLC program. These attacks not only cause economic losses but also lead
to casualties. Therefore, research is needed on how to detect cyberattacks that inject and manipulate
malicious PLC program while meeting the real-time requirements of PLC.

Recently, security systems using PLC program have been proposed to detect attacks on PLC.
Reference [5] proposed security blocks of PLC program to detect memory read/write logic attack
and malware worm attack. Reference [6] proposed a control program logic change detector to detect
control program attack and memory read/write logic attack.

Most studies to detect PLC program injection or manipulation are conducted on the engineering
workstation (EWS) or its higher level. These studies are vulnerable to attacks that manipulate the
operator view, such as Stuxnet [7]. In addition, manual process like setting detection rules and
implementing security blocks is inefficient than automated process. Finally, in order to meet the
high availability and real-time requirements of PLC, a performance impact on PLC measurement is
required after security system application.

To solve these challenges, the security system should directly acquire and monitor PLC memory. It
is also necessary to measure the performance impact of the security system on the PLC to ensure high
availability and real-time requirements of the PLC. In this paper, we propose a PLC program block
monitoring system to detect PLC memory attacks by continuously acquiring and monitoring program.
This system consists of memory acquisition module, monitoring module, and logging module. This
system eventually detects PLC program injection or manipulation by monitoring memory. Also, the
proposed system has a very low performance impact on PLC.

The contributions of this study, which proposes a PLC program block monitoring system for
security in ICS, are as follows:

e We propose a PLC block monitoring system against memory attacks on programmable logic
controllers in industrial control systems.

e The proposed security system detects PLC memory attacks simpler and more efficiently than
existing studies with monitoring algorithm.

e The proposed security system is located at level 1 but meets the high availability and real-time
requirements of the PLC.

The remainder of this paper is structured as follows. Section 2 deals with background knowledge
and research related to PLC security. Section 3 describes the overview, system architecture, and
monitoring algorithm of the proposed PLC block monitoring system. Section 4 presents the results
of the attack detection test using the PLC block monitoring system and the test results of measuring
the performance impact. Section 5 offers the limitations of this study, and finally, Section 6 contains
a conclusion and future work.

2 Background and Related Work
2.1 Industrial Control Systems

ICS is a system that monitors and controls devices installed in the field across different industries,
such as energy, transportation, water treatment facilities, and factories. Because an ICS operates in
an OT environment, it is essential not to compromise productivity and availability. Therefore, the
violation of availability attributed to security applications is another challenge of ICS security.

A typical network architecture for ICS security is the Purdue reference model [¢]. The Purdue
model is a reference architecture for ICS that helps organizations to design and implement secure

CMC, 2023, vol.77, no.2 2429

and reliable control networks. The model divides the ICS environment into seven levels with spe-
cific functions and security requirements. The Purdue reference model consists of 7 levels, an OT
environment from level 0 to level 3 and an IT environment from level 4 to level 6. Level 0 (the
field devices zone) contains field devices such as sensors, actuators, and motors operating in the
field. It is the lowest layer in the model and is responsible for performing the actual work of the
industrial process. Level 1 (the controller zone) includes PLCs, remote terminal units (RTUs), and
intelligent electronic devices (IEDs) that control field equipment and collect measurement values such
as temperatures and speed. Level 2 (the control system zone) includes HMIs, which the operators
use to interact with the controller, and supervisory control and data acquisition (SCADA). Finally,
level 3 (the manufacturing operations system zone) includes an EWS, which communicates with
level 1 controllers to collect data or download the control logic, and a historian, which stores the
collected information. ICS also integrates various hardware and software components, such as sensors,
controllers, and communication networks, which work together to facilitate real-time monitoring and
control of industrial processes. The PLC block monitoring system proposed in this study is located at
level 1 and monitors the PLC program blocks with guaranteed integrity by directly communicating
with the PLC.

2.2 PLC Programming

The PLC targets the field devices of level 0 to control their operations or collect data from them.
Because of these characteristics, it is considered an important component of the ICS. The PLC operates
based on the created PLC program [9], which consists of the following four main blocks (Fig. 1):

Organization Block (OB)
Function (FC)

Function Block (FB)
Data Block (DB)

| \ FC FB IJj
\\\ e &\\ FB é\ FC

.
.

