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ABSTRACT

The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that
draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass
equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between
exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity.
To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia
weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is
conceived by incorporating an adaptive inertia weight to reach an appropriate balance between exploration and
exploitation. Next, an adaptive sine cosine mechanism is embedded to boost the global exploratory capacity.
Finally, the Cauchy mutation is utilized to prevent the loss of population diversity during searching. To validate
the efficacy of the proposed SCEO, a comprehensive evaluation is conducted on 15 classical benchmark functions
and the CEC2017 test suite. The outcomes are subsequently benchmarked against both the conventional EO, its
variants, and other cutting-edge metaheuristic techniques. The comparisons reveal that the SCEO method provides
significantly superior results against the standard EO and other competitors. In addition, the developed SCEO is
implemented to deal with a mobile robot path planning (MRPP) task, and compared to some classical metaheuristic
approaches. The analysis results demonstrate that the SCEO approach provides the best performance and is a
prospective tool for MRPP.
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1 Introduction

As the advancement of the society rapidly, a number of optimization issues are required to be
resolved. These problems are previously usually tackled with traditional numerical computational
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methods, but these are inefficient and difficult to deal with high-dimensional and non-linear opti-
mization problems [1]. Consequently, researchers have pioneered the development of metaheuristic
algorithms, drawing inspiration from the intricate social behaviors exhibited by biological colonies and
the governing principles of natural phenomena. These algorithms, characterized by their stochastic
nature and the absence of a need for priori knowledge, exhibit remarkable flexibility in their problem-
solving capabilities [2].

Recently, some excellent metaheuristics have been developed and successfully employed to address
optimization problems in different domains. In [3], the hunger games search algorithm (HGS) is
introduced as an innovative approach. This algorithm takes its inspiration from the behaviors and
behavioral selections of animals driven by the necessity to overcome hunger. The performance of
HGS is verified on function cases and engineering design cases, and the results prove that HGS
has excellent optimization performance. In [4], a novel metaheuristic technique based on the idea
of weight means is developed, called INFO. Comparative experiments with basic and advanced
algorithms prove that INFO has outstanding convergence performance. In [5], a novel algorithm,
the rime optimization algorithm (RIME), is proposed. RIME simulates the growth and crossover
behavior of the rime-particle population. Extensive comparative experiments justify that the RIME
has promising convergence performance. In [60], the coati optimization algorithm (COA) that draws
inspiration from the natural behaviors of coatis, is introduced as a solution for tackling global
optimization problems. COA obtains superior performance on functional problems and some practical
cases. In [7], a nature-inspired method called the nutcracker optimizer (NOA) is proposed. NOA is
mimicking the search, hiding, and recovery behaviors of nutcrackers. Comprehensive experimental
results verify the performance of NOA. Well-performing algorithms, including those mentioned above,
provide researchers in different fields with tools to resolve optimization problems in their domains.
Nature-inspired approaches are successfully applied in different fields and metaheuristic techniques
are gaining popularity in fields such as engineering and science [£].

This article directs its focus towards a novel physics-based metaheuristic algorithm referred to as
EO. Initially introduced by Faramarzi et al. in 2020 [9], EO presents a range of compelling advan-
tages. These encompass a streamlined framework, straightforward operational principles, simplified
implementation, a reduced parameter set, and expedited processing times. Furthermore, EO has
showcased its prowess in optimization, surpassing the performance of certain other metaheuristics
like PSO [10] and FA [11]. It is widely embraced as a solution for numerous intricate optimization
challenges. For example, in [12], the adaptive EO (AEO) is introduced for multi-level threshold
processing, which modifies the basic EO by making adaptive decisions on the dispersion of non-
performance search agents. The performance of the AEO is assessed on benchmark function cases
and compared with other methods. The comparison shows that AEO outperforms other competitors.
Then the AEO is employed to optimize the multilevel thresholding problem and obtain the best
value by minimizing the objective function. In [13], an improved EO algorithm (IEO) incorporating
linear reduced discretization and local minimum elimination method is proposed. A number of
comparative experiments indicate that IEO is much superior. This algorithm effectively predicts
unknown parameters within the single diode model, double diode model, and triple diode model. In
[14], an enhanced EO is presented to tackle the challenges of parameter identification across various
photovoltaic (PV) cell models. The analysis illustrates that the improved EO has highly competitive
advantages and can accurately extract PV parameters.

Despite EO’s exceptional performance in tackling functional problems and engineering design
cases, it does exhibit certain drawbacks, such as the exploration-exploitation imbalance, population
diversity loss, and susceptibility to local optima. To address these limitations, numerous scholars have
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proposed a range of enhanced EO algorithms. In [15], an adaptive EO (LWMEQ) with three mach-
anisms is developed. The effectiveness of LWMEO is rigorously assessed using CEC2014 functions
and classical multimodal functions, revealing its competitive performance. In [16], a modified EO
algorithm (m-EO) is put forth, featuring Gaussian mutation and an exploitative search mechanism
grounded in population segmentation and reestablishment principles. Through extensive testing on
33 benchmark problems and comparisons to the EO and other advanced approaches, the m-EO
demonstrates its superiority over competitors. In[17], an enhanced iteration of EO (IEO) is introduced,
incorporating a declining equilibrium pool strategy. The evaluation of IEO encompasses 29 benchmark
functions, along with three engineering task, highlighting its versatility and efficacy.

