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ABSTRACT

With the rapid development of deepfake technology, the authenticity of various types of fake synthetic content
is increasing rapidly, which brings potential security threats to people’s daily life and social stability. Currently,
most algorithms define deepfake detection as a binary classification problem, i.e., global features are first extracted
using a backbone network and then fed into a binary classifier to discriminate true or false. However, the differences
between real and fake samples are often subtle and local, and such global feature-based detection algorithms are not
optimal in efficiency and accuracy. To this end, to enhance the extraction of forgery details in deep forgery samples,
we propose a multi-branch deepfake detection algorithm based on fine-grained features from the perspective
of fine-grained classification. First, to address the critical problem in locating discriminative feature regions in
fine-grained classification tasks, we investigate a method for locating multiple different discriminative regions and
design a lightweight feature localization module to obtain crucial feature representations by augmenting the most
significant parts of the feature map. Second, using information complementation, we introduce a correlation-guided
fusion module to enhance the discriminative feature information of different branches. Finally, we use the global
attention module in the multi-branch model to improve the cross-dimensional interaction of spatial domain and
channel domain information and increase the weights of crucial feature regions and feature channels. We conduct
sufficient ablation experiments and comparative experiments. The experimental results show that the algorithm
outperforms the detection accuracy and effectiveness on the FaceForensics++ and Celeb-DF-v2 datasets compared
with the representative detection algorithms in recent years, which can achieve better detection results.
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1 Introduction

In recent years, with the continuous deep learning research, deepfake techniques have also made
rapid development, especially the generative models such as autoencoder and Generative Adversarial
Networks (GAN) [1] have been applied to the technology, which makes it easy to achieve high realism
generation and replacement of video faces. This technology which uses deep learning methods to
generate high-quality forged videos and images is called “deepfake” [2]. People can generate realistic
fake face images using deepfake that are difficult to detect with traditional techniques. Compared
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with conventional forgery methods, deepfake techniques enrich the details of face forgery and greatly
enhance the realism of forged faces, bringing a new challenge to detecting and identifying forged
content. These forged video images are widely disseminated on the Internet through social media,
which not only violate personal privacy and reputation but also mislead social opinion, confuse the
public, and even cause political disputes, posing a significant threat to national security [3]. Therefore,
to cope with the security risks brought by deepfake technology, researchers have carried out a series of
explorations in the academic community, and the design of a general and efficient deepfake detection
algorithm has become one of the research hotspots [4–8].

The deep generative model is at the heart of deep face video forgery techniques represented
by “deepfake”. The deep generative model can be simply described as a model that uses a deep
neural network for data generation to generate new data that is not included in the training dataset.
Currently, forgery generation algorithms are divided into two categories. One replaces the face to
realize the tampering of identity information, and the other replaces only the expression of the
face without changing person’s identity information. However, these generation techniques also have
obvious drawbacks, such as the presence of noticeable visual artifacts in the generated forged video
and the difficulty of maintaining frame-to-frame consistency between consecutive video frames. This
is because the characteristics of its probabilistic model, the face generation process often a certain
degree of randomness, which makes the synthesized face video has a large jitter, and the final forgery
effect still needs to be further improved. Therefore, with the continuous improvement of the generation
technology, the new forgery method focuses on solving the various shortcomings existing in the
existing techniques, and the quality of the fake face produced in the face forgery process is also
continuously improved, making the generated image or video more realistic.

Various deepfake detection methods have been proposed by researchers from different research
perspectives, some of which can achieve high identification accuracy on open-source forgery datasets.
Most of them model deepfake detection as a binary classification problem, and they tend to extract
the global features of an image using a backbone network and then feed them into a binary classifier
to distinguish between true and false. Depending on the type of feature selection, these detection
methods can be classified as temporal feature-based and spatial feature-based. The temporal feature-
based detection methods mainly use Recurrent Neural Networks (RNN) to learn the temporal features
between forgery video frames. However, these methods rely heavily on the video’s preprocessing and
the frame sequence’s length, resulting in poor generalization for cross-library detection. At the same
time, it can not meet the detection needs in the face of highly compressed videos and complex video
backgrounds due to less attention to the local forgery details within frames. Therefore, the detection
methods based on spatial features have become the mainstream in deepfake detection tasks due to
their better robustness and higher accuracy. These methods transform video detection into an image
detection problem by extracting spatial features using Convolutional Neural Networks (CNN) after
randomly selecting videos frames. However, in real scenarios, the differences between real and fake
samples often exist in subtle ways, such as changes in the curvature of the lips of a face, folds in
the facial skin texture, etc. These differences can be easily ignored by these in-frame global feature-
based detection algorithms. These detection algorithms based on intra-frame global features can easily
overlook these differences, resulting in the model ignoring many discriminative features in the feature
extraction phase, which induces the model to make wrong judgments about the authenticity of the
samples. In deep forgery detection, due to the extensive presence of forgery traces in different regions
of the sample, researchers need to pay more attention to the influence of interactions between various
features to avoid monolithic feature learning. In addition, we examined that the commonly used
channel or spatial attention mechanisms can only effectively capture local information and cannot
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establish the functional dependency between space and channel, making it difficult to fully utilize
the global information across dimensions. Therefore, this paper makes the detection model focus
on critical features more effectively by incorporating global attention mechanism into the backbone
network.

Therefore, to solve the difficulties and problems in the detection mentioned above, this paper
investigates the method of introducing localized fine-grained features in the backbone network
inspired by the idea of fine-grained classification. And to enhance the cross-dimensional interactions
of attention information, we embed the global attention mechanism in the backbone and design a
multi-branch deepfake detection algorithm. Specifically, the improvements in this paper are mainly
carried out in the following three aspects:

1. The recent detection algorithms based on intra-frame features directly extract global features as
the source of classification. It is often difficult to focus on the subtle differences between authentic and
fake samples. Therefore, to mine these fine-grained features hidden in different regions, we design a
feature localization module and use it to transform the backbone into a multi-branch detection model,
thus locating multiple discriminative regions and obtaining multi-scale fine-grained information.