\ SFC
x\

Operating
System

Other
OBs

Figure 1: Correlation between PLC program blocks

OB is a block that determines the structure of the PLC program and serves as an interface between
the PLC operating system and the user program. In the PLC program, OB1 is a structure that includes
other blocks because it communicates with the PLC operating system (OS) and acts as the main
function of the PLC program. The remaining OBs have different functions depending on the numbers
assigned to them. FC provides certain functions of the program. FB is similar to an FC but has a
specific memory area as an instance data block. DB is a block that stores user data, and it is divided

2430 CMC, 2023, vol.77, no.2

into a global DB shared by all blocks and a local DB that can only be used in a specific block. In
this study, OB1, which serves as the main function of the PLC program, and the DB, which contains
user data, were collected from the PLC. Subsequently, the block information of OB1 and DB and OBI
byte array are separately monitored in bytes, and tampering is detected by comparing past and present
values.

2.3 Related Work

To demonstrate the vulnerability of PLCs, studies have been conducted to attack them by injecting
malicious blocks or sending malicious packets. Reference [10] presented a four-step remote attack
Control Logic Injection Attack (CLIK) targeting PLCs. This attack remotely infects the PLC and
hides the infection with the EWS. Therefore, PLC security techniques operating at the level of the
EWS have difficulty detecting such an attack. Reference [11] used fragmentation and noise padding
to bypass signature-based detection and deep packet inspection (DPI) for the stealthy transmission
of malicious packets. Compared to previous studies that used signature-based detection and DPI, our
study detects attacks by comparing the previous and present values of the PLC block, so it cannot be
bypassed by fragmentation and noise-padding techniques. Reference [12] discussed attacks that bypass
traditional detection methods to target Siemens’ S7 PLCs with little traffic and short times. Such an
attack can be detected because the byte array of the OB1 or the block information of the DB change
in the course of writing to the PLC. Reference [13] proposed a PLC attack using a malicious OB10
(time-of-day interrupt) and implemented an attack on a Siemens’ S7-300 PLC. The monitoring system
of our study can detect OB10 injection through a byte array change in OB1.

As many papers have been published demonstrating PLC vulnerabilities, several security-related
studies have been conducted to detect cyberattacks on PLCs. Reference [5] proposed an approach to
adding monitoring and logging mechanisms for security to a PLC. A security block implemented
as an OB performs critical information monitoring, system integrity monitoring, event logging,
and rule-based detection through an intrusion detection system (IDS)/rule checker. However, the
proposed solution costs to implement security blocks and the larger the control logic, the higher
the cost and performance impact. Reference [14] reviewed relevant studies on code security, network
security, and other PLC security issues. Code security research, formal analysis, is a model detection
technique that analyzes the PLC program syntax, converts it into an intermediate language, and
uses a detection model to check for code defects. When this technique is applied to an extensive
PLC program, it leads to the issue of excessive consumption of time and memory due to the use
of symbol execution. Network security includes a security monitoring system and PLC memory
change detection technique. The first method uses network mirroring and agents to collect traffic
and logs and monitor remote connection services, unauthorized processes/ports, and open platform
communications (OPC) read/write commands. The technique is based on the reliability of SCADA
systems, such as EWS and HMI, and if the system is compromised, the data can be damaged in the
middle. Reference [15] introduced a shade to prevent remote control logic injection attacks on PLCs.
This technology detects the write request in ICS network traffic and mirrors it to shadow memory to
check the maximum length of the decompiled byte sequence, number of rungs, number of opcodes,
number of n-grams, and byte entropy of the scan area. This technology has the limitation of relying on
write requests from network traffic to detect PLC attacks. Reference [16] studied the applicability of
countermeasures against memory attacks in ICS environments. Based on the secure water treatment
plant testbed, they measure the memory safety overhead due to the memory-safe compilation of the
PLC and quantify the tolerability of the overhead in terms of the real-time constraints of the ICS.
Reference [17] proposed PLCprint, which uses PLC memory artifacts to detect and classify memory

CMC, 2023, vol.77, no.2 2431

attacks. The proposed methodology conducted detection experiments on Siemens S7-300 PLC and
Allen-Bradley ControlLogix PLC at Glasgow University liquid purification testbed, and evaluated
attack detection performance through one class support vector machine and k-nearest neighborhood
detector. However, this study relies on existing PLC artifacts in detecting memory attacks, and securing
storage capacity is important because numerous PLC artifacts are stored in the database. Reference [18]
provided a programmable logic controller variable block scanner, a tool for identifying vulnerabilities
in PLCs. The PLC-VBS scanner is tested to be able to identify vulnerable bits and bytes within PLC
memory and to allow attackers to interact with the device. However, PLC-VBS requires a predefined
set of signatures for vulnerable bits and bytes. Therefore, it is difficult to detect memory attacks caused
by weak bits and bytes that are not in the signature set. Reference [6] proposed a control program logic
change detector to detect abnormal operations of PLC. This system detected the two types of attacks
against PLC based on detection rules (DRs). This study took an approach similar to the present one.
Still, there is a problem: the DRs must be defined for rungs existing in multiple PLC programs and
individually updated when an operator intentionally changes the PLC program.

