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ABSTRACT

Action recognition and detection is an important research topic in computer vision, which can be divided into
action recognition and action detection. At present, the distinction between action recognition and action detection
is not clear, and the relevant reviews are not comprehensive. Thus, this paper summarized the action recognition
and detection methods and datasets based on deep learning to accurately present the research status in this field.
Firstly, according to the way that temporal and spatial features are extracted from the model, the commonly used
models of action recognition are divided into the two stream models, the temporal models, the spatiotemporal
models and the transformer models according to the architecture. And this paper briefly analyzes the characteristics
of the four models and introduces the accuracy of various algorithms in common data sets. Then, from the
perspective of tasks to be completed, action detection is further divided into temporal action detection and
spatiotemporal action detection, and commonly used datasets are introduced. From the perspectives of the two-
stage method and one-stage method, various algorithms of temporal action detection are reviewed, and the various
algorithms of spatiotemporal action detection are summarized in detail. Finally, the relationship between different
parts of action recognition and detection is discussed, the difficulties faced by the current research are summarized
in detail, and future development was prospected.
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1 Introduction

Being widely used in fields like security, video content review, human-computer interaction, and
others, action recognition and detection is among the important research directions in the field of
computer vision [1]. The concept differs for the two components of action recognition and detection,
which are action recognition and action detection [2]. Action recognition refers to judging the category
of human action in a given video footage, while action detection determines the start and end time of
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certain actions in the video, and locates the spatial position of figures in the picture, besides classifying
the action. More specifically, action detection can be divided into temporal action detection and
spatiotemporal action detection. Temporal action detection only determines the start and end time
of certain actions, while spatiotemporal action detection needs to further determine the position of
the figures in the picture.

Previous reviews of action recognition and detection focus more on the field of action recognition
alone and fail to summarize the current research status comprehensively and accurately. A clear
explanation of the difference and connection between the concept of action recognition and action
detection is not given in some literature. For example, Hassner [3] reviewed the early development
of action recognition, focusing on the commonly used datasets for action recognition. Luo et al. [4]
reviewed various algorithms commonly used in action recognition from the perspective of descrip-
tors. Zhao et al. [5] provided insight into traditional recognition methods and deep learning-based
recognition methods from two aspects: input content and network depth. Chai et al. [6] focused
on the comparison between action recognition methods based on descriptors and what is based on
deep learning, before prospects the development direction of action recognition. Zhang [2] provided a
comprehensive summary of the current research status of both action recognition and action detection,
but the latest research results are not mentioned. Zhu et al. [7] reviewed the research status of action
recognition and detection in detail, but the concept of action recognition isn’t distinguished clearly
from that of action detection. Sun et al. [§] summarized the current research on action recognition
and detection in detail from the perspective of data mode.

In recent years, the transformer model, typified by Vision Transformer (VIT) [9], has made
remarkable achievements, which reveals a new trend in the field of action recognition and detection.
The existing literature rarely reviews action recognition and action detection side by side, and there are
few introductions to transformer-based models. Therefore, based on dividing the action recognition
and detection structure, this paper summarizes the action recognition and detection in detail from the
perspective of the model structure, and much emphasis is put on the prominent transformer model.
Besides, this paper summarizes the various algorithms of action recognition and detection, points out
the difficulties faced by current research, and explores the subsequent trends.

2 Action Recognition

Asshown in Fig. 1, action recognition can fit into either traditional frameworks or deep learning-
based frameworks, which mainly consist of three steps: preprocessing, action expression, and classi-
fication [10]. Preprocessing includes serialization of video and extraction of optical flow features. In
traditional frameworks, Action expression mainly includes feature extraction and coding, while deep
learning frameworks use various deep neural networks to extract features. In traditional frameworks,
algorithms such as Support Vector Machine (SVM) and random forests are mainly used for action
classification, while the action classification of deep learning frameworks mainly uses Softmax
and SVM.

2.1 Action Recognition Datasets

The earliest published dataset for action recognition was Kungliga Tekniska Hogskolan (KTH)
[11]. In recent years, UCF-101 [12] and HMDBS51 [13] have been widely used in action recognition. The
KTH dataset contains 6 types of actions completed by 25 people in 4 different scenarios, with a total of
2391 video samples, while UCF-101 contains 13,320 video samples in 101 categories, and HMDBS51
includes 6,849 video samples in 51 action categories. With the deepening of research, the scenarios,
action categories, and sample sizes covered by UCF-101 and HMDBS51 are becoming difficult to meet
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the needs of the study, thus they are now being phased out. Table 1 shows the comparison of action
recognition algorithms in UCF-101 and HMDBS51.
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Figure 1: Action recognition flow chart
Table 1: Comparison of action recognition algorithms
Algorithms UCF-101 HMDB5I1
C3D[14] 82.30% 51.60%
LRCN [15] 82.92% -
IDT [16] 85.90% 57.20%
Two-stream [17] 88% 59.40%
P3D [18] 88.60% -
VideoLSTM [19] 88.90% 56.40%
T3D [20] 90.30% 59.20%
T3D-transfer [20] 91.70% 61.10%
Two-stream fusion [21] 92.50% 65.40%
Hidden two-stream (TSN) [22] 93.20% 66.80%
T3D-TSN [20] 93.20% 63.50%
St-ResNet [23] 93.40% 66.40%
TSN [24] 94.20% 69.40%
St-ResNet + IDT [23] 94.60% 70.30%
Hidden two-stream ( I13D) [22] 97.10% 78.70%
13D [25] 97.90% 80.20%
LGD-3D two-stream [26] 98.20% 80.50%
HAF + BoW/FV halluc [27] - 82.48%
R(2+1)D-BERT [2§] 98.69% 85.1%

