
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.034764

ARTICLE

Efficient Cloud Resource Scheduling with an Optimized Throttled Load
Balancing Approach

V. Dhilip Kumar1, J. Praveenchandar2, Muhammad Arif3,*, Adrian Brezulianu4, Oana Geman5 and
Atif Ikram3,6

1Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science
and Technology, Chennai, 600062, India
2Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences,
Coimbatore, Tamil Nadu, 641114, India
3Department of Computer Science, Superior University, Lahore, Pakistan
4Faculty of Electronics Telecommunications and Information Technology, Gheorghe Asachi Technical University of Iasi,
Iaşi, 700050, Romania
5Department of Health and Human Development, Stefan cel Mare University of Suceava, Suceava, 720229, Romania
6Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Kuala Nerus, Malaysia

*Corresponding Author: Muhammad Arif. Email: arifmuhammad36@hotmail.com

Received: 26 July 2022 Accepted: 14 October 2022 Published: 29 November 2023

ABSTRACT

Cloud Technology is a new platform that offers on-demand computing Peripheral such as storage, processing
power, and other computer system resources. It is also referred to as a system that will let the consumers utilize
computational resources like databases, servers, storage, and intelligence over the Internet. In a cloud network, load
balancing is the process of dividing network traffic among a cluster of available servers to increase efficiency. It is
also known as a server pool or server farm. When a single node is overwhelmed, balancing the workload is needed
to manage unpredictable workflows. The load balancer sends the load to another free node in this case. We focus
on the Balancing of workflows with the proposed approach, and we present a novel method to balance the load that
manages the dynamic scheduling process. One of the preexisting load balancing techniques is considered, however
it is somewhat modified to fit the scenario at hand. Depending on the experimentation’s findings, it is concluded
that this suggested approach improves load balancing consistency, response time, and throughput by 6%.

KEYWORDS
Load balancing; throttled algorithm; efficient resource allocation

1 Introduction

Service-oriented architecture (SOA) is a design paradigm that encourages the creation and design
of generic applications that could be readily combined and utilized to construct network services. This
ensures the growth of optimized and versatile IT infrastructures. The World Wide Web Consortium is
being formed with the number of services that can be identified based on their report when published.
Modules are offered as stand-alone services that can be accessed consistently. The goal of the SOA is

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.034764
https://www.techscience.com/doi/10.32604/cmc.2023.034764
mailto:arifmuhammad36@hotmail.com

2180 CMC, 2023, vol.77, no.2

to improve business functionality modeling and uniformity between participating software solutions.
To complete a task, applications call a sequence of separate services. The service provider responds to
a customer’s query by offering services.

Web services and XML (Extensible Markup Language) are the most widely used version of
the Service-Oriented Architecture policy. These are developed to support the web platform with the
capability to operate between any modules in which the organization is running.

Web Applications adhere to several World Wide Web protocols, including SOAP (Simple Object
Access Protocol) and WSDL (Web Services Definition Language). Such technologies use XML-based
connectivity protocols and service specifications to promote compatibility. Web services are vendor,
language, and platform-independent because of the usage of XML protocols, making them ideal users
for SOA deployments.

2 Load Balancing

Balancing a scientific workflow in a cloud platform is an optimization process to share the running
loads or split the loads over the available resources. Cloud load balancing assures the optimized
response time with the highest throughput [1]. As said the response time is minimized because
the workload is distributed among different computing resources like hard drives, servers, network
interfaces, etc. This will help to improve resource utilization and optimizes the response time in the
system. In Fig. 1, the load balancing scenario is represented in a diagrammatic form. And the load
balancing in cloud applications may also provide better business continuity. The main purposes of
workload balancing in a cloud platform are:

• To keep the system stable.
• To preserve the system from crashes.
• To improve the cloud system’s performance.

Figure 1: Structure of deep learning

If the load balancer is not there, each user needs to wait until the request gets getting processed.
That may take quite a long time and wait for a requested resource that is engaged with some other

CMC, 2023, vol.77, no.2 2181

task. In this process, different kinds of entities such as CPU’s processing rate, jobs waiting in the queue,
job arrival time, etc., are being exchanged between each processor [2].