e Control program attack: An attack that replaces the PLC program in an EWS and then
downloads it to the PLC.

e Memory read and write logic attack: An attack that changes the value of a memory address by
sending a read/write command directly to a PLC.

Therefore, this study proposes and implements a monitoring system that monitors block informa-
tion as byte array data to detect attacks by reading OB1 and DB. The system is simple because it only
detects changes in the previous and present values, not whitelist-based changes. When any change in
values occurs, the system logs in and simultaneously sends an alarm to an operator so that they may
determine whether the manipulation is intentional or malicious.

3 Proposed Method for Detecting and Monitoring Program Blocks on PLC
3.1 Overview

This study proposes a monitoring system that monitors PLC program blocks and detects
manipulation. The monitoring system is connected to the level 1 switch (L1 switch), and the data
to be monitored is as follows. Block information includes block type, block number, block size, load
memory size, local data, checksum, version, and code date (Table 1).

Table 1: PLC block information

Block information ~ Description

Block type The type of the block, such as “OB” for an organization block or “DB” for a
data block

Block number The number of the block within its type

Block size The size of the block in bytes

Load memory size =~ The amount of memory required to load the block into the PLC’s memory

Local data The amount of data that is stored locally in the block

Checksum A value used to ensure the integrity of the block data

Version The version of the block

Code date The date that the block was last modified

2432 CMC, 2023, vol.77, no.2

The PLC program block has many blocks, including OB1. The proposed method monitors
byte array and block information for OB1 such as main function. OBI includes all information
except dynamic data that changes in real-time. Next, block information from DBs is utilized to
monitor dynamic information. Because an attacker modulates the structure of the program or specific
data when attacking the PLC program, efficient monitoring is possible by monitoring both OB1
representing the entire structure and DBs storing data.

The architecture of the overall system for PLC program block monitoring is illustrated in Fig. 2.
The system is divided into three modules: a PLC memory acquisition module for collecting PLC
memory, a monitoring module for monitoring blocks through memory comparison, and a logging
module for storing time, block information, and data when tampering is detected. Fig. 3 shows the
process flow of the system. The system is connected to a level 1 switch of the Purdue model of PLC
memory acquisition; the PLC performance problems that can arise from this situation are discussed
in Section 4. The system is directly connected to the PLC, not the EWS. The shorter the network
distance between the monitoring system and the PLC becomes, the more data integrity is guaranteed.
For example, in the case of Stuxnet, an attack was carried out in which a normal screen was output to
the EWS by infecting s7otbxdx.dll in an EWS located at level 3. If PLC data is collected through the
EWS, normal PLC data before the attack is included. Therefore, this system is connected to the level
1 switch to collect the actual OB and DB from the PLC to monitor and detect the attack.

-

EWS

|
» Data Acquisition Module

HMI ¢

PLC Block Monitoring System

Monitoring Module

Byte Array,
. Block
L1 Switch Information l

’_k_‘ Logging Module

PLC

Figure 2: PLC block monitoring system architecture

3.2 Memory Acquisition

The memory acquisition module of the proposed system collects data to be monitored from
the PLC. The proposed method collects byte array and block information in OB1 and DBs. The
byte array is all data, including the block header, body, and footer. The byte array collected by the
memory acquisition module is the byte array of OB1, which represents the overall structure of the
PLC program. The block information includes a block type, number, size, and checksum. There are
three PLC memory collection methods: built-in support, the debug port, and the ICS communication
protocol [19]. The proposed system adopts the ICS communication protocol method because it collects
data from many PLCs rather than forensics which collects data from a single PLC.

CMC, 2023, vol.77, no.2 2433

START Connecting to PLC

!

Acquiring byte array and
block information

I

Monitoring byte array and block information
with current ones

Logging block
information or block data END
with index and timestamp

Figure 3: Process flow of PLC block monitoring system

3.3 Monitoring

The monitoring module of the proposed system monitors the byte array and block information of
OBI1 and block information of DBs obtained from the memory acquisition module. There are many
monitoring methods, and they are determined by the characteristics of the data. The byte array of OBI
and block information of OB1 and DBs collected in the memory acquisition module are static data, not
data that changes dynamically under the influence of field devices. Therefore, this monitoring system
uses a simple and robust method of detecting changes by comparing previous and current values for
periodically collected data.