2. In the training phase, we introduce the global attention module [9] in the second branch to
calculate the model attention weights. The global attention module can enhance the cross-dimensional
interaction of spatial and channel information while increasing the weights of crucial feature regions
and channels to assign more appropriate attention weights to the feature maps and improve the
accuracy of localization and detection. And we validate the effectiveness of embedding the global
attention module in the backbone through various ablation experiments.

3. To explicitly explore the relationship and calculate the complementary information between the
features of different branch regions, we employ the correlation-guided fusion module in the feature
integration phase. And then, under its guidance, we fuse the information of different branch features
to provide a diverse basis for identifying genuine and forged samples.

4. In the final integrated decision-making phase, to improve the correlation between standard
and forged samples, we formulate a multi-branch loss function, which uses cross-entropy loss as an
end-to-end loss function in all three branches.

The structure of our treatise is organized as follows. Section 2 combs through the existing
work and relevant references in the field of deepfake detection in recent years and introduces
the sources and limitations that inspired us to make algorithmic improvements. Section 3 is the
basic methodology and implementation details of our approach, including the principles and model
construction for the improvement module. Section 4 provides the details of the parameter settings,
environment configurations, dataset processing, and various results of our experiments, which validate
the effectiveness of our model. Section 5 concludes with a summary of contributions and proposes
future research directions to advance the field of deep forgery detection.

2 Related Work
2.1 Deepfake Detection Based on Deep Learning

To cope with the impact of deepfake techniques on public security, researchers have proposed
various deepfake detection methods, which can be divided into detection based on video intraframe
features and detection based on video interframe features.
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2.1.1 Detection Based on Interframe Features

The detection methods based on interframe timing features to focus on mining the timing features
between consecutive frames of the video and classifying the video authenticity by detecting the
interframe continuity and integrity. Since deepfake techniques can not forge the video as a whole
but tamper with specific regions of the face frame by frame, it is difficult to take into account the
sequence of previously forged frames when forging the current frame, which leads to discrepancies
in the spatiotemporal distribution of successive frames such as differences in the expressions of the
characters, inconsistent spatiotemporal states of the tampered regions, visual artifacts and noise inside
successive frames. Such discrepancies can be captured by RNN or other methods based on sequence
feature extraction and used to detect actual and forged videos.

Agarwal et al. [10] encoded face expressions, head movements, and other physiological signals,
then used a support vector machine (SVM) for detection and classification. Lima et al. [11] employed
spatiotemporal convolution to detect temporal and spatial artifacts of forged videos as well as utilized
multiple layers of coding units based on the self-attention mechanism to enable each frame feature to
aggregate other frame information, thus enabling effective detection of current mainstream forgery
datasets. Cozzolino et al. [12] trained an ID-Reveal model using a self-supervised learning paradigm
to mine interframe temporal features through ID networks and perform adversarial learning using
3DMM generative networks to identify the authenticity of face videos. Sun et al. [13] proposed a
robust framework LRNet to detect forged videos by modeling accurate geometric features.

2.1.2 Detection Based on Intraframe Features

The main idea of the detection methods based on intraframe spatial features is to randomly extract
image frames from the video stream, input them into CNN for feature extraction after preprocessing,
such as face alignment and face cropping, and finally use the feature information for classification.
These approaches first transform the detection object from video to image and use classical models
such as ResNet [14], Xception [15], and EfficientNet [16] as backbone networks for classification.

Currently, most deepfake detection is carried out based on interframe spatial features. Afchar et al.
[17] found that the artifacts of deepfake images are often present in the middle layer semantic
information and proposed using MesoNet combined with the Inception module to extract image
middle layer features for detection. Nguyen et al. [18] designed to use the VGG16 model to extract
features and then employ a capsule network to learn more detailed features of the face. Nirkin et al. [19]
used three encoders based on the Xception structure to encode the whole image, face region, and
background region after preprocessing. Finally, they combined the three feature vectors to achieve the
effect of detection and localization. Shang et al. [20] constructed a pixel-region relationship network
(PRRNet) and used the pixel relationship module and the region relationship module to detect spatial
association and inconsistent forgery traces in images.

However, as the forged content becomes more and more realistic, the above binary classification
models based on global features have poor detection performance. The reason is that the highly
distinguishable discrepancies between forgery samples and original samples often exist in subtleties
of the image, such as lip curvature changes and skin texture differences, which are often not easily
captured by the detection algorithm based on global features, resulting in reduced detection accuracy.
Such subtle and located differences are similar to the fine-grained classification. Therefore, to improve
the detection based on spatial features, researchers have started to analyze the deepfake detection task
expressed as a fine-grained classification problem.
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Zhou et al. [21] designed a detection network based on multi-attention and used bilinear pooling
to aggregate low-level texture features and high-level semantic features under the guidance of attention
graphs. Guarnera et al. [22] utilized an expectation-maximization algorithm to extract convolutional
traces from specific local pixels. Chen et al. [23] used a pixelhop++ module to extract features
and reduce the dimensionality of local regions separately in multiple regions of face images and
finally integrated and classified the information of each region. Liu et al. [24] divided the original
image into several blocks of the same size and randomly shuffled pixels within blocks and positions
between blocks, forcing the model to extract more discriminative forgery traces. Based on the lack
of physiological constraints in the current generative models, Hu et al. [25] proposed to explore
whether the number, shape, and relative positions of the reflected glare of forged eyes are consistent
for detection. Guo et al. [26] first located the human eyes’ oval pupil mask and then used the IoU
algorithm to calculate the difference between the fake pupil shape and the real pupil shape to determine
the authenticity of the input image.