TO + MaxExp + IDT [29] - 87.21%
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Table 2: Common datasets for action recognition

Dataset Year Category Highest accuracy
KTH[!1] 2004 6 98.83% [30]
Weizmann [31] 2005 9 100% [32]
Hollywood2 [33] 2009 12 78.6% [34]
Olympics sports [35] 2010 16 96.6% [36]
HMDB51 [13] 2011 51 85.1% [28]
UCF-101[12] 2012 101 98.69% [37]
Kinetics-400 [38] 2017 400 89.9% [37]
Something-Somethingv1 [39] 2017 174 60.9% [40]
Kinetics-600 [41] 2018 600 91.1% [42]
Something-Somethingv2 [39] 2018 174 75.4% [43]
Kinetics-600 [41] 2018 600 91.1% [42]
Kinetics-700 [44] 2019 700 83.4 [45]
RWF-2000 [46] 2020 2 89.3% [47]

In recent years, some research institutions have released datasets with larger sample sizes and
richer scenarios. Take the datasets of the Kinetic [38] series and the Something-Something [39] series
as an example. The Kinetics400 [38] dataset was released in 2017 and includes a total of 306,245
video samples in 400 categories. DeepMind then expanded the Kinetics400 dataset to release the
larger Kinetics600 [41] and Kinetics700 [44]. The Something-Somethingvl dataset was released at
ICCV2017, with 2-6 seconds per video, divided into training sets, test sets, and validation sets
according to the ratio of 8:1:1, containing more than 100,000 sample sizes. Something-Somethingv2
was released at CVPR2020, with a further expanded sample size of more than 200,000 and the image
format was updated from the previous JPG to Webm.

At present, action recognition datasets devote to expanding around specific scenarios for fine-
grained motion analysis to meet various task scenarios. Table 2 shows the basic information of
commonly used datasets for action recognition.

2.2 Descriptor-Based Action Recognition

Before deep learning was widely used, action recognition mainly adopted descriptor-based
methods. Action recognition methods that are based on descriptors can be divided into global
feature-based and local feature-based methods. The global feature extraction method initially uses
the direction gradient histogram (DGH), before developing into two methods: contour silhouette and
human joint point method. For example, Bobick et al. [48] generated Motion History Images (MHI)
through the construction of a two-dimensional motion energy map to achieve action classification.
Yang et al. [49] constructed the coordinates of joint points and combines static posture, motion
attributes, and overall dynamics for action recognition. Local feature extraction mainly includes
two methods: spatiotemporal point of interest sampling and dense trajectory tracking. For example,
Willems et al. [50] proposed an action recognition method based on 3D Harris corner point detection,
and Wang et al. [16,51] proposed action recognition methods Dense Trajectories (DT) and Improved
Dense Trajectories (IDT) based on dense trajectory tracking. Through multi-scale intensive sampling,
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these feature points are closely tracked in the temporal dimension to form trajectories, via which the
category of action is judged eventually.

2.3 Deep Learning-Based Action Recognition

When judging the category of action, humans usually need to distinguish both the static infor-
mation of the actor and the dynamic information of the change of the actor’s movement. Therefore,
the implementation of action recognition relies on static spatial information and dynamic temporal
information of the action in the video. According to the different network structures that obtain these
two types of information, deep learning-based action recognition models can generally be divided
into four categories: Two stream models, Temporal models, Spatiotemporal models, and the latest
transformer models.

2.3.1 Two Stream Models

To obtain spatial features and temporal features, the two-stream model uses two parallel pathways
to extract spatial and temporal features, respectively. It realizes the fusion of spatiotemporal feature
information through appropriate feature fusion methods before finally realizing the classification of
action. Such an idea was first proposed in 2014 by Simonyan et al. [17]. He inputs preprocessed video
frames and optical flow maps to two parallel paths and then uses AlexNet [52] for feature extraction
on both paths, where static spatial features are obtained from video frames, and dynamic temporal
features are obtained from optical flow maps. The feature information is fused at the end of the channel
to achieve action classification.

Feichtenhofer et al. [21] improved the feature fusion method on this basis. Feature fusion is
performed in advance in the convolutional layer of either channel, and additional fusion is performed
on the quasi-prediction layer to replace the previous end fusion method. The stated fusion method
not only reduces the parameters of the model but also improves the accuracy of recognition. Then,
Feichtenhofer et al. [53] introduced He et al.’s residual network (ResNet) [54] to the two stream models,
introducing residual connections between the two-Stream architectures to enhance the spatiotemporal
feature interaction and fusion between the two streams.

Similarly, focusing on the fusion of two stream features, Ng et al. [55] introduced the Long Short
Term Memory network (LSTM) [56] based on the two stream neural networks. LSTM is used to fuse
the output of two stream CNNs, effectively expressing the sequence of frames before and after through
the memory unit of LSTM, strengthening the feature extraction ability of temporal information, and
realizing the recognition of actions in long videos.