Algorithm 1 describes the monitoring algorithm to detect memory manipulation of the PLC block.
7 is the identifier of the monitored PLC block, and in the case of OB1, Z is 1. £ is the byte array and
block information of the PLC block. When £ is acquired through the memory acquisition module,
the length of £ is stored as /. £’ is the current byte array and block information that is continuously
collected by the memory acquisition module. The monitoring module compares £ [i] with £'[i], which
repeats / times. If £[i] and £’ [i] are different due to PLC memory attack, the comparison is over and
an index is recorded or a security alarm occurs. Algorithm 1 is repeated until a PLC memory attack
is detected or monitoring is stopped. As / increases, Algorithm 1 takes the same amount of time to
compare. Therefore, expressing the time complexity of Algorithm 1 in Big O notation is O(n).

Algorithm 1: Monitoring algorithm to detect manipulation of the PLC block.
Input:

Z: the identifier of the PLC block to be monitored.

L: the byte array or block information of the PLC block(Z).

1. I < get the length of £;

2. Repeat

3. L' <« get a current byte array or block information of the PLC block(7);
4 if £ # L' then

5 fori < 1to/do

(Continued)

2434 CMC, 2023, vol.77, no.2

Algorithm 1 (continued)

6. if L[i] # L'[i] then

7. record logs or alert the security alarm with index i;
8. break;

9. end if

10. end for

11. endif

12. until stopping monitoring

3.4 Logging

The logging module of the proposed system operates if modulation to the PLC byte array or
block information is detected during monitoring. The logging module helps the operator take action
by recording timestamps, changed bytes, and indexes for changed bytes, or by alerting security alarms.
The operator is provided with logs or security alarms that can be used to distinguish between normal
behavior and PLC memory attacks.

4 Experiments

The experimental environment shown in Table 2 was established to test the PLC block monitoring
system proposed and implemented in this study. EWS is Siemens’ engineering workstation, the
TIA Portal V16, for PLC programming, virtual PLC, PLC operating mode setting, and cycle time
measurements. PLCs are Siemens’ S7-300 and S7-400 PLC, which account for the largest percentage
of the ICS market implemented through the PLCSIM functionality of the TIA Portal V16 [20].
Since two PLCs use the S7TComm protocol [21], it implements communication using the python-
snap7 library. A program in Fig. 4 for performing a timer function is downloaded to the S7-300
and S7-400 PLC. Network extension is a NetToPLCsim program that supports TCP/IP interfaces
for communication between virtual PLC and monitoring systems implemented through PLCSIM.
The monitoring system implements the PLC program block monitoring method proposed in this
study and is a script implemented in Python. A representative library of the implemented system
is python-snap7. The library is a platform that provides an Ethernet communication suite for
interfacing with Siemens’ S7 PLCs. To implement the acquisition module of the monitoring system,
the list_blocks(), get_block_info(), and full_upload() functions of the python-snap7 library were used,
and the description of each function is in Table 3. Finally, the PC executes all of the above components.
In the above experimental environment (Table 2), we conducted two experiments. The first experiment
was a PLC program manipulation detection experiment, which verified whether the proposed system
could detect attacks when modulating the PLC program using the python-snap7 library. The second
experiment measured the performance impact of PLC due to the monitoring system.

CMC, 2023, vol.77, no.2 2435

Table 2: Experimental environment

Component Program Description

EWS TIA Portal V16 Siemens’ Engineering Workstation with features
such as PLC programming, virtual PLC, PLC mode
settings, and cycle time measurements

PLC PLCSIM TIA Portal’s PLC simulator, which implements a
(S7-300, S7-400) virtual S7 PLC

Network NetToPLCsim Supporting TCP/IP communications between PCs

extension when PLCSIM and a simulator are running

Monitoring Python script A system that implements the PLC program block

system monitoring method presented in this study with

Python and monitors S7-300 and S7-400 PLC

PC CPU: 11th 17-11700 A PC that runs the EWS, PLC, network extension,

RAM: 32 G and monitoring system

GPU: GeForce RTX 3060
OS: Windows 11

4.1 Detecting Memory Manipulation in the PLC

Cyberattacks on PLC include code injection in which an attacker injects malicious code, memory
manipulation that partially modifies or changes the original program, DoS attack that depletes the
system resources, firmware manipulation that modulates the PLC firmware, and Zero-Exploit. Code
injection and memory manipulation appear in advanced persistent threat (APT) attacks in ICS such as
Stuxnet and studies [10-13, 22-26]. In this paper, to evaluate the detection capability of the proposed
system, we experimented with whether malicious OB inflection and DB manipulation can be detected.