Workload Load Balancing algorithms can be classified into two categories. The first one is static
and the next one is dynamic. The load balancing (static) algorithm operates with the previous data of
the analytical information and applications of the system and shares the workload equally within the
servers [3]. In the case of load balancing (dynamic) algorithms are seeking for the most appropriate
server of the system and then the load is assigned to it. In this proposed algorithm, the workload is
distributed between the available processors in runtime. During this process, the present workload
estimation is an important scenario. Based on that the load balancing system is operated for the
environment. Lots of issues may arise in this task since it is a dynamic one and mainly concentrate
to achieve optimized response time and maximum throughput.

2.1 Traditional Throttled Algorithm

A throttled load balancer is one of the approaches for balancing workflows in dynamic environ-
ments. In the approach, first, the user will request the load balancer to find the most appropriate
Virtual Machine to execute the task. There will be many instances of VMs available in cloud
environments. All these VMs are arranged based on the kind of user requests they can perform. Then
this load balancer checks the groups when it receives any request from any client. After it finds, it
allocates the process to the lightly-loaded VM of a specific group. And in the traditional Throttled
Load Balancing Algorithm Index Structure is maintained (Table 1) to monitor the VMs and their
states to check whether it is busy or available. When a request is raised from the client side to the data
center, it searches for the most suitable VM to execute the requested job [4]. To allocate the requested
VM for a user request, the data center asks the load balancer. After that, the index Structure of the
load balancer is examined from the top till the first idle VM is found. In such a way the Index Structure
will be scanned. And in case the searching VM is found, the server contacts the identified VM with
the VM identifier. The resource mapping is done. After this, the index structure has been modified as
per the allocation done and it initiates the new allocation.

Table 1: Index table

VM State

VM1 Idle
VM2 Busy
VM3 Busy
: :
: :
VMn Idle

If the most suitable VM is not found during the scanning process of the VM for a client request, −1
will be returned to the data center by the load balancer. Then that request will be queued with the data
center. The client query is accepted in the data center once the Virtual Machine executes the allocated
task. Then load-balancer advised removing the virtual machine in which the id is given earlier. Overall
run time of the process can be measured in 3 phases. During the initial stage, the creation of the VM
is done. Then they will be kept in an idle state and kept waiting for state and the scheduler allocates
the job in the waiting queue. After the tasks are scheduled with the resource, the corresponding VM is

2182 CMC, 2023, vol.77, no.2

started executing it. This happened in the second stage. Then during the third stage, after execution, the
VM releases the job fetched. Here we can measure the computing throughput using the formula (1.1).
Let the total no. of jobs executed (JEXT) and Total no of Jobs arrived (JARV),

Throughput (%) = (JEXT)

(JARV)
× 100 (1.1)

Here the period of VM creation and VM destruction is negligible.

If an application is transferring the data, how fast it is done [5]? That is called throughput.
Bandwidth and the throughput rates are not the same even though both are measured by bits-per
Second. But bandwidth can be defined as how fast and how many channels are available between any
two nodes of a specific network. And it can be a part of throughput. Both throughput and bandwidth
are network metrics.

3 Proposed Approach

Accessing the hash structure to check each resource’s availability and access the resources for
effective load balancing is required. By optimizing the resource structure, it is possible to minimize the
access time of the resources during the dynamic load balancing [6]. In this proposed research work, it
is attempted to optimize the hash structure to achieve the scenario. Table 2 is a structure used in the
load balancing algorithm to maintain all information regarding all available resources such as VM
and PM availability and the current states of both. The data is stored in an associative way.

Table 2: Hash table

PM1 PM2 PM3 PMn

VM1

VM2

VM3

:
VMn

In this hash structure, all data has got an individual index value. The reason behind using this hash
structure in cloud resource allocation is faster accessing of data compared to other data structures.
Because it is easy to get the data if we have the index of it. And also insertion and deletion of
information about the resources are more optimal. And an index value of an available resource is
generated using the effective hashing technique. So that quick access is possible and we could get the
quick access time of a resource. Following the I-Throttled Load Balancing algorithm and Optimized
Load Balancing algorithms represents the modified throttled load balancing approach.

