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ABSTRACT

Due to its complexity and involvement of numerous stakeholders, the pharmaceutical supply chain presents
many challenges that companies must overcome to deliver necessary medications to patients efficiently. The
pharmaceutical supply chain poses different challenging issues, encompasses supply chain visibility, cold-chain
shipping, drug counterfeiting, and rising prescription drug prices, which can considerably surge out-of-pocket
patient costs. Blockchain (BC) offers the technical base for such a scheme, as it could track legitimate drugs and
avoid fake circulation. The designers presented the procedure of BC with fabric for creating a secured drug supply-
chain management (DSCM) method. With this motivation, the study presents a new blockchain with optimal deep
learning-enabled DSCM and recommendation scheme (BCODL-DSCMRS) for Pharmaceutical Industries. Firstly,
Hyperledger fabric is used for DSC management, enabling effective tracking processes in the smart pharmaceutical
industry. In addition, a hybrid deep belief network (HDBN) model is used to suggest the best or top-rated medicines
to healthcare providers and consumers. The spotted hyena optimizer (SHO) algorithm is used to optimize the
performance of the HDBN model. The design of the HSO algorithm for tuning the HDBN model demonstrates
the novelty of the work. The presented model is tested on the UCI repository’s open-access drug reviews database.
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1 Introduction

Over several years, pharmaceutical industries have faced the problem of tracking products through
the supply chain. These drawbacks have become easier for fraudsters to launch fake drugs into the
market [1,2]. A new technique for tracking and tracing drugs is obligatory to overcome these problems.
Research workers believe Blockchain (BC) could give the technical basis for those systems because it
tracks legal drugs and prevents the circulation of fake ones [3]. Counterfeit drugs are determined by the
World Health Organization (WHO) as those that “are manufactured fraudulently, mislabelled of low
quality, hiding the source details or identity, and the defined standard”. Despite being consumed, they
might cause severe health problems. Sometimes the maker of fake drugs uses legitimate companies’
logos to get their products into the market [4,5]. Even though a global challenge, this practice extremely
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affects well-developed countries. Fake medications are distributed over an extremely complex network,
making them challenging to remove and detect [6]. A system is needed to track and trace drug delivery
at all stages to avoid their distribution. BC is the modern innovation that promises to accomplish
these objectives [7,8]. Fig. 1 represents the pipeline of supply chain management (SCM) in the medical
industry.

Figure 1: SCM in pharmaceutical industry

The medical industry is a critical sector that should be controlled for optimization to be a part of
the global trade mechanism [9]. In that regard, it is essential to mobilize the resource to make sure that
the predominant economic sector can be controlled for optimization [10,11]. Even though the drug
distribution method has considerably improved over the last few years, it is still necessary to increase
the availability of tablets, authentication, and market dynamics of real-time price management. The
system allows loopholes to become structural inefficiencies and market failures. This inefficiency
creates credibility issues, drug shortages, etc. [12]. This problem is the major cause of market failures
and macro instability. As technology progresses, the present social structure of society does not support
the technological pace. Consequently, a new measure needs to be taken to readapt the dynamics. The
presented architecture is driven by the motivation to resolve those automation problems [13]. The
healthcare field regularizes itself and receives benefits from blockchain technology (BCT). BC was
created initially to serve as the transaction log for Bitcoin [14]. It gives a distributed ledger for storing
data records arranged in various “blocks.” The collected data involves the participants, time, date, and
price included in all the transactions [15]. Once employed in the medical supply chain, BC provides an
electronic ledger where everyone in the network can see and validate data.

Existing deep learning (DL) enabled drug supply chain (DSC) management and recommendation
systems have made significant progress in improving the efficiency and safety of DSCs. However,
several limitations still need to be addressed to fully realize the potential of these systems. Some
of the limitations are discussed here. The pharmaceutical industry is highly regulated, and each
country or region may have different regulations for DSCs. The lack of standardization can make it
challenging to develop DL models that can be applied globally. In addition, implementing DL-enabled
DSC management and recommendation systems can be expensive and require significant computing
resources. Scaling the system to handle large volumes of data can also be challenging. Most existing
systems focus on optimizing specific aspects of the DSC, such as inventory management or logistics.
However, end-to-end SCM requires a holistic approach that considers all aspects of the SCM, from
manufacturing to delivery to the end customer.

