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ABSTRACT

Solving arithmetic word problems that entail deep implicit relations is still a challenging problem. However,
significant progress has been made in solving Arithmetic Word Problems (AWP) over the past six decades. This
paper proposes to discover deep implicit relations by qualia inference to solve Arithmetic Word Problems entailing
Deep Implicit Relations (DIR-AWP), such as entailing commonsense or subject-domain knowledge involved in
the problem-solving process. This paper proposes to take three steps to solve DIR-AWPs, in which the first three
steps are used to conduct the qualia inference process. The first step uses the prepared set of qualia-quantity models
to identify qualia scenes from the explicit relations extracted by the Syntax-Semantic (S2) method from the given
problem. The second step adds missing entities and deep implicit relations in order using the identified qualia scenes
and the qualia-quantity models, respectively. The third step distills the relations for solving the given problem by
pruning the spare branches of the qualia dependency graph of all the acquired relations. The research contributes to
the field by presenting a comprehensive approach combining explicit and implicit knowledge to enhance reasoning
abilities. The experimental results on Math23K demonstrate hat the proposed algorithm is superior to the baseline
algorithms in solving AWPs requiring deep implicit relations.
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1 Introduction

Solving arithmetic word problems entailing deep implicit relations is a critical branch problem of
solving arithmetic word problems. Arithmetic word problems entailing deep implicit relations are the
AWPs that can be solved only after adding the deep implicit relations. Two example types of DIR-
AWPs are the AWPs of entailing commonsense or specific domain knowledge. “Chicken and rabbit
in the same cage” is an example of entailing commonsense. People use this problem as a touchstone
to judge whether the solver is powerful. In other words, people think that DIR-AWPs are the most
difficult AWPs. However, there are only so many satisfactory algorithms for solving DIR-AWPs. The
paper has studied this problem. The reason is that the type of problem represents the highest degree of
difficulty in solving AWPs. This paper proposes discovering deep implicit relations by qualia inference
to solve DIR-AWPs, such as entailing commonsense or subject-domain knowledge.
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In response to this issue, deep implicit knowledge has been proposed to tackle the challenge of
multi-steps of implicit relations reasoning during the problem-solving of DIR-AWPs. The syntax-
semantic relation graph (S2RG) is a middle-state that facilitates the qualia structure from the S2 model.
The S2RG enhances the knowledge representation and reasoning capability of solving DIR-AWPs in
real-world scenarios. This paper proposes the three steps used to conduct the inference process.

Yu et al. proposed a Vectorized Syntactic-Semantic (V-S2) method [1,2] for solving word problems.
This method encapsulates mathematical knowledge into S2 models and leverages a neural network
miner to discover implicit quantity relations. The authors extend this paper by proposing a novel
approach called the Qualia Syntax-Semantic Model (QS2M). The QS2M method leverages qualia-
based relation inference to discover deep implicit relations. Compared to traditional similarity match-
ing and pattern recognition-based inference approaches, the graph-based inference method QS2M
provides a more logically controllable and understandable solution to solving word problems. This
modification offers a more sophisticated approach to discovering implicit relations in word problems.
This understanding is achieved through QS2M methods, which extract relations from external qualia-
based datasets and uncover relations from an expanded understanding of the problem. The proposed
algorithm highlights the AWP text, scenario understanding and inference of deep implicit knowledge.

This paper uses a tutorial based on an algorithm approach that leverages the generalized problem-
solving principle. They contend that learners can more effectively learn by focusing on relational
operations instead of concentrating only on the system of equations. This approach divides the task
of obtaining a system of equations into two simpler sub-tasks: identifying relations and their transfor-
mation into equations. The proposed algorithm, known as the “relation-centric solving algorithm”,
addresses the growing demand for advanced intelligent tutoring systems [3]. The contributions of this
paper can be summarized as follows:

1. The QS2M has been proposed for solving DIR-AWP characterized by complex problem
scenarios. The QS2M approach utilizes graph-based inference, which provides a logically controlled
and coherent framework compared to traditional methods.

2. Implicit knowledge addition by the QS2M model represents the relationships between math-
ematical entities and their attributes. The qualia role patterns in different problem scenarios are to
extract the DIR-AWP quantity relations from fully connected S2RG.