Algorithm 1: I-Throttled Load Balancing
Input: Set of user requests R = {r1,r2,r3 . . . ,rn}
Output: Updated hash structure with optimized resource allocation

Get the dynamic user request R
Send R {Requests to per unit time} to Optimized Load Balancing module (OLB)

Call Optimized Load Balancing () for each R (Per unit time)
End

CMC, 2023, vol.77, no.2 2183

Algorithm 2: Optimized Load Balancing
Scan for Resources in a hash structure

Check VMi has Min load
If VMi has Min response time then

Apply Optimize Hash structure Function (Rn)
Send the VM Id to the Scheduler
Change the status == found

Accept the Mapping request from the controller
Map the resource the request

Return the VM Id to the hash structure
Update the Hash structure
End

In this algorithm, Optimize Hash structure Function (Rn) is referred the Robin Hood hashing
which is an existing advanced hashing technique [7]. And in this load balancing, the resource structure
is a type of data structure to keep track of the key-value pairs of all VM and PM in that way the
resources can access instantly using a particular index, which is being generated with the help of a
hash function. Here the method used to optimize the hash structure is a fewer collision hash structure.
It is one of the effective ways to achieve the task. During the generation of ash functions, key values
are kept in the first place. In case, we are doing a string comparison operation, those are encoded as
UTF 8. That will not affect the hash functions.

Anyway, every byte of a string is checked by the hash function and it is expected to have a minimum
probability of collisions to compute the uniquely crafted values. But the hash function practiced in
ASCII strings may not be much faster to compute the values and it may have more collisions too. To
solve this issue, a two-level structure is used to generate the optimized hash function [8]. Initially, the
hash on the key is calculated after that the hash function is computed exactly for the data which is
having more than one entry. If it is a string, the most imminent data might be the hash only the prefix.
Typically this does not produce good results in practice. The compiler is a perfect example of this case.

4 Experimentation

GUI-based tool cloud simulation tool Cloud Analyst from CloudSim is used for simulation
purposes. It is a toolkit that supports performing simulation, modeling, and other operations in cloud
simulation environments. The cloud analyst will allow us to set the location of customers and data
centers. The configuration parameters are set based on the taken scenario like the total number of
requests that can be made per hour and also per user, the total processors, users, the virtual machines
available, network bandwidth, amount of storage, etc., Cloud Analyst computes the results based on
the given parameters. Then the results are displayed in graphical form. Fig. 2 represents the execution
of the simulation. In that, the following parameters are configured in the cloud Analyst and executed:

• Average Time to process in a data center
• Maximum Time to process in a data center
• Minimum Time to process in a data center
• The Maximum Time interval for response
• The Average Time interval for response
• The Minimum Time interval for response
• VM (Virtual Machine)

2184 CMC, 2023, vol.77, no.2

• UB (User Base)
• Total Cost
• Data Centers

Figure 2: Simulation Environment

5 Results and Discussion

Performance of the cloud operations incorporates various layers, and discovering where bottle-
necks are occurring in our applications is necessary. In some instances, the cloud service providers offer
the least, a satisfactory level of performance [9]. This may not be sufficient if you need an improved
performance for your running applications. So healthy competition between cloud service providers
will occur. This pushes service providers to give more attention to the throughput in terms of the
performance of running applications.

5.1 Average Time Interval for Response

Based on the simulation outcomes, it is worth noting that the projected load balancing approach
produces a better throughput in terms of load balancing. Fig. 3 gives the Average Time Interval
analysis for the response time of the proposed approach compared to other existing approaches [10].
In this, it is observed that the Average Time Interval for response and process time in the data center
has been optimized and the values are represented in Table 3.

Table 3 clearly showing the Average Time Interval for the response of the round robin algorithm
gives better results compared with the Max-Min algorithm excluding minimum response time. The
overall response time of the existing Throttled load balancing algorithm gives feasible results compared
with both approaches. And the proposed I-Throttled generates better results compared with all these
approaches.