In recent years, with the rapid development of Transformers [27], Vision Transformer algorithms
[28] that can be used in computer vision have been derived. These algorithms can extract the global
association relationship of pixels, and the number of operations required to compute the association
between two positions does not increase with distance compared with the CNN. Moreover, the internal
self-attention mechanism can generate more interpretable models with stronger modeling ability and
detection performance, which have been gradually applied in the study of deepfake detection.

2.2 Fine-Grained Classification

Fine-grained classification is a challenging research task in computer vision, which distinguishes
different fine-grained categories by capturing local discriminative features [29,30]. Compared with
traditional classification tasks, fine-grained classification provides a more detailed classification of
images. Since the discrepancies between categories are minor, the essence of this classification task is
to locate the target and local regions and perform feature extraction and processing to complete the
training and detection of the classifier.

The key to fine-grained classification is how to locate the subtle discrepancies that exist in local
regions. The main research directions can be divided into strongly supervised and weakly supervised
approaches For different ways of extracting fine-grained features. The strongly supervised approach
uses additional information, such as annotation frames and part annotation points, in addition to
category labels in classification. Therefore, it requires more manual effort and time consumption. The
weakly supervised approach only uses category labels to complete the model’s training. Currently,
research in this field mainly focuses on locating discriminative regions in a weakly supervised manner
[31–34]. In this paper, we define deepfake detection as a particular fine-grained classification problem,
and both have the same characteristics in extracting subtle and discriminative features. However,
deepfake detection only involves two categories, i.e., real and fake.

2.3 Attention Mechanism

In deep neural networks, the attention mechanism can mainly be divided into channel attention
mechanism and hybrid attention mechanism.

The channel attention mechanism focuses on the correlation between different channels of the
feature graph and automatically obtains the importance of each feature channel through network
learning, and finally assigns different weight coefficients to each channel to reinforce the critical
features and suppress the non-important features. The commonly used are the squeeze-and-excitation
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(SE) module [35] and the efficient channel attention (ECA) module [36]. The SE first compresses the
spatial dimension of the graph by global average pooling operation and then extracts the channel
attention information using a fully connected layer. The ECA, on the other hand, utilizes a 1 × 1
convolution instead of the fully connected layer to achieve information interaction across channels
based on the SE.

The hybrid attention mechanism is a more integrated attention method that combines the
advantages of channel dimension attention and spatial dimension attention. The commonly used
are the bottleneck attention module (BAM) [37], the convolutional block attention module (CBAM)
[38], and the coordinate attention (CA) module [39]. The BAM and CBAM can extract the attention
information of both channel and spatial dimensions and fuse different attention information. The CA
extracts channel attention information from the width and height directions, combining the position
information and channel attention information. In 2021, Liu et al. [9] proposed the global attention
module (GAM), which still uses the channel-space attention arrangement order. But they redesigned
the channel attention submodule and the space attention submodule. When the GAM is embedded
in the backbone model, the model cannot only consider the attention weight information extraction
in both channel dimension and spatial dimension but also ensure the cross-dimensional information
interaction to improve the detection accuracy further.

3 Methods

In this paper, we propose a multi-branch deepfake detection algorithm based on fine-grained
features, and the algorithm architecture is shown in Fig. 1.

Figure 1: Architecture of multi-branch deepfake detection algorithm based on fine-grained features

As aforementioned, the discrepancies between real and fake faces are usually subtle and occur in
local regions, which are not easily captured by the models based on global features. Therefore, to collect
local features from different regions more effectively, we design a multi-branch detection framework. In
this framework, three main components are embedded in the backbone network: (1) We use the feature
localization module (FLM) to locate the subtle discrepancy in different regions. (2) We employ the
correlation-guided fusion module (CGFM) to aggregate complementary information from different
branches. (3) We introduce the global attention module (GAM) to increase the weights of critical
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regions and channels and enhance the cross-dimensional interaction. Besides, to learn effectively the
fine-grained features of the sample, we specially design a multi-branch loss.

3.1 Feature Localization Module

To locate forgery traces in different regions, we introduce the feature localization module to
obtain significant feature representations by mining the most prominent parts of the feature map
and then suppressing them to force the model to explore other potential discriminative features in
subsequent branches. Moreover, by embedding the feature localization module into different layers
of the backbone network, we construct a multi-branch fine-grained feature extraction model, which
can obtain feature representations of multiple regions. The specific structure of the feature localization
module is shown in Fig. 2.

Figure 2: Structure of feature localization module

In the feature localization module, the feature map from a particular layer is first defined as
F ∈ RC×W×H , where C, W , H denotes the number of channels, width, and height of the feature map,
respectively. In the feature map F , it is uniformly partitioned into k striped sections along the width
dimension, and each striped section is represented as F(i) ∈ RC×(W/k)×H , i ∈ [1, k]. We define A(i) as a
high attention activation map for each part as shown in Eq. (1):

A(i) = Re lu
(
φ

(
F(i)

)) ∈ R1×(W/k)×H (1)

where the nonlinear activation function Relu is employed to remove the negative activation parts. φ

represents the 1 × 1 convolution, which is used to calculate the importance of each striped section and
share the parameters among different parts. In the activation map A(i), to measure the contribution of
each striped section to the detection, we use Eq. (2) to gain its average value:

bi = GAP
(
A(i)