Although these EO variants strengthen the overall performance of the basic EO, the shortcomings
of the exploration-exploitation imbalance, the proneness to become trapped in local optimization, and
the loss of population diversity have not been adequately addressed. This is primarily because most
of the existing EO variants are designed to improve one of the limitations, rather than all of them.
Based on the above motivation, the present work introduces a novel EO variant, referred to as SCEO,
to refine the performance of the canonical EO. The key points of this study are outlined below.

(1) A new EO version is introduced, known as SCEO, which involves three strategies, namely adap-
tive inertial weight, Cauchy mutation, and adaptive sine cosine mechanism. The component
study in Section 4.4 examines the validity of the three mechanisms of SCEO.

(2) To assess the performance of the newly SCEQ, it undergoes rigorous testing on 15 classical
benchmark functions as well as the comprehensive CEC2017 test suite. This assessment
involves a comparative analysis against state-of-the-art techniques, as well as the foundational
EO and its various iterations. Additionally, the gathered experimental data undergoes meticu-
lous statistical scrutiny through the utilization of both the Friedman test and the Wilcox signed
rank test.

(3) To substantiate the practical viability of the SCEO algorithm, its capabilities are demonstrated
through its application to an MRPP task. The algorithm can plan satisfactory paths for mobile
robots in different environments.

The subsequent sections are structured as follows: Section 2 outlines the canonical EO for con-
textual reference. Section 3 elaborates on the three pivotal enhancement strategies and introduces the
refined SCEO approach. In Section 4, an exhaustive evaluation of SCEQ’s effectiveness is conducted
across the spectrum of 15 classical benchmark functions and the comprehensive CEC2017 test suite.
Furthermore, Section 5 delves into the SCEO-driven path-planning technique. Finally, Section 6
encapsulates this study with a comprehensive summary and conclusion.

2 Basic EO Algorithm
2.1 Initialization

Similar to most metaheuristic methods, EO utilizes initialized candidate solutions to commence
the optimization process. The initial concentration is described below.

Xvi - Xmin + randi(Xmax - Xmin)ai == 19 29 te 9N (1)
where X is the concentration of the i-th initial particle; X,,,, and X, denote the upper and lower

boundaries of the exploration space, respectively; N signifies the scale of the population under
consideration.
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2.2 Equilibrium Pool

The four particles with the optimal fitness and the mean of these four particles are selected to
create the equilibrium pool. X, ., and X, ... are expressed below, respectively.

Xeqja()l = {Xeql s Xqua Xeq3; Xeq4; Xeqﬁave} (2)
X,y = ST e T e T S 3)

2.3 Exponential Term (F)

The exponential factor F plays a crucial role in maintaining the delicate exploration-exploitation
balance. This factor is determined by Eq. (4).

F = e—x(x—to) (4)

where A represents a randomly generated variable within the range of [0,1]; ¢ is a non-linear computa-
tion, formulated as follows.

(2F)
t= (1 — I—TZ) (5)

where It corresponds to the current iteration count and T corresponds to the predefined maximum
iteration count; @, stands as a constant parameter. ¢, is expressed below.

o = %hl (—asign (r = 0.5) [1 — ™) +1 ©

where a, takes on a value of 2 and a, takes on a value of 1; sign(r — 0.5) effectively determines
the direction of development; r symbolizes a random variable confined within the range of [0,1].
Substituting Eq. (6) into Eq. (4), we get:

F = a,sign (r — 0.5) [1 — e‘“] (7

2.4 Generation Rate (G)

The parameter responsible for regulating the extent of exploitation is known as the generation
rate G, and its definition is provided below.

G == Goe_;\(t_to) - G()F (8)

where

G, = GCP (Xa, — AX) 9)
_]0.5r,r, > GP

GCP = {O,r2 < GP (10)

where r, and r, represent random values of [0,1], GCP signifies the generation rate control parameter,
calculated through the generation probability GP.

Thus, the update method of EO is below.

G
X=)¢q+(X—)¢q).F+F/(1—F) (11)
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3 Structure of SCEO

In this subsection, to modify the overall performance of the basic EO, we introduce an improved
EO algorithm, called SCEO. SCEO increases the performance of the basic EO by proposing new
strategies while keeping the original update mechanism intact.