To achieve feature extraction of long-term video information, Wang et al. [24] used a sparse
time sampling strategy to sample multiple video clips from the entire video at the input, giving the
preliminary judgment result of the action category in each segment, and then combines the results of
multiple fragments to carry out “consensus” to realize the classification of action, thereby realizing
the recognition of long-range actions.

The two-stream model pre-processes video frames and optical flow maps at the input, which
requires much time and computing power at the pre-processing stage of the data, making the model
far from being able to achieve end-to-end recognition. For the above reasons, Zhu et al. [21] established
a network structure called MotionNet based on the two-stream model, which can directly model the
temporal features of video frames, replacing the role of the optical flow map.
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Feichtenhofer et al. [57] made great improvements to the two-stream model and built a lightweight
two-stream recognition network named SlowFast. SlowFast captures spatial semantics for slow
channels operating at low frame rates, and fast channels operating at high frame rates, thereby
capturing temporal information with fine temporal resolution. Finally, horizontal connections are
used to fuse from the fast path to the slow path to achieve action classification.

Compared with Temporal models, Spatiotemporal models, and the latest transformer models.,
the Two stream models are more complex and the model training is cumbersome, hence is difficult
to truly achieve end-to-end recognition. The idea of two-stream models, however, provides important
inspiration for algorithm innovation in the field of action detection and promotes the development
of action detection. The two-stream model is a compromise model made in the architecture at the
beginning stage of the development of the action recognition algorithm, and some algorithms even
need to train two pathways step by step during the model training process, which is very time-
consuming. From the architecture design of the two-stream model, it can be clearly seen that the
extraction of action features is difficult.

2.3.2 Temporal Models

To obtain spatial features and temporal features, the temporal model adopts a cascading method,
in which the spatial semantic information is first extracted by the convolutional neural network
(CNN), and the temporal feature information is then extracted by the recurrent neural network
(RNN). Simple RNNs produce gradient divergence or vanishing gradients when processing long-term
feature information, so the actual temporal model uses LSTM with a forgetting gate.

In the study of Donahue et al. [15], AlexNet and LSTM are used to cascade, and spatial and
temporal features are modeled respectively before being classified by the fully connected layer at the
end to construct Long-term recurrent convolutional networks (LRCN) for action recognition. To
better represent the relationship in space and eliminate redundant information, Sudhakaran et al. [5§]
introduced ConvLSTM [59] to replace the traditional LSTM for violent scenes, which realized the
fusion of spatiotemporal information and further improved the accuracy of recognition.

Li et al. [19] introduced the attention model into the LSTM network and constructed a new
action recognition model VideoLSTM through the fusion of ConvLSTM and Attention LSTM.
VideoLSTM introduces motion features and attention mechanisms to spatiotemporal positions,
focusing on preserving spatial feature information between video frames. Wang et al. [60] combined
13D with LSTM based on the 13D network, and modeled the high-level temporal features obtained
by the 13D model through LSTM.

When the CNN comes too complex, the constructed spatial feature map will be abstracted,
resulting in the loss of temporal feature information, and the limitation of LSTM’s ability to process
temporal information. That accounts for the loss of the popularity of current temporal mode-based
action recognition research. Since RNN networks and their variants cannot implement multi-GPU
parallel computing, temporal models cannot achieve parallel training of models on multiple devices.
Action recognition algorithms have high hardware requirements in the model training process, so the
inability to build action recognition models by multi-device parallel training will bring great trouble
to researchers, which is another important factor in the development bottleneck of current temporal
models.
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2.3.3 Spatiotemporal Models

Spatiotemporal models design an integrated structure and obtain space-time feature information
at the same time. A spatiotemporal model usually uses 3D convolution, and the data with different time
dimensions is performed on 3D convolution operation. In recent years, some scholars have proposed
adopting a specially designed data processing method in the model to fuse the spatiotemporal feature
information in advance, and then use 2D convolution to model it, which can also realize action
recognition.

The use of 3D convolution for action recognition was first proposed by Jiet al. [61]. Du et al. [14]
further extended 3D convolution to the pooling process to form 3D pooling and established the C3D
(Convolutional 3D) model. Diba et al. [20] adopted the method of transfer learning in the model
construction process and proposed a new temporal transition layer (TTL), which embeds TTL into
DenseNet [62] that extends to a 3D structure, thereby constructing a new network Temporal 3D
ConvNets (T3D).

3D convolution is very computationally intensive in the computation process, to alleviate this
problem, Qiu et al. [18] formed a new convolutional block Pseudo-3D (P3D) by separating the
convolution based on the ResNet. Based on the P3D structure, the new action recognition model P3D
was successfully constructed. Final experiments show that P3D ResNet has significantly improved
action recognition performance.

Transfer learning has a wide application in deep learning, which makes it easier to train new
models. For example, in the field of object recognition, transfer learning via a trained model obtained
by ImageNet can accelerate the convergence speed of a new model. A similar approach can be
used in the field of action recognition to reduce the workload of training. To be able to use pre-
trained models on a 3D convolutional network, Carreira et al. [25] expanded the two-dimensional
convolution kernel and pooling kernel to 3D based on Inception-vl [63]. They then pre-trained
the three-dimensional model implicitly on ImageNet before obtaining the pre-trained model of 3D
convolution in Kinetics. After pre-training, the Inflated 3D (I3D) model obtained by transfer learning
gains a great improvement in the accuracy of action recognition, which also greatly reduces the
difficulty of model training.