This study develops a new BC with optimal DL-enabled drug supply chain management and rec-
ommendation scheme (BCODL-DSCMRS) for Pharmaceutical Industries. The proposed BCODL-
DSCMRS technique mainly focuses on the incessant observation and tracing of the drug supply for
addressing forging problems. The BCODL-DSCMRS technique comprises two significant modules:
BC-enabled DSC management and a DL-based consumer recommendation system. Firstly, Hyper-
ledger fabric is used for DSC management, enabling effective tracking processes in the smart medical
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industry. In addition, a hybrid deep belief network (HDBN) model is used to suggest the best or
top-rated drugs to the medical industry customer. The spotted hyena optimizer (SHO) algorithm is
exploited to optimize the performance of the HDBN model. The presented method is tested on the
UCI repository’s open-access drug reviews database. The key contribution of the paper is summarized
below:

• An intelligent BCODL-DSCMRS method encompassing BC-enabled DSC management,
HDBN-based drug recommendation, and SHO-based parameter tuning is provided for
pharmaceutical industries. To our knowledge, the BC-enabled DSC method has never been
presented in the literature.

• A Hyperledger fabric approach is designed for addressing forging problems and DSC manage-
ment in the pharmaceutical industry.

• Hyperparameter optimization of the HDBN approach using the SHO technique with cross-
validation assists to increase the prediction outcome of the BCODL-DSCMRS approach for
hidden data.

The rest of the paper is organized as follows. Section 2 gives the related works, Section 3 provides
the presented method, Section 4 provides the result analysis, and Section 5 concludes the paper.

2 Literature Review

In [16], the authors presented and executed a new BC and ML-based DSC management and
recommendation (DSCMR) method. The presented method comprises the BC-based DSCM and ML-
based medicine recommendation model for users. During the primary element, the DSCM method
used Hyperledger fabrics to constantly monitor and track the medicine delivery procedure from the
smart medicine companies. However, the N-gram and Light Gradient Boosting Machine (LightGBM)
techniques are utilized in the ML element for recommending the popular or optimum prescription to
users of medicine companies. Musamih et al. [17] examined an Ethereum BC-based system leveraging
smart contracts and decentralizing off-chain storing to effectively trace the product from the medical
field. The smart contract assurance data source removes the necessity for mediators and offers every
stakeholder a secured, immutable transaction history.

Ahmadi et al. [18] inspected the novel medical governance dependent upon the Internet of
Things (IoTs) and BCT. IoT-based BC is a form of distributed ledger (DLT) which keeps immutable
records of the transaction, which is inefficient of existence fabricated and is noticeable to every
participant. Executing an IoT-based BC technique offers the tools for the medical sector to opti-
mize medicine governance along the SCM, which makes healthcare further reliable and effectual.
Huang et al. [19] introduced a scenario-related BC technique for medicine traceability and regulation
named Drugledger that recreates the entire service infrastructure with separate service providers as
three independent service elements and ensures the authenticity and confidentiality of information.
Additionally, Drugledger is effectually pruning their storing, attaining a stable and suitable BC storing.
Jamil et al. [20] examined a new DSCM utilizing Hyperledger Fabric dependent upon BCT for
handling secure DSC records. The presented technique resolves these challenges by carrying out drug
record transactions on BC to construct a smart healthcare ecosystem with DSC.

Agrawal et al. [21] proposed a BC-enabled network that permits manufacturers to monitor
medicines efficiently but the SCM with enhanced safety and transparency over the procedure. This
analysis also attempts to minimise the cost and time reliant on the manufacturing company to transfer
the medicine to consumers by offering forward and backward SCM mathematical methods. In detail,
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the forward chain method maintains medicine delivery in the company to consumers in the shortest
time with consistent transport mode. Uddin [22] presented a novel and new tracking and tracing
BC-enabled Medledger method that leverages the Hyperledger Fabric BC environment utilizing
chain codes (smart contracts). The presented Medledger method supports securely and efficiently
applying DSC transactions from fabric, allowing a private permissioned, distributed network of
distinct medicine stakeholders. The chain code can be planned, coded, and executed utilizing sequence
diagrams for governing and controlling the interaction betwixt the contributing stakeholder from the
DSC system.