3.1 Adaptive Inertia Weight Mechanism

Regarding metaheuristic techniques, the exploration-exploitation balance is essential. As can be
observed from Eq. (11), which F is employed to influence concentration changes to reach equilibrium,
while the equilibrium candidate is a randomly chosen candidate from the equalization pool. Once it
gets stuck in a local optimum, the best solution will prematurely stagnate during the search. Thus,
to avoid this problem, the adaptive search for the random candidate is carried out, and we design an
adaptive update formula to instead of Eq. (11). The novel updating equation is below.

G
X=wxXeq+(X—ng).F+W(1—F) (12)

where w is an inertia weight.

Inspired by the PSO, the inertia weight mechanism is broadly employed in metaheuristic
approaches. For instance, Ding et al. [18] revise the update equation of the salp swarm algorithm
(SSA) by introducing an adaptive inertia weight factor. Wang et al. [19] use an inertia weight to
modify the leader position of the SSA.

In this study, a novel adaptive inertial weight coefficient is designed and mathematically expressed
as follows.

(13)

@ = Wpn + (a)max - a)min) X —————<
1+ ab(%
where w,,,, represents the upper limit of the weight; w,,;, signifies the lower limit of the weight; ¢ and b
are constants.

3.2 The Cauchy Mutation

To deal with the problem that EO tends to become stuck in local optimum and thus loses
population diversity, this work employ the Cauchy mutation to improve the population diversity.
The Cauchy distribution exhibits a narrower peak at its origin and a wider spread towards both
extremes. By using the Cauchy mutation, a larger perturbation can be generated near the particle
of the current variation, thereby allowing the Cauchy distribution function to search all areas of
the solution space. This approach effectively leverages the mutation effects at the distribution’s
edges to optimize individuals, thereby achieving the global optimum while simultaneously preserving
population diversity. The Cauchy distribution function is described below.

1 1
F,.(x)= 3 + - arctan ()—;) (14)

where ¢ > 0.

Based on the Cauchy distribution function, we can further update the position of the particles.
The update equation is below.

X' =X+ X x Cauchy (0, 1) (15)
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where Cauchy (0,1) represents a randomly generated value drawn from the Cauchy distribution, X
denotes the position of the current iteration, X’ signifies the position of the mutated particle.

3.3 Adaptive Sine Cosine Mechanism

In the standard EO, the update mechanism can readily become ensnared in local optima, leading
to a decline in its capacity for global exploration. To address the limitations, this work introduces the
position update equation of the sine cosine algorithm (SCA) [20] with inertia weight factor to perform
adaptive search of the particles. The novel position update equation is below.

16
X +r; xcos(ry) X |w X rs x ghest — X|,r¢ > 0.5 (16)

r=a (1 — I—;) (17

where a is set to 2; r; linearly decreases from 2 to 0. r, is derived from a uniform random distribution
that encompasses the interval [0,27]. rs and r, signfy random numbers in [0,1]. gbest is the global
optimum solution. X signifies the position of the current iteration. X” represents the updated position.

% [X-i—r3 x sin(ry) X |w x rs x ghest — X|,rs < 0.5

3.4 SCEO Algorithm

The developed SCEO algorithm updates the particle positions and does not affect the framework
of the basic EO. Firstly, it injects an adaptive inertial weight to enhance the navigation of a stochastic
equilibrium candidate. During iterations, the inertia weight continually adjusts the position of the
equilibrium candidate and hopes to move it to a more prospective region. Next, the entire particle
is updated again using the adaptive SCA to promote the search capability. The sine-cosine function
decides the exploration horizon of the search individual’s next position by controlling the direction
of the particle’s search. Once stuck in a local optimum, the search direction is changed, effectively
avoiding search stagnation. Finally, population diversity is ensured by the addition of the Cauchy
mutation mechanism in case of increased ability. By harnessing the distinctive characteristics of the
Cauchy distribution, which exhibits a significant shift from a peak at the origin to an elongated distri-
bution at its extremities, substantial perturbations are strategically induced near particles throughout
the iterative process. This enables the algorithm to explore all areas and increase the particles diversity.
Based on the above analysis, the flowchart of SCEO is given in Fig. 1.

3.5 Computational Complexity

The computational complexity of an optimization approach is an essential criterion for analyzing
performance. In this paper, the Big-O notation is adopted to denote complexity. This complexity is
contingent upon key factors such as the particle numbers (), the dimensions (d) and the iterations
(1), and (f) is the fitness evaluation.

O(SCEO) = O(initialization) + O(fitness evaluation) + O(memory saving) + O(concentration
update) + O(SCA updating strategy) + O(Cauchy mutation).