To make the 3D convolution model more lightweight, scholars have proposed many innovative
methods, but it is more than difficult for 3D convolution is difficult to outperform 2D convolution. In
2019, Lin et al. [64] creatively performed the migration splicing of the feature map in the temporal
dimension and proposed the Temporal Shift Module (TSM) by processing the temporal features
before feature extraction. TSM fuses invisible temporal information into spatial features, and only
2D convolution can achieve the effect of 3D convolution, which alleviates computational overhead
by sacrificing storage. Then, Shao et al. [65] proposed a new deformation displacement module,
a temporal interlacing network (TIN), based on TSM, which further strengthened the fusion of
spatiotemporal information. Fan et al. [66] proposed a learnable 3D shift network RubkisNet, which
simultaneously migrates in both the spatial and temporal dimensions, and dynamically generates the
proportion of the migration part. RubkisNet obtained a larger range of spatiotemporal information
as well as higher accuracy.

In addition, Li et al. [67] extracted adjacent frame information and multi-frame global infor-
mation by establishing a temporal excitation and aggregation block (TEA). Both short-time motion
and long-term feature aggregation were considered, which effectively reduced the complexity of the
network and also effectively avoided the drawbacks of 3D CNNs.
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Before 2019, 3D convolution was mainly used in spatiotemporal models. Then through the
ingenious design of data preprocessing, 2D convolution can also achieve accurate action classification.
By sacrificing part of the storage, the computational overhead is greatly alleviated, and action
recognition based on the spatiotemporal model has come to the prominent direction of current
research.

2.3.4 Transformer Models

Transformer is an attention-based codec-like model that originated in the field of natural language
processing (NLP) and has begun to achieve high accuracy in applications of computer vision after the
release of the VIT model in 2021. The transformer model is a commonly used decoder architecture in
the field of NLP, which has advantages in extracting “contextual” correlation information. It is now
shining in the field of computer vision, including action recognition, and is becoming an important
cross-modal architecture.

The transformer was first used in the field of action recognition after the release of Video
Vision Transformer (VIVIT) [68] in 2021. Similar to VIVIT, Ullah et al. [69] completely abandoned
CNNs based on VIT and adopt the attention structure to achieve action recognition. To alleviate the
redundancy of the temporal information, Patrick et al. [70] introduced trajectory information based
on the transformer, and obtain high accuracy in multiple datasets.

Truong et al. propose an end-to-end transformer structure, Direcformer [71]. The structure
introduces ordinal time learning into the transformer, which helps to understand the chronological
order of actions. To strengthen its ability to model different spatiotemporal spaces, Google proposed
Multiview Transformers for Video Recognition (MTV) [72], which consists of multiple independent
encoders to represent different dimensional views of the input video. MTV also fuses the information
between the views through horizontal connections. Self-Supervised Video Transformer (SVT) [73] is
a new self-supervised approach that trains a teacher-student model using similarity goals that are
represented along spatiotemporal dimensions by spatiotemporal attention matching.

Although the transformer achieves very high accuracy in the field of computer vision, including
action recognition, it incurs huge computational overhead, which places a burden on research
institutions or researchers with average research conditions. Therefore, Recurrent Vision Transformer
(RViT) [74] introduces a loop mechanism and integrates Attention Gate to establish a connection
between the current frame and the previous hidden state, thereby extracting the global space-time
features between frames, and alleviating the problem of insufficient computing power to a certain
extent.

3 Action Detection
3.1 Action Detection Datasets

The datasets commonly used for temporal action detection are mainly THUMOSI14 [75], MEX-
action2 [76], and ActivityNet [77]. The THUMOS14 dataset includes an action recognition part and
a temporal action detection part. The action recognition section includes all the categories covered
by the UCF-101 dataset. The temporal action detection section includes 20 categories, divided into
the training set, validation set, background fragment set, and test set. The MEXaction2 dataset
includes two categories: horseback riding and bullfighting. The background fragment length of the
MEXaction2 dataset is relatively long, while the proportion of labeled action fragments is low, which
makes it more challenging for temporal action detection. ActivityNet is currently the largest database,
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it also contains two tasks: action classification and temporal action detection. ActivityNet has a very
large sample size of more than 20,000, covering 200 action categories. It can only be downloaded
by writing a script based on the official YouTube link. The above dataset only coarsely labeled
the temporal action information, which is easy to cause the problem of unclear temporal action
boundaries during an experiment, so ECCV2022 released the carefully labeled FineAction [78] dataset.
The FineAction dataset contains nearly 17,000 untrimmed videos and 103,000 fine motor temporal
annotations. For all 106 action categories, the category definitions are clearer and the temporal
annotations are more accurate.

J-HMDB-21[79], UCF101-24 [80], and Atomic Visual Actions (AVA) [§1] datasets are commonly
used as spatiotemporal action detection datasets. J-HMDB-21 is a subset of the HMDB dataset,
containing a total of 21 categories and 960 video samples. UCF101-24 is a subset of UCF101,
including a total of 24 Action categories and 3207 video samples. Compared to either of the previous
datasets, the labels of the AVA dataset are much sparser. The AVA dataset consists of 300 movies,
each captured for 15 min and labeled second by second. The newly released MultiSports [82] dataset
by ECCV2022 further increases the sample size and includes more complex scenes, which is a large-
scale spatiotemporal action detection dataset mainly including basketball, football, gymnastics, and
volleyball events.