) ∈ R (2)

where GAP denotes the global average pooling. bi is used as an importance factor, and its value reflects
the contribution of the striped sections. If the bivalue of a part is larger, it indicates that it is more
likely to belong to the critical regional features. The normalization of bi is performed by the Soft max
function, which is expressed in Eq. (3):

b′
i = Soft max (bi) = exp (bi)∑

j∈[1,k]

exp
(
bj

) (3)
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where b′
i is the normalized importance factor, which are combined to obtain the feature vector B′ =(

b′
1, b′

2, . . . , b′
k

)T
. The vector has a global sensory field, which can obtain the statistical information of

the feature map F on different striped sections. The most significant region on the feature map F can
be represented using the feature vector, and the enhanced feature Fb is obtained by feature fusion. The
feature fusion process is shown in Eq. (4):

Fb = F + α × (B′ ⊗ F) (4)

where the magnitude of the weight parameter α reflects the proportion of the most significant region
in the feature fusion, and the degree of feature enhancement can be effectively controlled by adjusting
α. ⊗ denotes element-by-element multiplication. Finally, as shown in Eq. (5), through applying a
convolution layer φ ′ on Fb, we can obtain a specific high-concentration feature Fp as follows:

Fp = φ ′ (Fb) (5)

In order for the subsequent modules to continue mining discriminative features in other regions,
the suppression factor si can be obtained by Eq. (6), which suppress the high attention regions on the
current branch and force the subsequent modules of the model to focus more on other regions of the
feature map F , and then learn different scale features.

si =
{

1 − β, if b′
i = max (B′)

1, otherwise
(6)

where the magnitude of the weight parameter β reflects the degree of suppression of the most
significant region in the feature map F . The combination of the suppression factors si yields the feature
vector S = (s1, s2, . . . , sk)

T . In the current branch, the most significant region of the feature map F is
suppressed by S, as shown in Eq. (7), and we can obtain the suppressed potential feature map Fs.

Fs = S ⊗ F (7)

The feature map Fs still contains many discriminative features in other regions except the sup-
pressed high-concentration features. Therefore, to locate these discriminative features, Fs is continued
to be fed into the feature localization module of the subsequent branches to capture the multi-scale
discriminative features more effectively.

3.2 Correlation-Guided Fusion Module

Although the feature localization module can locate the highly focused part of the sample, the
relationship among the features of each branch can be easily ignored because the branch structures
are relatively independent of each other. To extract a more robust feature representation, we introduce
a correlation-guided fusion module for the feature information learned from different branches. The
correlation-guided fusion module consists of several feature complementary modules (FCM), which
first explore the complementary information among the features of each branch to avoid ignoring
other discriminative features due to the focus on individual local features, and then enhance the feature
representation of the current branch through feature fusion guided by the complementary information.
The structure of the feature complementation module is shown in Fig. 3.

In the feature complementation module, the regional feature maps Fp1
output from any two

branches are defined as Fp1
∈ RC×W1×H1 and Fp2

∈ RC×W2×H2 , where C denotes the number of channels,
and W1 × H1 and W2 × H2 denote the spatial size of each feature map, respectively. To explore the
relationship among the features of different branches, we represent the feature vector of each spatial
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position along the channel dimension of the feature map F as a pixel, and characterizes the correlation
among the feature maps by the correlation among pixels, as shown in Eq. (8):

pixcel (F , i) = (
F1,i, F2,i, . . . , FC,i

)T
(8)

where pixcel (F , i) denotes the feature vector of the ith region along the channel dimension on the
feature map F , and Fj,i denotes the ith region located on the jth channel of the feature map F . After
obtaining the feature vectors along the channel dimension for each region on Fp1

and Fp2
, respectively,

we calculate the vector inner product to reflect the similarity among the feature image elements more
concisely, as shown in Eqs. (9) and (10):

M = f
(
Fp1

, Fp2

) = FT
p1

Fp2
(9)

Mi,j = f
[
pixel

(
Fp1

, i
)

, pixel
(
Fp2

, j
)] = [

pixel
(
Fp1

, i
)]T

pixel
(
Fp2

, j
)

(10)

where the matrix M represents the similarity matrix between feature maps Fp1
and Fp2

, and the element
Mi,j represents the similarity between the ith pixel of feature map Fp1

and the jth pixel of feature map Fp2
.

If the Mi,j between two pixels is smaller, the less similar and more complementary these two pixels are
to each other. Therefore, based on the negative correlation between similarity and complementarity, to
reflect the complementarity more intuitively, we define the complementarity matrix C as the negative
matrix of the similarity matrix M, and normalize the columns and rows of the complementarity matrix
through Eqs. (11) and (12) as follows:

Np2
p1

= Soft max
(
CT

) ∈ [0, 1]W2H2×W1H1 (11)

Np1
p2

= Soft max (C) ∈ [0, 1]W1H1×W2H2 (12)

where Np2
p1

and Np1
p2

denote the complementary matrices after normalization by columns and rows,
respectively. W2H2 × W1H1 denotes the dimension of Np2

p1
, and W1H1 × W2H2 denotes the dimension

of Np2
p1

. The respective complementary information can be obtained from the regional features using
Np2

p1
and Np1

p2
, as shown in Eqs. (13) and (14):

X p2
p1

= Fp2
Np2

p1
∈ RC×W1×H1 (13)

X p1
p2

= Fp1
Np1

p2
∈ RC×W2×H2 (14)

where X
pj
pi denotes the complementary information extracted from Fpj against Fpi , which is used as

the basis for enhancing Fpi in the subsequent aggregation of branch features. To further explore the
complementary relationship between the two feature maps, the mining of complementary information
operation is transformed as pixel-specific through Eqs. (15) and (16) as follows:

pixel
(

X p2
p1

, i
)