CMC, 2023, vol.77, no.2 2185

Figure 3: Average time interval for response

Table 3: Response time analysis

S No. Algorithm/response
time

Over all response
time minimum (ms)

Over all response
time average (ms)

Over all response
time maximum (ms)

1 Max-Min 39.72 177.87 388.82
2 Round Robin 39.78 177.72 388.76
3 Throttled 39.36 177.62 388.64
4 I-Throttled 39.12 177.43 388.62

5.2 Resource Utilization Analysis

One more factor influencing efficiency in resource utilization. Resource utilization is, how
efficiently the available resources are utilized with the existing workload. When the workload increase,
resource utilization also gets increased.

But at the same time, that should not affect the quality of service and throughput of the system.
To achieve the scenario, we must ensure the proposed system influences the performance without
affecting the QoS [11]. Fig. 4 offers a comparison of resource utilization with various load balancing
systems that are currently in use. From the results, the proposed approach has got optimized outcomes
than existing load balancing approaches.

5.3 Task Waiting Time Analysis

Task waiting time is measured in this proposed approach, we got optimized wait time for the
customers, who and all ready to afford the average price of the particular component which will
increase user satisfaction [12]. That will improve the business and leads to more profit. Fig. 5 shows
the comparative analysis of task waiting for time. It is demonstrated that the overall wait time of tasks
is optimized. Overall wait time (TKw) of the array of tasks could be measured as the time difference

2186 CMC, 2023, vol.77, no.2

between arrival (TKAR) of the task and resource allocated time (TKAL) of it. It can be represented using
the formula (2),

TKW = TKAL − TKAR (2)

0

20

40

60

80

100

120

20 40 60 80 100

R
es

ou
rc

e
U

ti
liz

at
io

n(
%

)

Task Size(Kb)

Max-Min

Round Robin

Throttled

I-Throttled

Figure 4: Resource utilization analysis

0 5 10 15 20 25

220

270

320

370

420

Waiting Time of Tasks(ms)

T
ot

al
 N

um
be

r
of

 T
as

ks

I-Throttled

Throttled

Round Robin

Max-Min

Figure 5: Waiting time analysis

5.4 Throughput Analysis

The number of completed tasks is playing a vital role in the analysis of a cloud system. Because,
concerning the utilization of VMs, identified tasks are shifted from one VM to another [13]. During
this process, some of the tasks are terminated and some of them are restarted. This affects the running
time of the currently executing task. It will degrade the performance of the overall system.

And it is necessary to ensure that all arrived tasks are running until their completion. The task
completeness is assured in our proposed algorithm by monitoring them from entry to end during the
migration. The number of completed task discussion is given in Fig. 6. The results reveal that the
proposed methodology has got the maximum throughput.

CMC, 2023, vol.77, no.2 2187

86

88

90

92

94

96

98

220 270 320 370 420Su
cc

es
sf

ul
 T

as
k

C
om

pl
et

io
n

st
at

us
 (%

)
Total number of Scientific Workflows

Max-Min Round Robin Throttled I-Throttled

Figure 6: Throughput analysis

6 Conclusion

Even though there are various load balancing approaches available, there is difficulty with the
consistency with which the workload is distributed. Because network traffic and cloud users continue
to grow at an exponential rate. As a result, server-side fine-tuning in terms of service quality should be
done frequently to guarantee that service level agreements are met. As a result, the suggested load
balancing approach is derived from the current Throttled load-balancing approach for workload
distribution optimization. Based on the simulation findings, it can be observed that the presented
I-Throttled load balancing technique improves response time by 6%.

The research has useful directions for academia as well as for practitioners. The cloud resource
scheduling concept can also be used along with the concepts and ideas discussed in the studies like
[14–16].

Acknowledgement: The authors would like to thank every individual who has been a source of
information, support, and encouragement on the successful completion of this manuscript.

Funding Statement: This paper was supported by the project: “Research and Implementation of Inno-
vative Solutions for Monitoring Consumption in Technical Installations Using Artificial Intelligence”,
beneficiary S.C. REMONI TECHNOLOGIES RO S.R.L in partnership with “Gheorghe Asachi”
Technical University of Iasi, Financing Contract No. 400/390076/26.11.2021, SMIS Code 121866,
financed by POC/163/1/3.