Consequently, the computational complexity of SCEO can be elucidated below.
OSCEO)=0ON xd+txfxd+txN+txNxd+NA+t+txd) +txNxd)
ZE0xfxd+itxNxd).
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Return the best Update particle
equilibrium candidate position using
Cegl Eq.(15) |

Retain the Retain the
Initialize the previous current
parameters Iter = Iter + 1 individual individual

No
Genera'te the randpm Update particle Calculate the
population of particles " . Yes
position using fitness values,
Yes Eq.(16) named fitness1
<
Rank all individuals Calculate the Update the concentration
and find the best fitness values of of the selected particle
Evaluate the fitness individual ghest all individuals using proposed Eq. (12)
value T
Construct equilibrium pool from Accomplish Update values of F, G, Randpmly select a
the population memory saving and o by Egs. (7), (8), particle from the
and (13) equilibrium pool

Figure 1: The flowchart of SCEO

The computational complexity of EO is expressed as O(t x f x d + t x N x d). In essence, it
can be summarized that the SCEO maintains the same computational complexity as the basic EO
algorithm.

3.6 Convergence Analysis

In this subsection, we delve into a theoretical exploration of SCEO to substantiate its efficiency.
The methodology employed for this proof is outlined in the subsequent steps.

We classify SCEQ into three stages: adaptive inertial weight position update, adaptive sine cosine
position update, and Cauchy mutation update.

Phase 1: From Eq. (12), during the iteration, wX,,, F, A, V, GCP are constants held constant, then
1-F

. 1-F
is also a constant, let GCP = q,, 7 = a, (t + th: X, = n,, (t + 2)th: X, = n,.

Thus, the problem is elaborated below:
Xt+2)—(F-raa)X(@)=nF —raa)(l —F+aa)+n(—-F+aa) (18)

Let F — la,a, = A, we get
X(t+2)—AX O =nmA(l -—F+aa)+n(—-F+aa,) (19)

The characteristic equation of Eq. (19) is
AM—A4*=0 (20)

Clearly, A = 44> > 0, the following two cases need to be considered.
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(1) A = 0. Only when 4 = 0, A = 0. At this point, the characteristic roots are A, = A, = 0. The
general solution is

X (O) = po+ pidy + pa1A = po (21)
where p, is the constant coefficient to be determined.

(2) A > 0, where 4 # 0. The characteristic roots are A,, = 4=+/42. The general solution is
X (1) = po + pir + paA; (22)
where p,, p\, p, are constant coefficients to be determined.

When ¢t — oo, X(t) has a limit and converges to a finite value, it implies that the iteration converges.
If X(t) of the above two cases is made to converge, the conditions need to be satisfied ||A,|| < 1,
2.0l < 1.

When A = 0, A, = A, = 0, the convergence condition is satisfied. In this case, X(t) converges.

When A > 0, the convergence region should satisfy:
44> >0
[| +/A4% < 1 (23)

From Eq. (23), the convergence regionis —1 < 4 < 1. According to Egs. (7) and (10), F —ra,a, €
(—=1,1),s0 4 € (—1, 1) in the convergence range. In this case, X (t) converges.

In summary, Phase 1 converges.

From Eq. (16), it can be seen that Phase 2 has the same search pattern as Phase 1, and it can be
proved in the same way that Phase 2 also converges.

Phase 3: From Eq. (15), Cauchy(0,1) is constants held constant, let (¢ 4+ 1)th: Cauchy (0,1) = V,,
(t + 2)th: Cauchy (0,1) = V..

A second-order linear differential equation is obtained, and the problem be expressed in the
following form:

Xt+2)-A+V)A+V)X()=0 24)

The characteristic equation of Eq. (24) is
M-+ V)A+71)=0 (25)

Clearly, A=4(1+ V)1 + V,). Because V;, >0, V, > 0, A > 0.
When A > 0, the characteristic roots are A,, = £+4/(1 + V) (1 + V). The general solution is
X (1) = siA! 4 550 (26)

where s,, 5, are constant coefficients.

When ¢t — oo, X(t) has a limit and converges to a limited value, it implies that the iteration
converges. If X (t) is made to converge, the conditions need to be satisfied ||A,|| < 1, [|A,]] < 1.

Because lim V; = 0, lim V, = 0, lim (A,,) = lim (£/ (T + V) (I + 1)) = £1.

—00 1—>00 t—>00

It satisfies the convergence condition. In this case, X (t) converges. In summary, Phase 3 converges.

Overall, the SCEO algorithm converges.
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4 Simulation and Comparisons
4.1 15 Test Functions

To ascertain the efficacy of the SCEO, 15 typical benchmark functions are applied. These
functions are meticulously detailed in Table 1. According to Table 1, they have various features, which
contain 7 unimodal functions and 8 multi-modal functions.