=
∑

j∈[1,W2×H2]
pixel

(
Fp2

, j
) (

Np2
p1

)
i,j

(15)

pixel
(

X p1
p2

, i
)

=
∑

j∈[1,W1×H1]
pixel

(
Fp1

, j
) (

Np1
p2

)
i,j

(16)

where each pixel in X p2
p1

is enhanced by all pixels in Fp2
, and each pixel in X p1

p2
is enhanced by all pixels in

Fp1
. If the complementarity among the pixels in Fp1

and Fp2
is stronger, it indicates that the pixels in one

of the feature maps contribute more to the pixels in the other feature map. Then each pixel in both can
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mine semantic complementary information from different regions of the other feature. Therefore, the
complementary information of regional features in each branch can be obtained according to Eq. (17):

Xpi =
∑

j �=i

X
pj
pi (17)

where X
pj
pi can be obtained by Eqs. (9), (13) and (14). In addition, as shown in Fig. 3, for the regional

feature information Fp1
and Fp2

in any two branches, the feature complementation module can calculate
both the complementary information X p1

p2
and X p2

p1
at the same time. Combining the complementary

information from different branches, we can enhance the regional feature information of the current
branch through feature fusion to prompt the model focus on different fine-grained features, as Eq. (18)
shown in:

Ypi = Fpi + γ × Xpi (18)

where Ypi denotes the enhanced regional features, which contain discriminative information at
different scales. The magnitude of the weight parameter γ reflects the proportion of complementary
information from different branch features in the feature fusion process.

Figure 3: Structure of feature complementary module

3.3 Global Attention Module

In this paper, we choose the Xception as the backbone model, which has a good effect in image
classification, and design a multi-branch structure. We find that the suppressed potential feature Fs

generated in the previous branch still not only contains a large number of potential discriminative
features but also includes some background and noise information. These interferences can impact
the localization of subsequent potential discriminative features and eventually lead to a drift between
feature localization and the target region.

Therefore, this paper introduces the global attention module in the Middle Flow of Xception
to build a more robust network structure by enhancing the model’s ability to extract key features of
forged images. The global attention module utilizes spatial and channel information at different scales
on the feature map, increases the weights of crucial feature regions and feature channels, and enhances
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the global cross-dimensional interaction of spatial and channel information so that the network can
obtain more effective feature representation capability. The structure of GAM is shown in Fig. 4.

Figure 4: Structure of global attention module

The GAM comprises two submodules: the channel attention module (CAM) and the spatial
attention module (SAM). Similar to the CBAM, the GAM belongs to the hybrid attention module
that incorporates channel and spatial attention.

In the CAM, the input feature map is given as F1 ∈ RC×W×H , where C, W , H denote the number
of channels, width, and height of the feature map, respectively. To obtain global cross-dimensional
interaction information, the channel attention module uses a 3D permutation to retain information
across three dimensions and get the feature map F ′

1 ∈ RW×H×C. Then F ′
1 is input to a two-layer multilayer

perceptron (MLP), which first compresses the channels as C/r and then reduces them to amplify the
cross-dimensional dependence of channel and space. Finally, the feature map dimensions are reduced
using another 3D permutation, and the result is element-by-element multiplied by the original feature
F1 after the activation function sigmiod to obtain the output F2 ∈ RC×W×H . The calculation process is
shown in Eqs. (19) and (20):

Mc (F1) = sigmoid (φ ′ (MLP (φ (F1)))) = sigmoid (φ ′ (W1 (W0 (φ (F1))))) (19)

F2 = Mc (F1) ⊗ F1 (20)

where sigmoid denotes the activation function. The parameters W0 ∈ RC×C/r and W1 ∈ RC/r×C denote
the parameter-sharing multilayer perceptron weights. r denotes the compression rate of the hidden
layer, and Mc (F1) denotes the output channel feature vector. The structure of the CAM is shown in
Fig. 5.

Figure 5: Structure of channel attention module

In the SAM, the input feature map is the output F2 ∈ RC×W×H of the channel attention module,
where C, W , H denote the number of feature map channels, width, and height, respectively. To focus
on spatial information more precisely, the spatial attention module employs two convolutional layers
of 7 × 7 for compression of channel dimension and fusion of spatial information. Meanwhile, since
max pooling reduces the amount of information, the spatial attention module removes the pooling
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layer to further preserve the feature information. Besides, the spatial attention module uses grouped
convolution on the channel dimension to reduce the negative effect of the significant increase in the
number of parameters due to removing of the pooling layer. Finally, the result is element-by-element
multiplied with the original feature F2 after the activation function sigmoid to obtain the output
F3 ∈ RC×W×H of the spatial attention module, i.e., the final output of the global attention module.
The calculation process is shown in Eqs. (21) and (22):

Ms (F2) = sigmoid (Conv7×7 (Conv7×7 (F2))) (21)

F3 = Ms (F2) ⊗ F2 (22)

where sigmoid denotes the activation function. Conv7×7 denotes the convolutional layer using a
convolution kernel of size 7 × 7. The compression rate of the channel between the two convolution
layers is represented as r′. Ms (F2) denotes the output spatial feature vector. The structure of the SAM
is shown in Fig. 6.

Figure 6: Structure of spatial attention module

In this paper, we embed the GAM into the Block of Xception as a kind of data enhancement
module, which makes it possible to modify the Block without affecting the branch structure, as
shown in Fig. 7. The model reconstructs the extracted feature maps by embedding the global attention
mechanism. It can improve the attention of subsequent branches on essential features and eliminate the
interference of background information as much as possible. In addition, the global attention module
achieves cross-dimension interaction without reducing dimensionality, which avoids information loss
while reducing the number of parameters and computational cost.