In [23], the authors developed a secure blockchain-based Proposed Application (PA) to generate,
maintain, and validate healthcare certificates. Peng et al. [24] devised VFChain, an auditable and
verifiable federated learning structure that depends on the BC system. Firstly, to offer verifiability,
a committee was chosen using the BC to aggregate methods and record verifiable proof in the BC.
After, a new authenticated data structure was introduced for BC’s auditability to augment the search
efficacy of verifiable proof and supported a secure rotation of committees. Peng et al. [25] devised a
method based on BC, a privacy-preserving verifiable data-sharing system. With a novel authenticated
data structure method, the author designed a new BC-related structure to verify proficiently any part
of the data record shared in a decentralized way. Wu et al. [26] devised a Verifiable Query Layer
(VQL) deployed on the cloud to render verifiable and efficient data query services for BC systems.
The middleware layer extracted data from basic BC technology and proficiently reorganize them in
databases. A cryptographic fingerprint can be computed depending on all constructed databases to
avoid fake datasets from being saved in the middleware.

Although numerous ML and DL approaches for DSC management are available in this study,
but still, it is essential to improve the overall performance. The amount of parameters of DL
approaches also quickly increases, leading to overfitting the model because of continuous deepening.
The metaheuristic algorithm can be employed since the trial and error model for hyperparameter
tuning is a difficult process. Thus, the SHO algorithm is exploited for the parameter selection of DBN.

3 The Proposed Model

This article introduced a new BCODL-DSCMRS technique for automated DSC management and
recommendation processes in the smart pharmaceutical industry. The presented BCODL-DSCMRS
technique intends to the incessant observing and tracing of the drug supply for addressing forging
problems. The BCODL-DSCMRS technique comprises two significant modules: BC-enabled DSC
management and a DL-based consumer recommendation system. Fig. 2 represents the overall work-
flow of the BCODL-DSCMRS method.

3.1 BC-Based Distributed Ledger

This work uses the Hyperledger fabric for DSC management, enabling an effective tracking
process in the smart medical industry. The Hyperledger Fabric is established on the source of DLT
technologies containing two parts: BC and world state parts [27]. Hyperledger Fabric configures
several world state datasets for maintaining the group of present values or states of procedures to
provide the utility for accessing the present ledger states at some phase. The world state dataset part was
capable of storing the states of the ledger effectively and recovering the applications or requirements
of the users. Therefore, it stores the present state automatically, and the method developer verifies it,
never seeing the complete transaction log. The data from the key-value pair can be kept inside the
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world state dataset. The database (DB) upgrades the state value automatically once the state has been
altered or executed any transactions have.

Figure 2: Overall workflow of BCODL-DSCMRS algorithm

Two suitable choices of Level DB and Couch DB are accessible. A primary choice means level DB
has a default state DB that maintains data of smart contracts from the key-value pair and occurs in
all the pair nodes of networks. The outcomes of queries from Couch DB provide real data content. It
also assists each type of query for accessing data content with the REST Application Programming



2346 CMC, 2023, vol.77, no.2

Interface (API). Because of these features, couch DB can be utilized in the presented method for
storing the data connected to our network. But the second part is BC which is the capability of storing
the group of functions and alters that take place in the world state DB from the procedure of the
transaction log. Next, this transaction has been saved in the procedure of blocks and is related to
chain-like infrastructure. The transaction is saved in order from the BC network. The BC offers a data
immutability feature; nobody alters or deletes the data once saved.

3.2 Drug Recommendation Module

Before proceeding to the recommendation process, the drug review dataset comprises noisy data
initially pre-processed to improve its quality. Next, the Term Frequency-Inverse Document Frequency
(TF-IDF) model is utilized for the feature extraction. TF-IDF is a statistical measure used to determine
the mathematical impact of words in a document [28]. The vectorization method is related to One Hot
Encoding. On the other hand, the value equivalent to the word has been allocated a TF-IDF value
rather than 1. The TF-IDF value has been attained by multiplying the TF and IDF values. In this
work, the DBN model is applied to recommending medicines. Restricted Boltzmann Machine (RBM)
comprises the hidden layer (HL) and visible layer (VL). The VL is accountable for input, and the HL
also learn higher-level semantic feature from the input dataset.