In this experiment, we evaluated whether the PLC block monitoring system that monitors the OB1
byte array, OB1 information, and DB information of the PLC can detect PLC memory manipulation.
The attacker PC performed a PLC memory attack (Table 4) that inserted and manipulated the PLC
program using the download() and db_fill() functions of the python-snap7 library (Table 5). The
monitoring system executed Algorithm 1 every 0.15s.

2436 CMC, 2023, vol.77, no.2

W€1.0 @0 .0 %00 .2
g *Stop” *Run Light”
] 1] | { \
1| 1T \]
%02
Run Light
] 1
1 I
DB 1
"Start Timer"
%Q0.2 TON
“Run Light® Time
1 1
| IN Q
T#105 PT ET
%0 4
%B1.DBX0.0 “Timer Timing
“Start Timer".IN Light*
il [1\
11 \]
%00 4
%“DB1.DBX0.0 %DB1.DBX6.0 *Timer Timing
"Start Timer".IN "Start Timer".Q Light*
] 1] { 1\
1T |/= \ 7
%00 5
“WB1.DBX6.0 *Timer Done
"Start Timer".Q Light*
] 1 | \
gLy \ 7

Figure 4: PLC program on the S7-300/400 PLC

Table 3: Functions of python-snap7 used in the PLC block monitoring system

Function Description

list_blocks() Returns the number by the program block.
get_block_info() Returns the block information for the specified block.

full_upload() Uploads an entire block body. The whole block (including the header and
footer) is copied into the user buffer.

CMC, 2023, vol.77, no.2 2437

Table 4: PLC memory attack

Attack type Description
Malicious OB injection Malicious OB injection using python-snap7’s download()
DB manipulation DB manipulation using python-snap7’s db_fill()

Table 5: Functions of python-snap7 used in PLC memory attacks

Function Description
download() Download byte array of OB to PLC
db_fill() Fills a DB in PLC with a given byte

4.1.1 Malicious OB Injection

Malicious OB injection attacks are attacks that insert malicious OB produced by attackers into
normal PLCs, which were used in Stuxnet and are also used in various studies attacking PLCs. A
byte array of normal OB1 was collected, and some bytes were manipulated to valid values and then
inserted into the PLC using download() of python-snap7. The PLC block monitoring system detected
malicious OB1 immediately after insertion and returned the timestamp of the detected time and the
index of the manipulated byte.

4.1.2 DB Manipulation

DB manipulation attacks are attacks that manipulate the values of variables present in the DB of
PLCs and are used in various studies attacking PLCs, as is malicious OB injection. The value of the
variable was modified based on the byte array of normal DB1 and manipulated using db_fill(). The
PLC block monitoring system immediately detected DB1 manipulation and returned the timestamp.

4.2 Measuring the Performance Impact of PLC

PLC cycle time refers to the time it takes for the PLC to fully execute the program and update
all I/O and is an important measure of the performance of the PLC. The PLC also has real-
time constraints that ensure each cycle time does not exceed a predefined period. Consequently,
earlier studies have measured the impact of security systems on PLC performance like cycle time
[2,5,16,27,28]. The PLC block monitoring system may also affect PLC performance because it
communicates directly with PLC at level 1 and continuously sends requests using the functions of
python-snap7. The shortest, current, and longest cycle times were measured through the ‘online and
diagnostic’ feature of TIA Portal V16, an EWS software. The shortest cycle time represents the shortest
amount of time the PLC has taken to execute the program. It is often an indicator of the maximum
processing capability of the PLC. The current cycle time represents the amount of time the PLC took
to execute the program in the last cycle. It is an indicator of the current performance state of the
PLC. The longest cycle time represents the longest amount of time the PLC has taken to execute the
program. It is useful for identifying bottlenecks in the system or detecting abnormal situations.

In this experiment, we evaluate the impact by the application of the PLC block monitoring system
and the impact by the request interval.