Figure 7: Block structure embedded in GAM
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3.4 Multi-Branch Loss Function

To assess the validity of the model classification results, this paper designs a multi-branch loss
function that uses cross-entropy loss as an end-to-end loss function in all three branches. It is expressed
in Eqs. (23)–(25) as:

Li = −yi log
(
Pi

(
Ypi

))
(23)

Pi

(
Ypi

) = soft max
(
clsi

(
Ypi

))
(24)

Ltotal = L1 + L2 + L3 (25)

where Li denotes the loss of the ith branch. yi is the true label of the input sample which is represented by
the one-hot vector. clsi denotes the classifier of the ith branch. Pi denotes the classification probability
calculated by the ith branch. Ltotal denotes the final loss.

In the training phase, the final loss Ltotal is obtained through calculating the classification loss of
the enhanced regional features Ypi in each branch. We use the AdamW algorithm to optimize the final
loss and accelerate the convergence of the model. The three branches together finally make the model
learn the various fine-grained features of the forged sample. In the testing phase, the model takes the
average prediction scores of all branches as the final prediction result.

4 Experimental Results and Analysis
4.1 Experiment Environment

The experimental platform in this paper is a 64-bit Linux operating system with Ubuntu 18.04
LTS, an NVIDIA GeForce RTX 2080Ti graphics card with 11 GB of video memory, an Intel(R)
Xeon(R) CPU E5-2678 v3 @ 2.50 GHz, and 62 GB of RAM. The experimental code is implemented
in the Pytorch deep learning framework with version 1.11.0, Anaconda version 4.12.0, and Python
version 3.8.

4.2 Introductions of Datasets

In this paper, we select two mainstream deepfake datasets for experiments, i.e., FaceForensics++
[40] and Celeb-DF [41]. Some samples of datasets are shown in Fig. 8.

Figure 8: Samples of the three datasets

The FaceForensics++ (FF++) dataset is one of the most significant and widely used datasets.
The dataset captures 1000 short videos containing unobstructed faces from YouTube and ensures
that the faces are contained in consecutive frames. Then it is manipulated by five forgery techniques
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(DeepFakes, Face2Face, FaceSwap, Neural Textures, and FaceShifer) to generate a total of 5000 forged
videos with three different compression ratios (lossless compression: Raw, high-quality compression:
c23, and low-quality compression: c40). Among them, DeepFakes is based on an autoencoder for
face replacement; FaceSwap is a graphics-based approach. To verify the effectiveness of the proposed
algorithm for the deepfake detection task, we select the DeepFakes and FaceSwap datasets with a
compression rate of c23 in this paper.

The Celeb-DF dataset captures 590 real videos of 59 celebrities from YouTube, which consider
people of different genders, ages, and races. It generates 5639 forged videos in MPEG4.0 format
with an average length of 13 s using a single DeepFakes approach. Since this dataset can fuse the
boundary between the forged and original region by enhancing the face resolution and establishing a
color conversion algorithm for the faces in the forged and original videos, it dramatically improves the
quality of the forged data. The Celeb-DF dataset is currently recognized as a high-quality deepfake
dataset. In this paper, we use the extended Celeb-DF-v2 dataset for our experiments.

4.3 Experiment Setting

Since the forgery regions are primarily concentrated in the facial regions, to make the model focus
more on the features of the forgery traces, the experiments in this paper firstly intercept 30 frames
at equal intervals for each video in the data preprocessing stage. Second, we use the face detection
algorithm RetinaFace to locate the critical points of the five facial features in each frame to determine
the facial rectangle. After the face alignment, the images are cropped to 320 × 320 input samples.
Then, we employ the sharpening operation and Gaussian blur on the samples to refine the images and
reduce image noise. We standardize and normalize the images to enhance the model’s generalization
ability. Finally, the datasets are divided into train-sets and test-sets in the ratio of 7:3, and the division
results are shown in Table 1.

In addition, the specific settings of other hyperparameters are shown in Table 2.

Table 1: Division results of datasets

Datasets DeepFakes FaceSwap Celeb-DF-v2

Train 41936 41945 143192
Test 17979 17976 61368

Table 2: Hyperparameters setting

Parameters Value

Epoch 40
Batchsize 18
α in FLM 0.5
β in FLM 0.5
γ in CGFM 0.8
Learning rate 1 × 10−3
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4.4 Evaluation Index

In this paper, we use the Accuracy (Acc) and Area under Receiver Operating Characteristic (ROC)
Curve (AUC) to evaluate the model effect comprehensively.

Acc is used to describe the classification accuracy of the classifier for genuine and fake samples,
and a larger value of Acc indicates a higher correct classification rate of the model. AUC is defined
as the probability that the predicted probability value of getting real samples is greater than the
probability of fake samples, and a larger value of AUC indicates the better performance of the
detection model. The calculation formula of Acc and AUC is shown in (26) and (27):

Acc = TP + TN
TP + FP + FN + TN

(26)

AUC = 1
2

n−1∑
i=1

((
FP

FP + TN

)(i+1)

−
(

FP
FP + TN

)(i)
)

×
((

TP
TP + FN

)(i+1)

+
(

TP
TP + FN

)(i)
)

(27)

where TP denotes the real face image predicted as true by the model. TN denotes the fake face image
predicted as false by the model. FN denotes the real face image predicted as false by the model. FP
denotes the fake face image predicted as true by the model. And n denotes the total number of positive
and negative samples.

4.5 Analysis of Experimental Results

4.5.1 The Ablation Experiment of Each Improved Strategy in Terms of Performance Gain

In this experiment, we use the Xception as the baseline model and design a set of ablation exper-
iments on the DeepFakes dataset and FaceSwap dataset to verify the performance gains brought by
the feature localization module (FLM), correlation-guided fusion module (CGFM), global attention
module (GAM) and their combinations to the model detection. The evaluation metrics include Acc
value and AUC value. The experimental results are shown in Table 3 and Fig. 9.