3.2 Temporal Action Detection

Temporal action detection is different from action recognition, which not only needs to classify
the action itself, but also needs to locate the temporal position of the action in the video, specifically
to locate the start and end time of certain actions accurately from a long video containing background
clips, and to determine the category of the action. Temporal action detection usually requires video
data with a long time span during model training, such data is huge, and it takes a lot of time and
computing resources in the process of data preprocessing and model training, so temporal action
detection is very difficult for research institutions with poor research conditions or weak teams.

Tables 3 and 4 show respectively the accuracy of the commonly used algorithms for temporal
action detection in the ActivityNet-1.3 dataset and the THUMOS’14 dataset, where mAP@k repre-
sents the Mean Average Precision of a certain algorithm when the intersection and union ratio is equal
to k.

Table 3: Comparison of algorithms in ActivityNet-1.3

Algorithms mAP@0.5 mAP
R-C3D [83] 26.8% -
G-TAD [84] 50.36% -
TAL-Net [85] 38.23% 20.22%
3C-Net [86] 37.2% 21.7%
BSN [87] 46.45% 30.03%
P-GCN [8¢] 48.26% 31.11%
SSN [89] 39.12% 32.26%
BMN [90] 50.07% 36.42%
Actionformer [91] 54.7% 36.6%

(Continued)
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Table 3 (continued)

Algorithms mAP@0.5 mAP
Internvideo [92] - 39%
PRN + BMN [93] 59.7% 42%

Table 4: Comparison of algorithms in THUMOS 14

Algorithms mAP@0.5 mAP@0.4
S-CNN [94] 19% 28.7%
CDC [99] 23.3% 29.4%
TURN-FL-16 + S-CNN [96] 25.6% 34.9%
3C-Net [97] 26.6% 34.1%
TAG [96] 28.25% -
R-C3D [97] 28.9% 35.6%
SSN [89] 29.8% 41%
CBR-TS [98] 31% 41.3%
BMN [90] 32.2% -
BSN [91] 36.9% 45%
G-TAD [84] 40.2% -
MGG UNET [99] 37.4% 46.8%
TAL-Net [85] 42.8% 48.5%
P-GCN [88] 49.1% 57.8%
ReAct [100] 57.1% 65%
TadTR [101] 60.1% 69.1%
Actionformer [91] 71.0% 77.8%

3.2.1 Action Detection Based on Descriptors

Traditional temporal action detection methods use descriptors to generate target fragments,
thereby achieving the detection of temporal action. For example, Richard et al. [102] identified
action types by merging two models, one of which is a length model that combines action duration
information and the other is a language model that combines contextual context. Yuan et al. [103]
extracted a pyramid of score distribution features (PSDF) based on IDT features. They then used
the LSTM network to process the PSDF feature sequence and obtained the prediction of the action
fragment according to the output frame-level action category confidence score. By training video,
Hou et al. [104] automatically determined the number as well as types of sub-movements in each
action. To locate an action, the objective function, which combines the appearance, duration, and
time structure of a certain sub-action, is optimized as the shortest path problem in the network flow
formula, before the best combination is selected by considering both the sub-action score and the
distance between the sub-action.
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3.2.2 Deep Learning-Based Action Detection

Another primary approach to temporal action detection is to use deep neural networks. According
to whether the target candidate region needs to be extracted independently, the relevant object
detection algorithms can be divided into one-stage-based and two-stage-based algorithms. Similar
to object detection, temporal action detection algorithms can also be divided into one-stage-based
methods and two-stage-based methods according to either the process of feature extraction or whether
the temporal candidate region, where independent extraction action occurs, is required.

Two-Stage Method

Inspired by the common object detection algorithm R-CNN, Shou et al. [93] proposed a temporal
action detection method based on sliding window Segment-CNN (S-CNN) in 2016. The S-CNN cuts
the original video into several clips with different lengths and then sends it to the C3D network through
pooling operations to conduct action detection. The flexibility for S-CNN to judge the starting
and ending times of certain actions is limited by the sliding window mechanism. In the following
year, Shou et al. [94] drew on the ideas of Fully convolutional network (FCN) [105] and introduced
convolutional devolutional-De-Convolutional filters based on the C3D algorithm. Frame-level fine-
grained temporal action detection is then achieved upon the joint effect of upsampling in the temporal
dimension and downsampling in the spatial dimension to achieve.

Also inspired by the object detection algorithm, Xu et al. [83] built Region Convolutional 3D
Network (R-C3D) based on the Faster R-CNN [106], which encodes the video stream with a 3D
fully convolutional network, generates a time range candidate region that may contain action, and
then classifies and fine-tunes the candidate region. Unlike S-CNNs, R-C3D can perform end-to-end
detection of actions out of video with arbitrary length.

Subject to similar influence, Chao et al. [85] used a Faster R-CNN-based multiscale framework
to improve the calibration of receptive fields, enabling resilience to extreme changes in the duration
of actions in certain videos. Then, by constructing a two-stream network, the characteristics of red-
green-blue (RGB) and optical flow are fused, and action classification is conducted using the late
fusion mechanism.