Table 1: Specific characterization of 15 benchmark test functions

Function type  Function formulation Search range [

Unimodal fi(x) = Z, X [—100,100] 0
L) =30, ix [—10,10] 0
L =22 (3 %) [—100,100] 0
Ji(x) =max; {|x;|,1 <x; < D} [—100,100] 0
fi) =37 ix! [-1.28,1.28] 0
for) =32, (109 2 [—100,100] 0
fr(x) = 106-xf+zj;xf [—1,1] 0

Multi-modal fi (x) = 2000 0 00 -1 % [1., cos ( \/;) +1 [—600,600] 0
£ (x) = sin’ (rx,) + [—10,10] 0
> [x?- (1+10sin’ (rx))) + (x; — 1)* — sin” 27 x,)]
So(x) =0.1D — (0.1 37 cos (Smx) — >, X7) [-1,1] 0
fux) =20+ (30, 0. Sx) > 0.5x,-) [—5,10] 0
fox) = Z-= (O.2xA + 0.1x7 - sin (2x,-)) [—10,10] 0
i () = [— 32 (Y5 (sin (50.0x%) + 1))] [-100,100] 0
S (x) = [—15,15] 0

>[4 232, — 0.3cos (3mx;) — 0.4 cos (4mxiy) + 0.7]

S0 =30 (2 4 2x2)"” ((smSO (2 +x2) 1)2+1) [—10,10] 0

4.2 Compared with EO and EO Variants

To thoroughly assess the performance of SCEQ, this paper compares the SCEO algorithm with
five novel EO variants, including the basic EO [9], LWMEQO [15], m-EO [16], IS-EO [21], and IEO [17].
To ensure equitable evaluation, a consistent population scale of 30 and a uniform maximum iteration
count of 500 are maintained across all tests. Each optimizer is subjected to 30 independent runs, all
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conducted under identical conditions with a fixed function dimension of 100. Mean minimum (Mean)
values and their corresponding standard deviations (Std) are employed as key indicators to gauge
the performance of all methods. Furthermore, the Wilcoxon signed rank test is adopted to provide a
comprehensive assessment. The findings, including Friedman’s rank and the Wilcoxon rank-sum test,
are succinctly presented in Table 2. The symbols “+/—/="in Table 2 signify that the SCEO algorithm
demonstrates superior, inferior, or similar performance compared to other algorithms, respectively.
The “N/A” notation indicates instances where no statistical significance is observed.

Table 2: Comparisons of six optimizers with 100 dimensions

Function  Results EO m-EO LWMEO IS-EO 1IEO SCEO
fi Mean 3.54E-29 3.64E-38  0.0025 13.7161 5.21E-29 0
Std 1.02E-28 1.07E-37 0.0014 53.8931 1.34E-28 0
1> Mean 4.00E-29 8.77E-39  0.0397 4.0697 2.50E-30 0
Std 6.27E-29  6.52E-39  0.0235 11.6954 2.44E-30 0
1 Mean 23.5001 62.3350 3.86E4+04 3.65E4+05 1614214 0
Std 78.1813 223.4405 2.77E4+04 1.12E4+05 425.8067 O
s Mean 0.0220 3.52E-06 46.8066 70.5539 0.0024 2.52E-192
Std 0.1151 8.44E-06  15.3180 15.3173 0.0022 0
fs Mean 3.04E-51 2.11E-55 1.56E-06 2.53E-04 6.14E-49 0
Std 9.68E-51 8.18E-55 1.39E-06 0.0013 9.82E-48 0
S Mean 3.29E-25 3.52E-34 1.02E4+03 5.26E+08 6.13E-26 0
Std 7.49E-25 1.38E-33  499.1461 2.82E+08 1.38E-25 0
1 Mean 4.80E-66  7.25E-77  2.47E-05 0.4454 7.09E-62 0
Std 7.09E-65 3.56E-76  2.68E-05 0.4936 3.74E-62 0
fs Mean 0 0 0.0069 1.3297 0 0
Std 0 0 0.0097 2.5550 0 0
fo Mean 1.71E-25  7.29E-36 1.73E4+03 64.6921 6.81E-26 0
Std 3.28E-25 2.65E-35 903.4377 182.6546  2.52E-25 0
fo Mean 0 0 6.6663 0.0184 0 0
Std 0 0 1.6731 0.0550 0 0
fu Mean 6.94E-28 4.02E-35 0.0044 1.0719 4.79E-28 0
Std 1.60E-27 1.70E-34  0.0018 1.7113 1.26E-27 0
fi Mean 7.52E-32  7.50E-41 15.7772 0.1156 8.05E-32 0
Std 9.87E-32 3.73E-40  40.0621 0.4238 1.30E-31 0
f1 Mean 1.36E-09 6.14E-19  6.1309 0.5616 9.15E-10 0
Std 4.06E-10 6.71E-19  1.1493 0.5346 4.48E-10 0
fia Mean 0 0 52.2477 31.3688 0 0
Std 0 0 4.5693 47.5438 0 0
fis Mean 0.2708 0.1243 6.7335 3.2442 0.2882 0
Std 0.0754 0.0412 1.0296 0.6360 0.0614 0
Average f-rank 2.9333 1.8667 5.4000 5.6000 3.0000 1
Overall f-rank 3 2 5 6 4 1
p-value +/=/— 12/2/1 12/3/0 15/0/0 15/0/0 12/3/0 N/A
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Based on Table 2, it reveals that the SCEO finds the theoretical best solution on all cases except
f 4. For this function, although the theoretical optimal values are not achieved, the SCEO is still better
than the other competitors. Compared with the basic EO and IEO, SCEO performs better across 12
test functions. With respect to LWMEO and IS-EO, SCEO gets better results on all of the benchmark
problems. For f,, SCEO and m-EO provide similar results. SCEQ is superior to m-EO on 12 functions,
and on the rest 3 functions the two algorithms get similar results. For f, £, and f 1,, SCEO, m-EO and
IEO obtains similar results. SCEO resembles basic EO on 2 functions and is inferior to basic EO on f.
Based on the Friedman’s rank test, it can be observed that SCEO ranks first followed by m-EO, EO,
IEO, LWMEO, and IS-EO, which reveals that SCEO provides the best performance. The p-values
consistently remain below the threshold of 0.05 within the 100-dimensional environments, which
reveals that the distinctions between the SCEO and the other methods are statistically significant.
In summary, SCEO presents more competitive performance than other comparative algorithms for
15 traditional benchmark functions.