2 Related Work

The development of methods for acquiring quantity relations from problem texts has involved
using manually crafted rules [4,5] or templates in their early stages [6]. Rule-based [7] systems rely on
predefined rules, such as predicate logic, for unambiguous deductions. Alternatively, semantic parsing-
based methods [8] utilized the semantic structure of problems to retrieve historical knowledge more
efficiently. However, this approach came at the expense of ambiguity and inference interpretation
[9,10]. Yan et al. [11] proposed a seq2seq model that translated problem sentences into expressions.

Furthermore, Liang et al. [12,13] designed the teacher module to associate the encoding to match
the correct solution and analogical pairs in a latent space. Above all, Yu et al. [1] proposed a state-
action paradigm that utilized knowledge expressions and action transformations. Advanced methods
can be categorized into knowledge-addition and state action-based methods that adopt a relation-
centric approach based on this paradigm.
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2.1 The Knowledge-Addition Method Solving DIR-AWP

The main objective of the research is to employ S2RG to bridge the gap of implicit knowledge
for DIR-AWP. The paper reviewed related knowledge acquisition and reasoning work to achieve
this goal. Walter et al. [14] proposed a two-frame framework for solving AWPs, utilizing knowledge
and solution frames to store problem-understanding outcomes. In Natural Language Processing
(NLP), knowledge-addition methods have shown the potential to enhance problem comprehension
through the utilization of explicit expert knowledge. Several recent studies [15–17] have focused
on using additional information to aid in understanding problems. For instance, Graph2Tree [18]
was introduced to capture relationships and order information among quantities. In the field of
observation, there is a particular emphasis on improving the expression reasoning process [19,20].
Researchers have proposed various methods, such as Goal-Driven Tree-Structured (GTS) Neural
Model [21], which utilizes a goal-driven decomposition mechanism to reason an expression tree.
Shen et al. [19] also created an ensemble of multiple encoders and decoders, combining semantic
understanding and reasoning strengths. The deep learning framework approach to reasoning implicit
relations is based on the semantic hint of the shallow implicit knowledge, which directly adding shallow
implicit mathematical relationships cannot represent the content of the DIR-AWPs.

Overall, by building on these related studies, the research aims to apply S2RG to enhance the
acquisition of implicit knowledge for solving DIR-AWP. A knowledge-addition solver is an automated
system that utilizes a knowledge base to represent subject-domain knowledge. It surpasses the
performance of traditional problem-solving methods by leveraging its superior computing capacity.
This approach to problem-solving is characterized by its reliance on subject-specific knowledge and
its ability to generate innovative solutions.

2.2 The State-Action Framework Reasoning DIR-AWP

This study aims to develop a syntax-semantic relation graph-based approach to enhance the
efficiency of quantity relation extraction for resolving DIR-AWPs. The quantity relations and solution
goals in such problems are founded on ontology, and hence, recognizing and extracting ontology
relations can pave the way for generating the quantity relations. Therefore, the associations between
words in the text can be leveraged to obtain ontology relations. Prior research proposes the concept
of qualia role [22], a set of relations referred to as qualia that can signify the meaning of a word based
on the concept of the words. Furthermore, a set of semantic roles called qualia structure, including
formal, constitutive, agentive, and telic roles, is proposed to represent the meaning of nominal and
implicit information described in [23].

Knowledge graph completion [24,25] is a relevant task in S2RG due to the explicit knowledge
graph formed. This task involves learning unknown edges in the knowledge graph using existing
edges. Various approaches have been proposed, such as Bordes et al. [26] interpreting knowledge
semantics through translation operations and Pei [27] capturing structure information and long-
range dependencies through a geometric perspective. Other types of knowledge, including background
knowledge [28], logical knowledge [29], and implicit knowledge in pre-trained language models, have
also been investigated. Special forms of knowledge, such as logic rules [30] and mathematical properties
[31], have also been studied in various research works.

The study differs from previous knowledge acquisition research in that it utilizes implicit math-
ematical knowledge through its reasoning approach S2RG, a general framework based on a state-
action paradigm, and a relation-centric approach. Moreover, the paper introduces a QS2M within
S2RG, improving solution accuracy and reasoning interpretability. The work contributes to the field
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by presenting a comprehensive approach that combines explicit and implicit knowledge learning to
enhance reasoning abilities.