Table 3: The classification effect performance gain generated by each improved strategy

Models
DeepFakes FaceSwap

Acc/% AUC/% Acc/% AUC/%

Baseline 96.81 98.74 97.17 99.10
+FLM 97.75 99.65 97.84 99.55
+CGFM 97.47 99.56 97.66 99.60

Xception +GAM 97.57 99.45 97.62 99.44
+FLM+CGFM 98.03 99.61 98.23 99.64
+FLM+GAM 98.11 99.66 98.32 99.61
+CGFM+GAM 97.98 99.63 97.84 99.54
+FLM+CGFM+GAM 98.67 99.80 98.55 99.72
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Figure 9: The performance gains brought by different improvement strategies on two datasets

Based on Xception, when the FLM is used only, the detection accuracy of the model is improved
by 0.94% and 0.67% on the two datasets, respectively, proving FLM’s effectiveness. After embedding
the FLM in the baseline model, the Xception is transformed into a multi-branch structure, allowing
the model to focus on the subtle discrepancies among different regions of the real and fake images so
that more potential feature information can be mined, providing more possible bases for subsequent
classification.

When the FLM and CGFM are used together, the detection accuracy of the model is improved
by 0.28% and 0.39%, respectively, compared with using the FLM alone. Furthermore, the AUC and
loss are also optimized. It indicates that the model’s performance can be further improved by using the
CGFM and FLM together. The reason is that the submodule FCM in CGFM can effectively explore
the complementary information between the features of two branches and enhance the regional
features in each branch through feature fusion guided by the complementary information to make
them more diverse and discriminative.

After introducing the GAM, compared with the baseline model, using the GAM alone leads to
0.76% and 0.45% improvement in detection accuracy on the two datasets, respectively. Compared
with using FLM and CGFM, the simultaneous introduction of the three improvement strategies
leads to 0.64% and 0.32% improvement in model detection accuracy, respectively. The experimental
comparison results show that the global attention module enables the model to better represent
critical information through the global cross-dimensional interaction. At the same time, it further
demonstrates that the combination of the three improvement strategies can obtain the best detection
results, which verifies the effectiveness of the proposed method in deepfake detection in this paper.

4.5.2 The Ablation Experiment of Global Attention Module Embedding

To explore the best embedding position of the global attention module in the multi-branch model,
this paper designs seven types of attention module embedding methods and inserts them into the
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Blocks of different branches, respectively. Acc and AUC are used for the experimental indexes. The
specific embedding methods and detection results are shown in Table 4 and Fig. 10.

Table 4: The classification effect performance gain generated by each embedding method

Method Embedding position DeepFakes FaceSwap

First branch Second branch Third branch Acc/% AUC/% Acc/% AUC/%

(1) — — — 98.03 99.61 98.23 99.64
(2) √ — — 97.18 98.87 97.13 98.45
(3) — √ — 98.67 99.80 98.55 99.72
(4) — — √ 98.13 99.60 98.02 99.58
(5) √ √ — 97.35 99.52 97.58 99.51
(6) √ — √ 97.63 99.58 97.67 99.62
(7) — √ √ 97.90 99.67 97.82 99.58
(8) √ √ √ 97.29 99.50 97.32 99.48

Figure 10: The classification effect and the number of model parameter change on two datasets

According to the experimental setting, the results in the table can be classified as unembedded
GAM, single-branch embedded GAM, and multi-branch embedded GAM. Method (1) does not
embed GAM. Methods (2) (3) (4) embed GAM in different branches, respectively. Methods (5) (6)
(7) (8) belong to multi-branch embedded GAM.

The model achieved the highest Acc and AUC values on both datasets when the GAM is embedded
in the second branch only. Compared with method (1), embedding GAM in the second branch
increased the Acc values by 0.61% and 0.64%, and embedding GAM in the third branch increased the
Acc values by 0.2% and 0.39%. However, there is a slight decrease in the model detection accuracy after
embedding the GAM in the first branch. In the first branch, the model still mines the global features of
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the sample, which contains both forgery information and a lot of background information. Therefore,
embedding the GAM in the first branch tends to make the model focus on irrelevant background
information, which causes bias in detection.

At the same time, compared with the case of method (1), the model detection accuracy in the case
of embedding GAM in multiple branches does not improve significantly with the increase of attention
module numbers. Therefore, considering model detection accuracy and the number of parameters
brought by the introduction of the attention modules, in this paper, we choose to insert the GAM in
the Block of the second branch.

4.5.3 The Comparative Experiment of Different Attention Modules

To further verify the effectiveness of GAM for model performance improvement in the deepfake
detection task, we replace the GAM embedded in the backbone network with the SE [29], ECA [30],
BAM [31], CBAM [32], and CA [33]. Meanwhile, the improved model with the FLM and CGFM is
defined as the baseline to compare the detection performance of the model after embedding different
attention modules on two kinds of datasets. Experimental metrics use Acc and AUC. The experimental
results are shown in Table 5 and Fig. 11.

According to the comparison results in Table 5, it can be found that the model performance
does not improve significantly and even decreases after embedding the SE and the ECA in the
branches, respectively. The analysis of the reason for this phenomenon may be related to the lack
of spatial information. In extracting channel attention weights, the feature map’s spatial dimension
is compressed, which makes it easy to ignore the spatial information in the process of feature fusion
among channels, leading to a decrease in the model detection accuracy. In addition, although the
CA injects the position information into the channel attention, it focuses mainly on the channel
information of images and cannot capture spatially long-distance dependencies.