4.3 Comparison with Other Metaheuristics

To prove the validity of the SCEQ, it is compared with some advanced metaheuristics, including
the enhanced SSA (RDSSA) [22], the improved grey wolf optimizer (OGWO) [23], the modified moth-
flame optimization algorithm (DMMFO) [24], adaptive salp swarm optimization (ASSO) [25], and
improved particle swarm optimization (BPSO) [26]. 15 test functions in Table | are adopted and the
function’s dimension is configured to 100. The Mean and Std values for the six metaheuristics are
meticulously documented in Table 3. Additionally, the outcomes of Friedman’s rank test and the
Wilcoxon rank-sum test are presented at the base of the table. In Table 3, the symbols “+/—/="
are employed to signify instances where the SCEO algorithm demonstrates superior, inferior, or
comparable performance to other algorithms, respectively. The notation “N/A” is employed when no
statistically significant difference is observed.

Table 3: Comparisons of six metaheuristics with 100 dimensions

Function  Results RDSSA OoGWO DMMFO ASSO BPSO SCEO
i Mean 1.34E-44  2.49E-17  3.40E+04 2.00E-26  3.34E-09 0
Std 7.32E-44  7.59E-17  8.45E+4+03 2.63E-27  7.98E-09 0
e Mean 6.50E-49  9.01E-16  1.44E+04 9.97E-27 1.57E-07 0
Std 3.56E-48  1.18E-15  2.73E4-03 1.81E-27  3.17E-07 0
/s Mean 6.50E-42  8.17E+03 2.33E405 2.12E-25  1.79E402 0
Std 9.44E-41  2.10E+03 3.37E4+04 1.15E-25  9.92E401 0
Sa Mean 1.71E-24  1.6364 89.3226 3.51E-14  0.0190 2.52E-
192
Std 9.34E-24  2.6427 1.9068 3.88E-15  0.0159 0
fs Mean 3.67E-98  4.11E-28  98.0966 1.46E-59  5.23E-11 0
Std 1.95E-97  1.16E-27  35.2120 4.44E-60 1.73E-10 0
S Mean 6.13E-39  5.50E-12  2.11E408 1.31E-21  5.85E-07 0
Std 4.07E-38  6.52E-12  8.12E407 4.02E-22  1.07E-06 0
/s Mean 6.32E-102 5.61E-38  0.9955 4.20E-30  2.00E-16 0
Std 6.99E-102 8.36E-38  0.5638 9.68E-30  5.08E-16 0
fx Mean 0 3.27E-03  306.3598 0 1.0IE-10 0

(Continued)
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Table 3 (continued)

Function Results RDSSA OGWO DMMFO ASSO BPSO SCEO
Std 0 6.58E-03 63.3286 0 3.28E-10 0
o Mean 6.53E-62  2.17E-23 1.50E4+03 8.15E-27 2.75E-04 0
Std 3.58E-61 7.85E-23 205.8222  9.37E-28 9.73E-04 0
fo Mean 0 9.27E-15 12.6508 0 1.68E-06 0
Std 0 6.71E-15 1.5389 0 5.61E-06 0
fu Mean 3.63E-37 9.49E-16 506.1923 1.82E-28 2.80E-08 0
Std 1.99E-36 1.06E-15 83.3650 4.76E-29 8.40E-08 0
fi Mean 7.39E-65 2.33E-26 178.2879  4.15E-29 2.35E-09 0
Std 1.31E-64 1.28E-25 34.3196 5.43E-30 6.96E-09 0
fis Mean 6.17E-15 8.49E-05 8.3849 1.29E-07 0.0038 0
Std 5.74E-14 8.81E-05 0.2792 4.82E-09 0.0026 0
fa Mean 0 2.04E-15 2.12E403 0 8.82E-07 0
Std 0 2.24E-15 375.8016 0 4.48E-06 0
fis Mean 7.69E-02  9.12E-01 7.4673 1.18E-07 0.8032 0
Std 1.07E-02  2.67E-01 0.2637 3.45E-09 0.2328 0
Average f-rank 1.8667 4.2000 6.0000 2.6000 4.7333 1
Overall f-rank 2 4 6 3 5 1
p-value +/=/— 12/3/0 15/0/0 15/0/0 12/3/0 15/0/0 N/A