E (v, h; θ) = −
∑

m
bmvm −

∑
n
anhn −

∑
mn

wmnvmhn (1)

In Eq. (1), θ = (wmn, an, bm) represents the variable of RBM, wmn shows the weight between
hidden unit hn and visible unit vm and an and bm defines the bias vector of hidden and visible units,
correspondingly. The v and h joint likelihood distribution is computed by:

P (v, h; θ) = 1
Z (θ)

e−E(v,h;θ) (2)

where Z(θ) = ∑
v

∑
h E(v, h; θ) refers to the normalization factor.

The probability function of v and h are shown below:

P (hn = 1|v) = g
(∑

m=1
wmnvm + an

)
(3)

P (vm = 1|h) = g
(∑

n=1
wmnhn + bm

)
(4)

where g(x) = 1/(1 + exp(x)) indicates the logistic function, and n characterizes the number of layers
in the network.

The RBM mechanism can be trained by iteration, and the variable θ = (wmn, an, bm) is attained by
the subsequent GD method:

θ = θ + η ×
∂ ln

[∏k

m=1 p (v|θ)
]

∂θ
(5)

In Eq. (5), η denotes the learning rate. With a higher dimensional dataset, the GD algorithm
is hard to resolve the model expectation. But the training efficacy of RBM could be considerably
enhanced through the CD method as follows:

(vmhn)data − (vmhn)rec = ∂lnp (v|θ)

∂wmn

(6)
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In Eq. (6), (·)data represents the calculated expectation of the training dataset, and (·)rec indicates
the expectation of the reconstruction model. Next, the upgraded condition to obtain the weight and
bias of DBN is as follows:

�wmn = η((vmhn)data − (vmhn)rec) (7)

�am = η((vm)data − (vm)rec) (8)

�bn = η((hn)data − (hn)rec) (9)

Next, the variables of RBM are attuned to the suitable value to prevent the local optima solution.
RBM has a stronger feature learning capability and is utilized for extracting data. But the RBM
efficiency for FE is constrained once used for complex non-linear data. Therefore, the DBN explores
a deep hierarchical depiction of the training sample. Both nearby layers of DBN are regarded as a
single RBM.

3.3 Hyperparameter Tuning Module

The SHO technique is a hyperparameter optimizer to improve the DBN model’s performance.
A spotted hyena (SH), or a laughing hyena, is considered the biggest among every hyena species
[29]. This hyena is a larger carnivore currently innate to Africa and originated in Asia. This species
demonstrates higher societal attachment, complicated performance, competitive social patterns, and
the most enormous clan size. While they lived major in number from the clan, it can be assumed that
they were a great prosperous species because of their adaptability and cunning nature. It chases its
chosen prey with a pack for long distances. The entire performance design of SHs is mathematically
mapped to overcome various optimized complications. In the SHO implementation, prey location
can be considered an instantaneous best for nearer to optimum as the searching area was unexplored
earlier. After setting the best searching agent over the optimum solution, the rest of the searching
agents change the location. An arithmetical illustration of performance was formulated by Eqs. (10)
and (11).
−→
DIth =

∣∣∣−→Bcov ∗ −→
P1v ∗ I − −→

PS (CUI)
∣∣∣ (10)

−→
PS (I + 1) = Plv (I) → −→

Ecov ∗ −→
DIth (11)

whereas
−→
DIth represents the interspace betwixt hyena as well as prey, CUI denotes that progress

repetition,
−→
Plv implies the prey vector position,

−→
PS refers to the hyena position vector,

−→
Bcov and

−→
Ecov

denote the coefficient vectors as:−→
Bcov = 2 ∗ −→ar1

−→
Ecov = 2 ∗ −→

lr1 ∗ −→ar2 − −→
lr1

−→
1r1 = 5 −

(
repetn∗

(
5

max repetn

))

whereas repetn = 1, 2, 3, . . . , maxrepetn, −→ar1, and −→ar2 represent arbitrarily selected vectors within the
range of 0 and 1,