2438 CMC, 2023, vol.77, no.2

4.2.1 Measuring PLC Performance Impact by Application of Proposed System

The PLC block monitoring system may cause overhead because it is connected to level 1 where
PLCs are located and communicates directly with PLCs. Table 6 shows how much the introduction of
the PLC block monitoring system affects the performance of the PLC. Table 6 suggests that the PLC
performance impact from the proposed system application is less than 1 ms because the ‘online and
diagnostic’ feature of TIA Portal V16 measures cycle time in ms.

e Test case 1: This test case shows PLC cycle times before applying the PLC block monitoring
system.

e Test case 2: This test case shows PLC cycle times after applying the PLC block monitoring
system.

Table 6: PLC cycle time introduced by the PLC block monitoring system

Test case Shortest cycle time Current cycle time Longest cycle time
1 10 ms 10 ms 54 ms
2 10 ms 10 ms 54 ms

4.2.2 Measuring PLC Performance Impact by Request Interval

The PLC block monitoring system continuously requests the PLC to collect data such as block
information and byte arrays. Requests to the PLC, such as functions in Table 3, can cause additional
data processing by the PLC, which can affect the cycle time of the PLC. Table 7 shows how much the
request interval affects the performance of the PLC.

e Test case 1: This test case shows PLC cycle times when the request interval is set to 0.5s.
e Test case 2: This test case shows PLC cycle times when the request interval is set to 0.3 s.
e Test case 3: This test case shows PLC cycle times when the request interval is set to 0.15s.

Table 7: PLC cycle time by request interval

Test case Shortest cycle time Current cycle time Longest cycle time
1 10 ms 10 ms 54 ms
2 10 ms 10 ms 54 ms
3 10 ms 10 ms 54 ms

4.3 Performance Comparison with Conventional Research

Many studies have been conducted to detect and protect against PLC memory attacks. We
consider three aspects of the performance of the proposed PLC block monitoring system and its
operating position, whether the PLC memory attack can be protected, and its performance impact
for comparison with the system presented in previous studies (Table 8). The operating position is the
level of the Purdue model in which the system is installed for PLC protection. It mainly protects
the PLC directly at level 1, where the PLC is located, or at level 3, where the EWS that manages
the PLC is located. Whether PLC memory attacks can be protected indicates whether the proposed
system can protect memory attacks against PLCs. The performance impact is derived from cycle

CMC, 2023, vol.77, no.2 2439

time measurement experiments as a performance impact on PLC by applying a system for protecting
PLC. Our proposed method directly protects the PLC and is located at level 1, which is immune to
manipulation of view attacks. In addition, PLC memory attacks can be protected based on the first
experiment, and significant results in performance impact are based on the second experiment. In
conclusion, it detects PLC memory attacks in a simple and powerful manner compared to existing
studies and has less impact on performance.

Table 8: Comparative analysis of the proposed method with conventional research

Reference Operating position Protecting ‘PLC Performance impact
(Purdue) memory attack’

Chan et al. [5] Level 1 Partial 2ms<

Chekole et al. [16] Level 1 Yes <4.6ms

Cook et al. [17] Level 1 Partial 200 ms<

Maesschalck et al. [18] Level 2 Partial -

Proposed system Level 1 Yes <lms

5 Limitations

This study proposed and implemented a PLC block monitoring system for the security of ICS.
The system uses the simple but powerful detection method using OB and DB of PLC. However, there
are some challenges to overcome:

e Limited PLC types. This system uses the python-snap7 library for memory acquisition.
This library implements Siemens S7Comm protocol and cannot apply the system to other
vendors’ PLCs.

e Lack of PLC programs. It is necessary to experiment with numerous different PLC programs
to measure the precise performance impact.

e Lack of decompile functions. Providing decompiled results for manipulated byte array values
would improve visibility. Currently, only tampered values and indices can be identified.

e Limitations of data block monitoring. In the case of the DB, since various values continuously
change while the PLC is operating, tampering cannot be detected through previous—present
value comparison. Therefore, the system monitors only block information, not the block data
of DBs.

6 Conclusion

In this study, we proposed a system to detect memory manipulation by monitoring OB1 and DB
in PLC program blocks to protect ICS that have become more vulnerable with the introduction of
industrial IoT. The monitoring system was applied to level 1 (the controller zone) to monitor a reliable
PLC program by directly communicating with the PLC. This makes it possible to detect attacks on
the PLC efficiently. In addition, OB1, including the program’s main function and DB that stores user
data, were monitored for efficient detection. It was found that PLC memory manipulation could be
detected, and the very minute performance impact caused by the application of the monitoring system
was confirmed.