For temporal action detection in actual scenarios, there may be more than one action fragment
contained in the video to be detected, so actions can be judged comprehensively by combining the
action categories of multiple proposals. Hence Zeng et al. [88] used Graph Convolutional Networks
(GCN) [107] to explore the connections among proposals and constructed a GCN-based temporal
action detection framework Proposal-GCN (P-GCN).

Liuet al. [99] proposed to use both coarse-grained and fine-grained features to build an end-to-end
network multi-granularity generator (MGGQG) through two modules, segment proposal producer (SPP)
and frame actions producer (FAP), which is for finding action fragments. Gao et al. [108] proposed a
relation-aware pyramid (RapNet) based on the pyramid network, which enhanced the global feature
information representation and located the different lengths of Action fragments. Lin et al. [109]
established a novel Dense Boundary Generator (DBGQG), which extracts spatiotemporal features like
the two-stream model and establishes the action perception completeness regression branch and the
time boundary classification branch to realize rapid detection of action.

The two-stage method can achieve high detection accuracy by obtaining proposals of the temporal
dimension before classifying the action. However, apart from its low operation speed, the two-stage
network model is too complex and requires a lot of computing resources.
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One-Stage Method

The conventional approach for one-stage temporal action detection is to use convolutional layer
generation proposals for recognition and boundary regression. The Action proposals obtained by
this method are then assigned the same receptive fields. However, the temporal length varies for
different actions. To solve such a problem, Long et al. [110] proposed Gaussian kernel learning, which
expresses temporal information by learning a Gaussian kernel. Piergiovanni et al. [111] proposed a new
convolutional layer Temporal Gaussian Mixture (TGM) layer, which also adopts a Gaussian model.
It can capture long-distance dependencies in video effectively by using Gaussian kernels to calculate
other time point features near the current temporal window. Inspired by the object detection related-
algorithm, Lin et al. combined I3D with a borderless target detection algorithm, proposed a boundary
learning consistency loss function, and constructed an anchor-free saliency-based action detection
method Anchor-Free Saliency-Based Detector (AFSD) based on learning significance boundary
features.

In recent years, with the rapid development of transformer, some scholars have also begun
to solve the problem of temporal action detection with transformer. Liu et al. [100] embeded the
video features and positions extracted by CNNs as input and decode a set of action predictions in
parallel through the transformer. By focusing on certain segments in a video adaptively, it extracts
the contextual information required to make motion predictions, which greatly simplifies the process
of temporal action detection and increases the speed of detection. Shi et al. [112] also proposed a
DETR-like temporal action detection method based on the transformer, which proposes attention,
action classification enhancement loss, and fragment quality prediction related to IOU attenuation,
and analyzes them from three aspects: attention mechanism, training loss, and network reasoning.
Zhanget al. [113] used transformer as a basic module to design a minimalist temporal action detection
scheme, where feature pyramid and local self-attention mechanism are used to model long-time
temporal features, and classification and regression are realized without generating proposals or pre-
defined bounding boxes. In addition, Liu et al. [114] also combined transformer to propose an end-
to-end temporal action detection scheme, which obtains higher accuracy and a faster detection rate
by constructing a medium-resolution benchmark detector.

3.3 Spatiotemporal Action Detection

So-called Spatiotemporal action detection is to determine the temporal and spatial position
of certain actors in a video containing background clips and to realize action classification. In
other words, spatiotemporal action detection needs to mark the position of the actor in the spatial
picture based on temporal action detection. Spatiotemporal action detection can often be divided
into multiple stages, including action recognition, target tracking, and object detection. Therefore,
spatiotemporal action detection usually requires the construction of multiple network-level models in
the process of model construction, which is difficult in model training. Table 5 shows the accuracy
of the spatiotemporal action detection algorithms respectively over J-HMDB-21 and UCF101-24
datasets.

Puscas et al. [115] employed a selective search method to produce the initial segmentation of still
image-based video frames. This initial recommendation set is pruned and temporarily extended using
optical flow and transudative learning.
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Table 5: Comparison of spatiotemporal action detection algorithms

Algorithms J-HMDB-21 UCF101-24
Actionness [69] 39.3% -

Peng w/o MR [70] 56.9% 64.8%

Peng w/o MR [70] 58.5% 65.7%

ACT [71] 65.7% 69.5%
Faster-RCNN + two-stream [3Dconv [72] 73.3% 76.3%
YOWO (16-frame) [73] 74.4% 87.2%

HIT [116] 83.8% 84.8%

Inspired by the object detection algorithm, Kalogeiton et al. [117] built an Action Tubelet detector
(ACT) based on the SSD framework. ACT focuses on temporal features between successive frames,
reduces the ambiguity of Action prediction, and improves the accuracy of spatiotemporal localization.
Yet Gu et al. [118] used I3D for contextual temporal modeling and Faster R-CNN for end-to-end
localization and action classification, which is also derived from the object detection algorithm.