−→
lr1 , lessen in sequence in [5-0].
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Mathematically, the track and hunt patterns are outlined as follows. Victim location was detected
to a superlative agent (hyena) that is preserved as optimal. Eqs. (12)–(14) are liable for transforming
the hyena’s position.
−→
DIth =

∣∣∣−→Bcov ∗ −→
Fsa − −→

Pors

∣∣∣ (12)

−−→
POrs = −→

Fsa − −→
Ecov ∗ −→

DIth (13)

−→
Aom = −−→

POrs + −−−→
POrs+1 + · · · + −−−−−→

POrs+TPsh
(14)

whereas
−→
Fsa indicates the optimal agent (hyena) and

−−→
POrs suggests the spot of residual agents enclosed

in the searching area. Aom summarizes a pool of total finest values.

TPsh = Calcgrs

(−→
Fsa,

−−→
Fsa+1,

−−→
Fsa+2 + · · · +

(−→
Fsa + −→

RV
))

whereas TPsh allows the size of the population of SHs, RV is a vector measured arbitrarily, within limits
0 and 1, and grs indicates a pool of candidate results. The optimal result is calculated by Eq. (15).

−→
PS (CUI + 1) =

−→
Aom

TPsh

(15)

In which
−→
PS(CUI + 1) explains the optimum important outcome that is followed in previously

observed value accrued in different repetitions, and residual agents change their position dependent
upon detecting the optimum consequence reached.

Algorithm 1: Pseudocode of SHO algorithm
Input: the SH population Pi(i = 1, 2, . . . , n)

Output: an optimum searching agent
1. procedure SHO
2. Initializing the parameters h, B, E, and N
3. Evaluate the fitness of all the search agents
4. Ph = optimum searching agent
5. Ch = the cluster or group of all far best solutions
6. while ( x < Max count of iterations) do
7. for all the searching agents do
8. Upgrade the location of the present agent
9. end for
10. Upgrade h, B, E, and N
11. Verify if some searching agent exceeds the provided searching space and then modify it
12. Compute the fitness of all the search agents.
13. Upgrade Ph if there is an optimum solution than the preceding optimum solution
14. Upgrade the group Ch w.r.t Ph

15. x = x + 1
16. end while
17. return Ph

18. end procedure
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4 Performance Validation

The presented method is simulated by Python 3.6.5 tool on PC i5-8600k, 16 GB RAM, GeForce
1050Ti 4 GB, 1 TB HDD, and 250 GB SSD. The parameter settings are as follows: dropout: 0.5,
learning rate: 0.01, epoch count 50, activation: ReLU, and batch size: 5.

In this section, the experimental analysis of the BCODL-DSCMRS method on DSC management
is investigated in detail. Table 1 and Fig. 3 report the BCODL-DSCMRS method’s overall results with
other existing DSC management approaches. The experimental results specified that the DSC-Gcoin
model had reported lower performance than other techniques. Along with that, a slightly improvised
outcome is obtained by the DSCIM-SH technique. Moreover, the RDRSCM-Hyperledger technique
has accomplished reasonable outcomes over other models. However, the BCODL-DSCMRS model
surpassed other models and attained maximum performance under all users.

Table 1: Overall outcome of BCODL-DSCMRS approach under DSC management

Latency (s)
No. of users DSC-Gcoin DSCIM-SH RDRSCM-Hyperledger BCODL-DSCMRS

Latency in query transaction
100 0.131 0.160 0.245 0.312
1000 0.398 0.656 1.038 1.400
2000 0.856 1.267 2.002 2.622
3000 1.009 1.668 2.412 3.214
4000 1.104 1.706 2.479 3.491
5000 1.601 2.422 3.472 3.815

Total latency of different users
100 1.521 1.677 2.067 2.167
1000 1.766 2.178 2.913 3.181
2000 2.256 2.668 3.682 4.283
3000 2.479 3.036 4.072 4.740
4000 2.490 3.303 4.272 4.974
5000 3.036 3.882 5.130 5.765