2440 CMC, 2023, vol.77, no.2

In follow-up research, we intend to perform experiments inquiring whether tampering detection
can be achieved by applying a monitoring system to various vendor products and multiple PLC
programs. In addition, by adding the decompile functions [29], we hope to provide decompiled values
instead of returning only an index or byte array for the tampered part. Finally, we desire to study how
the ever-changing data block can be monitored.

Acknowledgement: Thanks to our researchers and the reviewers which have improved this paper.

Funding Statement: This research was supported by the Korea WESTERN POWER (KOWEPO)
(2022-Commissioned Research-11, Development of Cyberattack Detection Technology for New and
Renewable Energy Control System Using Al (Artificial Intelligence), 50%) and the Institute of
Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2021-0-01806, Development of Security by Design and Security
Management Technology in Smart Factory, 40%) and the Gachon University Research Fund of 2023
(GCU-202110280001, 10%).

Author Contributions: Study conception and design: M. Lee, J. Seo, J. Shin; method: M. Lee;
implementation and experiments: M. Lee; draft manuscript preparation: M. Lee, J. Shin; draft review:
J. Seo. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data and materials in the experiments can be produced from
the corresponding author on request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] Z. Drias, A. Serhrouchni and O. Vogel, “Analysis of cyber security for industrial control systems,” in Proc.
0f2015 Int. Conf. on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC),
Shanghai, China, pp. 1-8, 2015.

[2] Y. Chang, T. Kim and W. Kim, “Impact analysis of PLC performance when applying cyber security solu-
tions using active information gathering,” in Proc. of 16th Int. Conf. on Critical Information Infrastructures
Security (CRITIS 2021), Lausanne, Switzerland, pp. 131-151, 2021.

[31 M. A. Z. Raja, H. Naz, M. Shoaib and A. Mehmood, “Design of backpropagated neurocomputing
paradigm for Stuxnet virus dynamics in control infrastructure,” Neural Computing and Applications, vol. 34,
pp. 5771-5790, 2022.

[4] R.Kumar, R. Kela, S. Singh and R. Trujillo-Rasua, “APT attacks on industrial control systems: A tale of
three incidents,” International Journal of Critical Infrastructure Protection, vol. 37, no. 1, pp. 100521, 2022.

[5] C.Chan, K. Chow, S. You and K. Yau, “Enhancing the security and forensic capabilities of programmable
logic controllers,” in Proc. of 14th IFIP Int. Conf. on Digital Forensics, New Delhi, India, pp. 351-367, 2018.

[6] K. Yauand K. Chow, “PLC forensics based on control program logic change detection,” Journal of Digital
Forensics, Security and Law, vol. 10, no. 4, pp. 5, 2015.

[71 S. Al-Rabiaah, “The “Stuxnet” virus of 2010 as an example of a “APT” and its “recent” variances,” in Proc.
of 2018 21st Saudi Computer Society National Computer Conf. (NCC), Riyadh, Saudi Arabia, pp. 1-5,
2018.

[8] B. Siemers, L. Fischer and S. Lehnhoff, “A trust model in control systems to enhance and support
cybersecurity,” in Proc. of IEEE 7th Int. Energy Conf. (ENERGYCON), Riga, Latvia, pp. 1-6, 2022.

CMC, 2023, vol.77, no.2 2441

9]
(10]

(1]
[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

W. Alsabbagh and P. Langendorfer, “A mew injection threat on S7-1500 PLCs-disrupting the physical
process offline,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 146-162, 2022.

S. Kalle, N. Ameen, H. Yoo and I. Ahmed, “CLIK on PLCs! attacking control logic with decompilation
and virtual PLC,” in Proc. of 2019 Workshop on Binary Analysis Research (BAR), San Diego, CA, USA,
2019.

H. Yoo and I. Ahmed, “Control logic injection attacks on industrial control systems,” in Proc. of 34th Int.
Conf. on Information Security and Privacy Protection (IFIP SEC 2019), Lisbon, Portugal, pp. 33-48, 2019.
Y. Wang, J. Liu, C. Yang, L. Zhou, S. Li et al., “Access control attacks on PLC vulnerabilities,” Journal of
Computer and Communications, vol. 6, no. 11, pp. 311-325, 2018.

W. Alsabbagh and P. Langendoérfer, “Patch now and attack later—Exploiting S7 PLCs by time-of-day
block,” in Proc. of 4th IEEE Int. Conf. on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada,
pp. 144-151, 2021.