Feichtenhofer et al. [57] used SlowFast for action recognition, Deepsort for object tracking, and
YOLO for object detection, and realize action detection through a combination of three algorithms.
Inspired by the human visual nervous system, Kptklii et al. [119] proposed You Only Watch Once
(YOWO), a unified architecture for spatiotemporal action detection. The network structure of YOWO
is similar to the two-stream model, in which 3D-CNN branches and 2D-CNN branches are used
in each parallel stream to extract spatiotemporal feature information, and feature fusion, as well as
candidate region definition, is carried out in the end. YOWO uses 3D-ResNet-101 [120] to extract
spatiotemporal features and solves classification problems with 3D-CNN branches. To solve the spatial
localization problem, DarkNet-19 [121] is eventually used to extract the dual-dimensional features of
keyframes.

Based on YOWO, Mo et al. [122] proposed to use of Linknet to introduce a connection between
2D and 3D-convolutional structures. They also use a custom bounding box similar to YOLOV2 to
achieve the precise positioning of actors and update the YOWO network to the second version, which
effectively reduces the complexity of the model and further improves the accuracy of the network.

The Holistic Interaction Transformer (HIT) [1 16] network is a comprehensive dual-mode frame-
work based on the transformer, which includes RGB streams and pose streams. Each flow models
human, target, and hand interactions. Within each subnetwork, an Intra-Modal Aggregation Module
(IMA) is introduced, which merges individual interaction units selectively. The Attentive Fusion
Mechanism (AFM) is then used to glue together the features produced by each pattern. Finally, HIT
extracts clues from the time context using cache memory to better classify the possible actions.

4 Discussion

Action recognition and action detection have been widely used in practical scenarios. Action
recognition can be applied to human-computer interaction, video content review, and other fields,
while action detection can be applied to intelligent security, video content positioning, video search,
and other fields. Action recognition is the prior work of action detection, and only when the relevant
algorithms of action recognition tend to be mature, could action detection have good development.
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Fig. 2 shows the important algorithms for action recognition and detection, above the arrow, are the
action recognition algorithms, and below are the action detection algorithms. In the field of action
recognition, mainstream models include the two-stream model, temporal model, spatiotemporal
model, and transformer model.
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Figure 2: Important algorithms for action recognition and detection

Structurally, the two-stream model uses parallel CNNs to extract the spatiotemporal feature
information separately, and it is difficult to train CNN models with two pathways separately during the
model training process. The temporal model uses a cascading method to extract spatial information
and temporal information respectively, which has a simple structure and less difficulty and can
achieve end-to-end recognition. The traditional spatiotemporal model uses a 3D convolution network,
and the model rises from two-dimensional to three-dimensional, which can extract spatiotemporal
feature information at the same time, but the complexity of the model increases. In recent years, the
spatiotemporal model uses the specially designed data preprocessing method to reduce the dimension
of the convolution model, which greatly simplifies the structure of the model and reduces the difficulty
in the training process. The recent popular transformer model comes from the NLP, which mainly
adopts the attention mechanism model that is different from the other three models, and the model
complexity is high and the training is difficult.

In terms of development trends, transformer is currently the most popular model, which has
high accuracy but is limited by the complexity of the model, and there is a big gap from the actual
deployment application. After 2019, spatiotemporal models have emerged in a new direction of using
data preprocessing to achieve spatiotemporal feature data fusion, which has provided new ideas for
more researchers for some time. The temporal model relies on the LSTM network and extreme variants
to obtain temporal information, but it has fallen into a bottleneck, and there are no good innovation
points recently. As one of the earliest deep learning models in the field of action recognition, the two-
stream model has structural drawbacks, but it is still an important research direction. Table 6 shows
the comparison of the characteristics of the four models.

Action detection emerged later than action recognition, but it has undergone faster development
under the influence of action recognition algorithms. Temporal action detection can be divided into
the one-stage method and the two-stage method according to whether the candidate region is obtained
step by step. The latter can obtain higher accuracy, but the corresponding model is more complex, while
the former has a more concise structure yet with lower accuracy. The role that action detection plays
in the video field is just like the role object detection plays in the image field, as so many algorithms
of action detection have been affected by object detection.
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Table 6: Comparison of action recognition models

Models Strengths Weaknesses
Two stream models Early start, high accuracy rate, Model training takes time
wide use
Temporal models Simple structure for end-to-end The feature extraction ability is
applications limited and the development is
stagnant
Spatiotemporal models Fast recognition speed and 3D convolution consumes a lot of
flexible structure computing resources
Transformer models High accuracy The model is complex and
consumes a lot of computing
resources

In terms of the tasks that need to be completed, action recognition is the premise of action
detection and the most important step in action detection. From the perspective of algorithms, the
research of action recognition algorithms is the basis of action detection research, and the research of
action detection must solve a series of problems faced by action recognition. Action detection not only
needs to pay attention to the link of action recognition but also needs to solve the problem of the time
and space position of the actor. In general, many algorithms for action detection are just starting, and
room for improvement in efficiency and accuracy remains large.

4.1 Difficulties and Challenges
4.1.1 Difficulty in Data Collection

At present, action recognition and action detection based on deep learning is mainly based on
supervised learning, which has a strong dependence on data [123]. Hence the requirements for sample
size as well as scenarios covered by datasets are increasing. Action recognition and action detection
datasets are usually video data, which is larger than images and more cumbersome in the process of
data collection, pruning, and labeling.