Latency in invoking transaction
100 14.093 14.404 17.939 19.641
1000 14.174 14.551 18.757 20.034
2000 14.224 14.715 18.970 20.100
3000 14.305 14.731 18.938 20.231
4000 13.994 14.535 18.676 20.018
5000 14.174 14.551 18.479 20.001

Throughput analysis of different users
100 25 36 47 60
1000 39 53 71 84
2000 56 69 87 122
3000 71 86 111 148

(Continued)
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Table 1 (continued)

Latency (s)
No. of users DSC-Gcoin DSCIM-SH RDRSCM-Hyperledger BCODL-DSCMRS

4000 105 141 168 243
5000 364 411 533 558

Figure 3: Latency analysis (a) latency in query transaction (b) total latency of different users (c) latency
in invoking transaction (d) throughput analysis of different users

The drug recommendation results of the BCODL-DSCMRS model are examined on the
drug review dataset from the UCI repository (https://www.kaggle.com/datasets/jessicali9530/kuc-
hackathon-winter-2018). The dataset includes 20000 samples with two classes, as given in Table 2.

The confusion matrix of the BCODL-DSCMRS model under the drug recommendation process
is depicted in Fig. 4. With 80% of TRD; the BCODL-DSCMRS model has recognized 7808 samples as
negative and 7886 samples as positive. Eventually, with 20% of TSD, the BCODL-DSCMRS technique

https://www.kaggle.com/datasets/jessicali9530/kuc-hackathon-winter-2018
https://www.kaggle.com/datasets/jessicali9530/kuc-hackathon-winter-2018
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recognized 1950 samples as negative and 1993 as positive. Meanwhile, with 30% of TSD, the BCODL-
DSCMRS technique has recognized 3030 samples as negative and 2885 as positive.

Table 2: Details of the dataset

Class No. of instances

Negative 10000
Positive 10000

Total number of instances 20000

Figure 4: Confusion matrices of BCODL-DSCMRS system (a and b) TRD/TSD of 80:20 and (c and
d) TRD/TSD of 70:30

In Table 3, the overall outcomes of the BCODL-DSCMRS method are investigated under
different sizes of the training dataset (TRD) and testing dataset (TSD). The experimental values stated
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that the BCODL-DSCMRS model has properly recommended the drugs. With 80% of TRD, the
BCODL-DSCMRS model reaches an average accubal of 98.09%, precn of 9 8.09%, recal of 98.09%, Fscore

of 98.09%, AUCscore of 98.09%, and Matthews’s correlation coefficient (MCC) of 96.18%. Concurrently,
with 20% of TSD, the BCODL-DSCMRS technique attains an average accubal of 98.57%, precn of
98.59%, recal of 98.57%, Fscore of 98.57%, AUCscore of 98.57%, and MCC of 97.16%.

Table 3: Classifier outcome of BCODL-DSCMRS method with varying TRD/TSD

Class Accubal Precn Recal Fscore AUCscore MCC

Training phase (80%)

Negative 97.50 98.66 97.50 98.08 98.09 96.18
Positive 98.67 97.53 98.67 98.10 98.09 96.18

Average 98.09 98.09 98.09 98.09 98.09 96.18

Testing phase (20%)

Negative 97.89 99.24 97.89 98.56 98.57 97.16
Positive 99.25 97.94 99.25 98.59 98.57 97.16

Average 98.57 98.59 98.57 98.57 98.57 97.16

Class Accubal Precn Recal Fscore AUCscore MCC

Training phase (70%)

Negative 99.05 98.14 99.05 98.59 98.60 97.20
Positive 98.16 99.06 98.16 98.61 98.60 97.20

Average 98.60 98.60 98.60 98.60 98.60 97.20

Testing phase (30%)

Negative 99.02 98.22 99.02 98.62 98.57 97.17
Positive 98.13 98.97 98.13 98.55 98.57 97.17

Average 98.57 98.59 98.57 98.58 98.57 97.17

Simultaneously, with 70% of TRD, the BCODL-DSCMRS method obtains an average accubal of
98.60%, precn of 98.60%, recal of 98.60%, Fscore of 98.60%, AUCscore of 98.60%, and MCC of 97.20%.
Finally, with 30% of TSD, the BCODL-DSCMRS method obtains average accubal of 98.57%, precn of
98.59%, recal of 98.57%, Fscore of 98.58%, AUCscore of 98.57%, and MCC of 97.17%.