When using the BAM and CBAM, the final results are still unsatisfactory despite the slight
improvement in model performance compared with the baseline model. Due to the lack of global
cross-dimensional interaction of spatial and channel information, the network cannot obtain a more
accurate feature representation capability.

Table 5: The comparison results of different attention modules

Attention module DeepFakes FaceSwap

Acc/% AUC/% Acc/% AUC/%

Baseline 98.03 99.61 98.23 99.64
SE [29] 96.84 98.82 97.55 99.40
ECA [30] 97.39 99.55 97.79 99.56
BAM [31] 98.13 99.41 97.91 99.62
CBAM [32] 98.32 99.61 98.47 99.68
CA [33] 97.87 99.58 97.59 99.54
GAM [3] 98.67 99.80 98.55 99.72
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Figure 11: The classification effect of using different attention modules on two datasets

After embedding the GAM, the detection performance of the model is significantly improved,
indicating that compared with other mainstream attention modules, the GAM provides more effective
attention guidance in deepfake detection tasks, which is conducive to improving model detection
accuracy.

4.5.4 The Comparative Experiment with Other Algorithms

To improve the effectiveness of the model in this paper for the deepfake detection task, nine
mainstream deepfake detection models are selected for comparison in this experiment, and the
evaluation metrics include Acc and AUC. The comparison results are shown in Table 6 and Fig. 12.

Table 6: Comparison with other models

Model DeepFakes FaceSwap Celeb-DF-v2

Acc/% AUC/% Acc/% AUC/% Acc/% AUC/%

ResNet50 [8] 94.50 95.67 94.83 94.67 92.87 93.43
Xception [9] 96.81 98.74 97.17 99.10 95.82 97.41
EfficientNet [10] 96.63 99.18 97.12 99.13 96.33 97.73
MesoNet [11] 93.40 93.67 91.70 93.40 91.21 91.81
Capsule network [12] 96.50 97.67 95.93 97.31 92.77 92.51
Identity encoding [13] 94.50 96.21 84.50 90.30 91.22 94.34
Muti-attention [15] 97.60 99.29 96.37 98.97 96.90 98.10
Defakehop [17] 97.45 95.95 98.28 97.87 90.56 87.65
Block shuffling [18] 95.30 98.68 97.33 98.13 98.26 98.72
Ours 98.67 99.80 98.55 99.72 98.37 99.58
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Figure 12: Comparison with other models

Based on the comparison results, it can be seen that the proposed algorithm in this paper has
significant improvements in detection performance compared with the mainstream detection models.
On the DeepFakes and FaceSwap datasets, the proposed algorithm achieves the best results regarding
Acc and AUC values, with 98.67% and 98.55% for Acc and 99.80% and 99.72% for AUC, respectively.
Meanwhile, to test the ability of the algorithm to deal with samples with more complex forgery degree,
the Celeb-DF-v2 dataset with higher forgery quality is selected experimentally, and the Acc value of
98.37% and the AUC value of 99.58% are obtained, which have better improvements in the detection
accuracy and effect than most current algorithms.

In summary, the detection algorithm proposed in this paper is more accurate in detecting forged
samples, which is mainly due to the multi-branch structure that enables the model to mine the fine-
grained feature information in different regions of the samples and fuses the features among different
branches through the correlation-guided fusion module, to learn more discriminative fine-grained
features.

4.5.5 Visualization of Results

To represent the gain effect of the improvement module on the multi-branch network more
intuitively, we use the Grad-CAM graph [42] to visualize the regions of the detection model in different
branches focusing on samples, as shown in Fig. 13.

The Grad-CAM is a deep network visualization method based on gradient localization. Specif-
ically, the activation map is obtained as a cumulative weighted average of activation values across
channel dimensions given a feature map. The red part in Fig. 8 represents the region of interest for the
model. For the forged samples chosen from the three datasets in the experiment, the activation maps in
the first column to the third column correspond to the attention maps drawn from different branches
of the model, respectively, and the three rows represent the changes in the activation maps in the case
of different improvement methods.
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Figure 13: Visualization of the forged region

By comparing the discrepancies among the proposed different improvement methods in the class
activation attention graph, it can be found that: (1) After the introduction of FLM, the model can
locate different regions of the sample and starts to mine feature information from these fine-grained
regions. (2) After the introduction of CGFM, the feature information learned in all branches is focused
on the diverse regional information mined by different branches. (3) After the introduction of GAM,
different weights are assigned to different channels and regions, improving the feature map’s multi-
scale feature representation capability. The visualization experiments demonstrate the contribution of
FLM, CGFM, and GAM to the model in the deepfake detection task, which gives the model better
detection capability.

5 Conclusions

In this paper, we express the deepfake detection task as the fine-grained image classification
problem and propose a multi-branch deepfake detection algorithm based on fine-grained features.
The algorithm constructs a multi-branch network structure that can focus on the subtleties of different
sample regions to learn multi-scale detailed features, which effectively solves the shortage of detection
accuracy due to coarse-grained features. We introduce the feature localization module and correlation-
guided fusion module to complete the forgery traces’ localization and detection. In addition, embed-
ding the global attention module in the backbone network enhances the cross-dimensional interaction
of spatial and channel information and reduces the influence of irrelevant background regions in the
sample. These improved strategies provide a new idea for deepfake detection.

In terms of detection accuracy, the proposed algorithm in this paper investigates the effectiveness
of the improved strategies through a variety of ablation experiments, which has been confirmed to be
more comprehensive and accurate in the detection task.

In future work, we can continue to conduct research from the following two aspects: (1) First, we
should explore more efficient fine-grained feature extraction methods. (2) Second, we research how
to construct richer deepfake samples to improve the cross-library testing capability of fine-grained
features for deepfake detection.
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