Action detection datasets need to label not only the categories of actions but also the spatial and
temporal locations of actions, which is an arduous task. Temporal action detection requires the starting
and ending time of the action to be annotated at a frame level. Spatiotemporal action detection also
requires accurate labeling of the spatial location of the actor. This has led to a significant increase
in the workload of dataset calibration, so some datasets have to adopt compromise methods such as
sparse calibration to ease the pressure of data calibration.

4.1.2 High Hardware Requirements

At present, action recognition and action detection are facing mass computing power costs. With
the gradual complication of deep learning models, especially since the transformer has penetrated
the field of computer vision, it has become more difficult to train models, for the requirements
for computer GPU computing power have gradually increased. The computing power overhead
cannot be provided by ordinary hardware, which prevents the large-scale application of current action
recognition and detection algorithms [124].
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With the development of action recognition and action detection, to obtain features from videos
effectively, the scale of corresponding datasets has been expanding continuously. Thus, some open-
source datasets come to hundreds of GB or even several TB, which is a huge burden on the
storage as well as read-and-write capacity for computers. At present, most datasets need to undergo
preprocessing processes such as serialization or optical fluidization before training, bringing heavy
computational and read-write burden to the computer.

4.1.3 Difficulty Judging Action Features
Action recognition faces the following difficulties:

The first is the complexity of fine-grained recognition. Just as there are a thousand Hamlets in the
eyes of a thousand viewers, human action is complex and diverse, which may have different meanings
from different perspectives. Therefore, it is difficult to strictly divide the categories of action, just as
flapping actions, the speed of which directly determines whether the action itself has violent attributes.

The second is the complexity of spatial information. Lighting variations, occlusion, and noise
issues caused by video background information can affect feature extraction adversely. Different
observing angles towards the actor will also cause problems related to scale transformation, which
will also bring trouble to the judgment of Action characteristics.

The third is the complexity of temporal information. The modeling problem of temporal dimen-
sion is the core problem of action recognition, yet also a key difficulty. From the viewpoint of current
development status, the extraction of temporal information remains still very difficult [125].

Action detection also faces several difficulties:

The first is that action detection is limited by the performance of action recognition. Action
recognition is the basis of action detection, but there are still many problems to be solved in the current
action recognition tasks, which brings basic difficulties to subsequent action detection.

The second is the ambiguity of Action space-time dimension positioning. From the perspective of
the temporal dimension, the definition of starting and ending points of certain actions is vague, and
the length of actions also varies. From the perspective of spatial dimension, the motion problem needs
to be considered when positioning the actor in the spatial dimension, and the combination of multiple
frames avoids the problem of jittering.

4.2 Future Research Trends
4.2.1 Enrich the Dataset

Action detection and recognition mainly adopt supervised learning, and sufficient data support
must be ensured. Due to the complexity of human action and the fine-grained requirements of practical
applications, it is necessary to further expand on the existing datasets. At present, there are many
datasets in the field of action recognition, but for specific task scenarios, the data covering related
types of actions still need to be expanded. Research for action detection started late, hence the datasets
of state-of-art research are few, and the coverage for scenarios remains incomplete. Therefore, it is
now necessary to focus on enriching relevant datasets to rid them of data scarcity. For specific task
scenarios, it can also be extended based on the existing datasets using data augmentation such as
Rotation, Mixup, adding noise, and so on, which can alleviate the problem of insufficient data [126].
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4.2.2 Few-Shot Learning

Given the above problems, in specific scenarios of action recognition and detection, such as the
recognition and detection of violent acts in security scenarios, the recognition and detection of illegal
operations in industrial production scenarios, etc., the few-shot learning method can be used to relieve
pressure. The basic idea of few-shot learning is to train the network to learn metaknowledge from a
large number of prior tasks, and then use the existing prior knowledge to guide the model to learn faster
in the new task [127]. Few-shot learning can obtain data features from a small number of samples,
reducing the intensive dependence on data in behavior recognition and behavior detection.

4.2.3 Model Lightweight

Because the existing algorithms have huge computing power overhead and are difficult to promote
and deploy on a large scale, lightweight operations such as pruning the model are an important
direction for subsequent research. Besides, it is also necessary to consider reducing the complexity of
the model when designing the network structure [128]. For example, algorithms such as the SlowFast
network and TSM network can effectively promote the progress of research by reducing computing
overhead. From the perspective of practical application, the action recognition algorithm or action
detection algorithm cannot be deployed in the actual task scenario. The model architecture of the
algorithm is too complex, which puts forward high requirements for hardware. Therefore, from the
perspective of real needs, model lightweight is a task that must be completed.

4.2.4 Transformer Model

From the above content, the current transformer model has extensive participation in action
recognition and action detection. As a popular model across the fields of NLP and computer vision,
the transformer model will play an important role in the future development of action recognition and
detection. At present, Transformer has higher accuracy than CNN in action recognition and action
detection tasks, and can better connect or collaborate with NLP in future large model research. The
transformer model also needs to be optimized in terms of model parameters to reduce the hardware
requirements, so it could be optimized on this basis.

5 Conclusion

This paper systematically reviews the current research status of action recognition and detection,
focuses on four commonly used models for action recognition, divides action detection into temporal
action detection and spatiotemporal action detection, and elaborates on the context of algorithm
development in each scenario. Finally, this paper summarizes the action recognition and detection,
sorts out the differences and connections between various algorithms, and expounds on the prominent
problems faced by current research and the general direction of the next development.
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