The training accuracy (TAY) and validation accuracy (VAY) of the BCODL-DSCMRS system
are performed in Fig. 5. The figure implies that the BCODL-DSCMRS method had shown superior
outcomes with the highest values of TAY and VAY. It is visible that the BCODL-DSCMRS technique
has attained the maximum TAY outcomes.

The training loss (TLSS) and validation loss (VLSS) of the BCODL-DSCMRS method are tested
in Fig. 6. The figure shows that the BCODL-DSCMRS system demonstrated superior performance
with the lowest values of TLSS and VLSS. The BCODL-DSCMRS technique has resulted in the lowest
VLSS outcomes.
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Figure 5: TAY and VAY outcome of BCODL-DSCMRS method

Figure 6: TLSS and VLSS outcome of BCODL-DSCMRS method

Table 4 represents the overall drug recommendation results of the BCODL-DSCMRS model
[30]. In Fig. 7, a comparative accuy and AUCscore examination of the BCODL-DSCMRS model is
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investigated briefly. The results implied that the logistic regression (LR) and stochastic gradient
descent (SGD) models have attained lower values of accuy and AUCscore. In line with this, the perceptron
and multinomial Naïve Bayes (NB) models have obtained slightly increasing accuy and AUCscore. At
the same time, the linear-Support Vector Machine (SVM) and ridge classifier models have resulted
in closer accuy and AUCscore. However, the BCODL-DSCMRS technique reached higher accuy and
AUCscore of 98.57% and 98.57%, respectively.

Table 4: Comparative analysis of the BCODL-DSCMRS method with other existing methods

Methods Precn Recal Fscore Accuy AUCscore

BCODL-DSCMRS 98.59 98.57 98.58 98.57 98.57
Linear-SVC 94.04 96.76 95.10 93.29 90.75
Ridge classifier 96.24 95.59 95.23 92.79 89.44
Perceptron 93.39 96.22 94.00 91.64 90.12
Multinomial NB 93.14 93.92 92.87 90.09 88.03
Logistic regression 88.94 92.35 80.52 86.20 82.47
SGD classifier 83.54 92.41 88.13 82.27 74.50

Figure 7: Accuy and AUCscore analysis of BCODL-DSCMRS method with other existing systems

In Fig. 8, a comparative Precn, Recal and Fscore analysis of the BCODL-DSCMRS technique is
studied briefly. The outcomes implied that the LR and SGD models have attained lower Precn, Recal

and Fscore values. In line with this, the perceptron and multinomial NB models have obtained slightly
increasing Precn, Recal and Fscore. Simultaneously, the linear-SVM and ridge classifier techniques have
resulted in closer Precn, Recal, and Fscore. However, the BCODL-DSCMRS method reached higher
Precn, Recal and Fscore of 98.59%, 98.57%, and 98.58%, correspondingly. These results demonstrated
that the BCODL-DSCMRS technique reaches maximum performance.
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Figure 8: Comparative analysis of BCODL-DSCMRS approach with other existing systems

5 Conclusion

This article introduced a new BCODL-DSCMRS method for automated DSC management and
recommendation processes in the smart pharmaceutical industry. The presented BCODL-DSCMRS
technique intends to the incessant observing and tracing of the drug supply for addressing forging
problems. The BCODL-DSCMRS technique comprises two significant modules: BC-enabled DSC
management and a DL-based consumer recommendation system. Firstly, Hyperledger fabric is used
for DSC management, enabling effective tracking processes in the smart medical industry. In addition,
a hybrid DBN model is used to suggest the best or top-rated medicines to the pharmaceutical industry
customer. The SHO algorithm can be used to improve the performance of the HDBN method. The
proposed method is tested on the UCI repository’s open-access drug reviews database. The simulation
results of the BCODL-DSCMRS technique show promising performance. In future, the performance
of the proposed model can be improved by a hybrid metaheuristic algorithm. Besides, the results of
the proposed model can be investigated on a large scale real time database.
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