X.Pan, Z. Wang and Y. Sun, “Review of PLC security issues in industrial control system,” Journal of Cyber
Security, vol. 2, no. 2, pp. 69-83, 2020.

H. Yoo, S. Kalle, J. Smith and I. Ahmed, “Overshadow PLC to detect remote control-logic injection
attacks,” in Proc. of 16th Int. Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), Gothenburg, Sweden, pp. 109-132, 2019.

E. G. Chekole, J. H. Castellanos, M. Ochoa and D. K. Y. Yau, “Enforcing memory safety in cyber-physical
systems,” in Proc. of ESORICS 2017 Int. Workshops, CyberICPS 2017 and SECPRE 2017, Oslo, Norway,
pp. 127-144, 2017.

M. M. Cook, A. K. Marnerides and D. Pezaros, “PLCPrint: Fingerprinting memory attacks in pro-
grammable logic controllers,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 3376—
3387, 2023.

S. Maesschalck, A. Staves, R. Derbyshire, B. Green and D. Hutchison, “Walking under the ladder logic:
PLC-VBS: A PLC control logic vulnerability scanning tool,” Computers & Security, vol. 127, no. 1,
pp. 103116, 2023.

N. Zubair, A. Ayub, H. Yoo and I. Ahmed, “PEM: Remote forensic acquisition of PLC memory in
industrial control systems,” Forensic Science International: Digital Investigation, vol. 40, pp. 1-10, 2022.
A. Robles-Durazno, N. Moradpoor, J. McWhinnie, G. Russell and I. Maneru-Marin, “PLC memory attack
detection and response in a clean water supply system,” International Journal of Critical Infrastructure
Protection, vol. 26, no. 1, pp. 100300, 2019.

Q. Shen, L. Wang, L. Zhang, B. Wang, C. Liu et al., “Security analysis of industrial control S7 protocol
based on peach,” in Proc. of 9th Int. Conf. on Computing and Data Engineering (ICCDE’23), New York,
USA, pp. 72-77, 2023.

A. Qasim, A. Ayub, J. Johnson and I. Ahmed, “Attacking the IEC 61131 logic engine in programmable logic
controllers,” in Proc. of Int. Conf. on Critical Infrastructure Protection (ICCIP 2021), pp. 73-95, 2021.

Y. Geng, K. Liu, R. Ma and Q. Wei, “Research on memory attacks and defenses for programmable
logic controllers,” in Proc. of 2022 4th Int. Conf. on Communications, Information System and Computer
Engineering (CISCE), Shenzhen, China, pp. 256-260, 2022.

Y. Zhang, M. Li, X. Zhang, Y. He and Z. Li, “Defeat magic with magic: A novel ransomware attack method
to dynamically generate malicious payloads based on PLC control logic,” Applied Sciences, vol. 12, no. 17,
pp. 8408, 2022.

W. Alsabbagh and P. Langendorfer, “A flashback on control logic injection attacks against programmable
logic controllers,” Automation, vol. 3, no. 4, pp. 596-621, 2022.

N. Zubair, A. Ayub, H. Yoo and I. Ahmed, “Control logic obfuscation attack in industrial control systems,”
in Proc. of 2022 IEEFE Int. Conf. on Cyber Security and Resilience (CSR), Rhodes, Greece, pp. 227-232,
2022.

A. Mochizuki, K. Sawada, S. Shin and S. Hosokawa, “On experimental verification of model based
white list for PLC anomaly detection,” in Proc. of 11th Asian Control Conf. (ASCC), Gold Coast, QLD,
Australia, pp. 1766-1771, 2017.

2442 CMC, 2023, vol.77, no.2

[28] A. Abbasi, T. Holz, E. Zambon and S. Etalle, “ECFI: Asynchronous control flow integrity for pro-
grammable logic controllers,” in Proc. of 33rd Annual Computer Security Applications Conf. (ACSAC),
Orlando, Florida, USA, pp. 437-448, 2017.

[29] W. Alsabbagh and P. Langendorfer, “A stealth program injection attack against S7-300 PLCs,” in Proc. of
2021 22nd IEEE Int. Conf. on Industrial Technology (ICIT), Valencia, Spain, pp. 986-993, 2021.

	Programmable Logic Controller Block Monitoring System for Memory Attack Defense in Industrial Control Systems
	1 Introduction
	2 Background and Related Work
	3 Proposed Method for Detecting and Monitoring Program Blocks on PLC
	4 Experiments
	5 Limitations
	6 Conclusion
	References