From the data in Table 3, for f5, f10, f14» RDSSA, ASSO, and SCEQO obtain the theoretical optimal
solution. Compared with DMMFO, OGWO, and BPSO SCEO reaches better performance on all
of its cases. With respect to RDSSA, and ASSO, SCEO obtains better on 12 cases and has similar
results on 3 cases. According to the Friedman mean ranks acquired by eight approaches on 15 test
functions, it can be shown that SCEO is first, followed by RDSSA, ASSO, OGWO, BPSO, and
DMMFO. The p-values consistently remain below the threshold of 0.05 within the 100-dimensional
environments, which reveals that the differences observed between SCEO and the alternative methods
hold substantial statistical significance.

Table 4 presents the average runtime duration (measured in seconds) of seven different techniques
across the set of 15 benchmark functions. Notably, Table 4 highlights that EO boasts the shortest
average runtime compared to the other techniques. Importantly, the average runtime of SCEO closely
aligns with that of EO across all scenarios. This observation underscores the fact that the devised
SCEO achieves performance enhancements without compromising runtime efficiency.

Table 4: Comparison of runtime (seconds) of the algorithms with 100 dimensions

Algorithm EO RDSSA OGWO DMMFO ASSO BPSO SCEO
Average runtime 7.4162 11.4671  11.4796  12.7285 9.7434 51.7899  7.9734
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4.4 Convergence Analysis

In this subsection, we investigate the convergence behavior of each method by visually showing the
convergence process of these methods. The 15 benchmark test problems are employed from Table 1,
and the dimension is set to 100. Fig. 2 displays the convergence curves of eleven methods across selected
cases.
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Figure 2: Convergence curves of eleven algorithms with 100 dimensions
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Observing Fig. 2, it becomes evident that SCEO exhibits a gradual convergence rate in the
initial phases of the search process. At the later stage, the convergence speed is accelerated and the
convergence curve is smoother. This behavior is attributed to a strategic trade-off: during the early
stages, the algorithm intentionally prioritizes preserving population diversity, thus modestly compro-
mising early convergence. Subsequently, the algorithm transitions from broad global exploration to
focused local search, boosting solution accuracy by exploiting previously explored areas. According
to the experimental results, SCEO finds better solutions quicker than other all compared algorithms
across more than half of the cases tested. Notably, SCEO not only accelerates convergence but also
demonstrates heightened accuracy in solution outcomes when contrasted with alternative algorithms.
Overall, these results underscore the pronounced convergence advantages of SCEO over other EO
variants and the broader spectrum of compared algorithms.

4.5 Experiments on CEC 2017 Test Suite

This subsection comprehensively evaluates the performance of SCEO employing the CEC2017
test suite. The outcomes of SCEO are meticulously compared against the basic EO, various EO
variants, and a spectrum of advanced metaheuristics including the EO, m-EO, LWMEQO, IS-EO, IEO,
RDSSA, OGWO, DMMFO, ASSO, BPSO, and VC-SSA [18]. For this experiment, the upper limit
of evaluations is prudently established at D x 10*. Consistency is maintained in terms of parameter
settings for both the compared methods and SCEO, mirroring those employed in Section 4.2. All
methods are subjected to 30 independent runs, and the functional dimension remains consistent at
100. The performance of the 13 methods on the CEC2017 benchmark function with 100 dimensions
is summarized in Table 5.

According to Table 5, SCEO performs better to other comparative algorithms across 15 functions
and is inferior to the other algorithms on 14 functions. With respect to m-EO, IS-EO, RDSSA,
OGWO, DMMFO, and ASSO, SCEO is superior on all functions. Compared with BPSO, SCEO gets
better and worse results on 24 and 5 functions. For F15 and F19, SCEO is worse compared with
the EO. SCEO beats IEO in 18 cases and is inferior in 11 cases. SCEO is better than LWMEO on
25 functions, but SCEO is inferior on F11, F13, F15, and F18. For F15, F17, and F19, IEO and
BPSO have better results than SCEO. For F11, LWMEO and BPSO are superior to SCEO. According
to the average ranking, SCEO obtains the first rank, followed by IEO, EO, LWMEO, BPSO, VC-
SSA, m-EO, OGWO, DMMFO, RDSSA, IS-EO, ASSO. SCEO outperforms EO on 27 functions and
underperforms on 2 functions. SCEO outperforms VC-SSA on all functions. Overall, these data reveal
that SCEO is significantly superior to its competitors on the CEC2017 test suite.
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5 Robot Path Planning

In robotics, MRPP is the critical intermediate part. MRPP is the process of finding the best path
without collisions with obstacles from a specified starting point to a predetermined destination point,
based on certain evaluation standards. Since mobile robots emerged, many scholars have conducted a
series of studies to design efficient path-planning methods for mobile robots.