Author Contributions: Data collection, drafting, and critical revision of the article: V. Dhilip Kumar
and J. Praveenchandar, study conception and design: Muhammad Arif and Atif Ikram, analysis and
interpretation of results: Adrian Brezulianu and Oana Geman. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: No new data were created or analysed in this study. Data sharing
is not applicable to this article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

2188 CMC, 2023, vol.77, no.2

References
[1] S. L. Li, J. B. Du, D. S. Zhai, X. L. Chu and F. R. Yu, “Task offloading, load balancing, and resource

allocation in MEC networks,” IET Communications, vol. 14, no. 9, pp. 1451–1458, 2020.
[2] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio and G. Fortino, “Task offloading and resource

allocation for mobile edge computing by deep reinforcement learning based on SARSA,” IEEE Access,
vol. 8, pp. 54074–54084, 2020.

[3] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu et al., “Dynamic task offloading and resource allocation for
mobile-edge computing in dense cloud RAN,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3282–
3299, 2020.

[4] J. Du, L. Zhao, J. Feng and X. Chu, “Computation offloading & resource allocation in mixed fog, cloud
computing systems with Min-Max fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, 2018.

[5] J. Praveenchandar and A. Tamilarasi, “Dynamic resource allocation with optimized task scheduling
and improved power management in cloud computing,” Journal of Ambient Intelligence and Humanized
Computing, vol. 12, no. 4, pp. 4147–4159, 2021.

[6] S. Deng, L. Huang, J. Taheri and A. Y. Zomaya, “Computation offloading for service workflow in mobile
cloud computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp. 3317–3327,
2015.

[7] P. Hofmann and D. Woods, “Cloud computing: The limits of public clouds for business applications,” IEEE
Internet Computing, vol. 14, no. 6, pp. 90–93, 2010.

[8] J. Praveenchandar and A. Tamilarasi, “An optimized resource allocation by improved task scheduling
algorithm in cloud environments,” Journal of Computational and Theoretical Nanoscience, vol. 15, no. 8,
pp. 2655–2658, 2018.

[9] S. K. Garg, R. Buyya and H. J. Siegel, “Time and cost trade-off management for scheduling parallel
applications on utility grids,” Future Generation Computer Systems, vol. 26, no. 8, pp. 1344–1355, 2010.

[10] M. F. Kacamarga, B. Pardamean and H. Wijaya, “Lightweight virtualization in cloud computing for
research,” in Proc. of ICSIIT , Berlin, Heidelberg, pp. 439–445, 2015.

[11] J. Praveenchandar and A. Tamilarasi, “The feasible job scheduling algorithm for efficient resource
allocation process in cloud environment,” in Proc. of ICRTAC, India, pp. 28–33, 2018.

[12] S. Smanchat and K. Viriyapant, “Taxonomies of workflow scheduling problem and techniques in the
cloud,” Future Generation Computer Systems, vol. 52, pp. 1–12, 2015.

[13] D. Patel and A. S. Rajawat, “Efficient throttled load balancing algorithm in cloud environment,” Interna-
tional Journal of Modern Trends in Engineering and Research, vol. 2, no. 3, pp. 463–480, 2015.

[14] A. Ikram, M. A. Jalil, A. B. Ngah and A. S. Khan, “Towards offshore software maintenance outsourcing
process model,” International Journal of Computer Science and Network Security, vol. 20, no. 4, pp. 6–14,
2020.

[15] A. Ikram, H. Riaz and A. S. Khan, “Eliciting theory of software maintenance outsourcing process: A
systematic literature review,” International Journal of Computer Science and Network Security, vol. 18,
no. 4, pp. 132–143, 2018.

[16] A. Ikram, M. A. Jalil, A. B. Ngah, A. S. Khan and Y. Mahmood, “An empirical investigation of vendor
readiness to assess offshore software maintenance outsourcing project,” International Journal of Computer
Science and Network Security, vol. 22, no. 3, pp. 229–235, 2022.

	Efficient Cloud Resource Scheduling with an Optimized Throttled Load Balancing Approach
	1 Introduction
	2 Load Balancing
	3 Proposed Approach
	4 Experimentation
	5 Results and Discussion
	6 Conclusion
	References