5.1 Robot Path Planning Problem Description

Recently, many metaheuristics-based MR PP techniques have been developed. Wang et al. [27] use
a modified SSA variant to tackle the MRPP problem. Wu et al. [28] harness an modified ant colony
optimization (ACO) for the MRPP task. Wang et al. [29] introduce an improved SSA and apply the
novel SSA variant to the MRPP problem. Luan et al. [30] propose an MR PP method based on a hybrid
genetic algorithm (HGA).

In this subsection, we adopt the SCEO to plan the best collision-avoidance path. Acknowledging
the intricacies of the MRPP problem, an adaptation function with the route length and obstacle
avoidance is established to assess the mass of the produced paths based on the SCEO algorithm in
the MRPP problem. The fitness function is described below.

fit=kL+(1—-kE 27
where k is the weight, L is the route length, E is the path collision penalty function.

5.2 Results and Analysis

In this subsection, we utilize the developed SCEO for the MRPP task. The SCEO is compared
with some classical optimization techniques such as GWO [31], ABC[32], PSO[10], FA[11], and VC-
SSA [18]. It is examined in the three maps provided in [33]. The general parameter settings are the
same as those in the original work. The shortest path lengths generated by the six algorithms on the
three maps are shown in Table 6. The trajectory routes for six algorithms are shown in Figs. 3-5.

Table 6: The shortest route length comparisons of six methods under three environmental terrains

Terrain SCEO GWO ABC PSO FA VC-SSA
length length length length length length
Map 1 7.4443 7.7625 7.7527 7.7328 7.5281 7.4516
Map 2 14.3043 14.3565 14.8418 14.5037 14.4288 14.3115
Map 3 15.7845 16.3281 16.2919 16.1925 16.1031 15.8430

From the data in Table 6, it can be viewed that the path planning task SCEO-based plans the
shortest path for collision avoidance on all three terrains compared with the other approaches, which
illustrates that the SCEO can get satisfying paths for simple and complex environmental settings in
the MRPP task. The trajectory routes produced by all algorithms are described in detail below.
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Figure 3: Trajectory routes of the six methods in Map 1
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Figure 4: Trajectory routes of the six methods in Map 2
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Figure 5: Trajectory routes of the six methods in Map 3

Figs. 3a—3f displays the comparison of the trajectory routes of the six algorithms in the first map.
As can be noticed from the figure, all methods can plan a safe route because this environment is
a simple terrain. Compared with other algorithms, SCEO has the shortest path. PSO, ABC, and
GWO map an identical path, which is smooth but not optimal. FA, VC-SSA, and SCEO design
an alternative trajectory route. The route of VC-SSA has more inflection points. FA has a smooth
path but not its optimal path. Figs. 4a—4f depict the trajectory routes of the second environment
map. Upon examining the figures, it becomes evident that SCEO yields the shortest path among the
showcased options. SCEO, VC-SSA, ABC, and FA produce similar trajectory routes, while GWO and
PSO provide another trajectory routes. The route of ABC gets stuck in local optimum, which results
in redundancy of the produced trajectories, and thus the path is the longest. The paths of VC-SSA,
GWO, PSO, FA are smooth but not optimal. The best trajectories of environment map are shown in
Figs. 5a—5f. GWO, ABC, and PSO provide a trajectory route through the outside of the danger area,
which avoids collision with the obstacle area but increases the fuel burn of the robot. The route of FA
has more inflection points and increases the path length. The route of VC-SSA is smoother but not
optimal. In conclusion, SCEO is the most favorable algorithmic tool, and is the superior algorithm
among all the techniques.

6 Conclusion

In this article, a novel EO variant, referred to as SCEQ, is developed to concentrate on reaching
an appropriate exploration-exploitation balance, preventing the reduction of population diversity
and escaping from the local optimal. SCEO introduces three mechanisms to enhance stability. First,
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a new update equation based on an adaptive inertia weight mechanism is employed to efficiently
balance between exploration-exploitation. Next, the adaptive SCA method is combined to enhance
the exploration capability. Lastly, to enhance population diversity, the Cauchy mutation mechanism
is introduced. The resultant SCEO is subjected to a comprehensive evaluation, spanning 15 classical
benchmark problems, the CEC2017 test function suite, and the Mobile Robot Path Planning (MRPP)
challenge. These evaluations involve a comparison with the foundational EO, various EO variants, and
a diverse array of other metaheuristic techniques. The simulation results reveal that improved mech-
anisms are extremely effective and the comprehensive performance of SCEO emerges as remarkably
competitive. SCEO presents great potential for solving various complex problems. Consequently, in
our future work, we will concentrate on the applications of SCEOQ to practical and complex engineering
optimization problems, such as vehicle scheduling problems.
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