3 The Qualia DIR-AWPs Solver
3.1 Overview

This section details the proposed qualia-based DIR-AWPs solver to discover implicit quantity
relations for solving AWPs with complex problem scenarios. The proposed QS2M framework
represents two main steps in Fig. 1. First, solving AWPs is based on relations from the S2 model,
and the entity relation representation S2RG is an intermediate state for solving the problem
in Fig. 2. Second, based on the S2 model, the implicit relations are extracted from expanded S2RG
of implicit knowledge.

Figure 1: The framework for solving DIR-AWPs using the proposed QS2M method

Figure 2: The example of solving DIR-AWPs by using the proposed QS2M method

Compared to traditional knowledge models, the advantage of QS2M is the cross-scenario multi-
step inference for discovering implicit knowledge entities N and quantity relations R. A given
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arithmetic word problem P could be translated into a triple of <N, R, g> that contains a set of
knowledge entities N = Ne ∪ Ni and quantity expressions R = Re ∪ Ri as well as the solution goal g to
be solved, where Ne and Re are knowledge entities and quantity expressions that are directly stated in
P. Ni and Ri are implicit knowledge entities and quantity expressions indicated by implicit knowledge
of DIR-AWPs.

Definition 1 (Knowledge entity): A knowledge entity ea = {e1, e2, ..., ei} mentioned is a word in
solving DIR-AWPs, e.g., “speed” and “uniform linear motion” are often used to explain relevant
knowledge points in knowledge scenarios. For these terms with a clear knowledge orientation, em

is a knowledge attribute, where m is the number of knowledge attribute words. These knowledge-
attributing words are selected from many teaching resources, including textbooks and test questions.

Definition 2 (Syntax-semantic relation graph): Each DIR-AWP is constructed as a syntax-semantic
relation graph, denoted as S2RG = <EE, IE, ER, IR>. which captures the relations between the DIR-
AWP knowledge words and their neighbors to highlight the knowledge point. As shown in Fig. 2.
The knowledge entity is directly connected to nodes, and neighboring entities are connected to their
corresponding knowledge entities. The qualia relations of knowledge entities also form a scenario-
aware knowledge representation.

Definition 3 (Implicit knowledge space): The implicit knowledge space S is based on the knowledge
point to enrich the connotation and extension of knowledge points. Its knowledge entity combinations
in different knowledge scenarios are S = {i1, i2, ..., ik}, and k is the number of knowledge points. In the
hidden knowledge space, the closer the knowledge is to each other, the more similar the knowledge
features are.

Algorithm 1: Qualia-based Solver for Solving DIR-AWPs
Input: The DIR-AWP Ptext and QS2M = (ne, ni, qr, qp, ri), i = 1, 2, . . . , m.
Output: The solution of the DIR-AWP, denoted as R�.

State1 (Understanding DIR-AWP text knowledge)
1: Procedure 1: Extracting explicit relations from the text;
2: Procedure 2: Adding qualia relation of math entities to math relations;

State2(Implicit knowledge complement)
3: Procedure 3: Commonsense knowledge complement;
4: Procedure 4: Subject-domain knowledge complement;

State3 (Symbolic solver)
5: Procedure 5: Generating math relations R� from S2RG.
6: return R�

3.2 Qualia Syntax-Semantic Model

The solvable state of DIR-AWPs requires constructing a connected S2RG of relations, which
provides a comprehensive understanding of the process involving using the S2RG to represent and
reason knowledge in knowledge entities. On the S2RG, quantity relations are represented by a set of
connected attribute nodes belonging to one or more entity nodes, which can be viewed as sub-graphs
by applying a graph traversal. A quantity relation mining algorithm translates such sub-graphs into
quantity relations.
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The quantity relations indicated by the relations among knowledge entities and their attributes can
be modeled as a set of knowledge models named the QS2M. The QS2M is structured as a quintuple,

QS2M = (Ne, Ni, Qr, Qp, Ri) (1)

where: Ne is the explicit knowledge entity stated in the AWPs to be calculated in the solving process.

Ni is the knowledge entity to link AWP entities in the solving process.

Qr is the semantic pattern AWPs that constructs the qualia relation to link Ni scenario entities.

Qp is the syntax-semantic structure pattern for converting math relations from the S2RG.

Ri is the quantity relations associated with the qualia role pair <Ne, Ni>.

The QS2M linked the AWP explicit relation and the implicit relation. The set of QS2M, Mi = (Ne,
Ni, Qr, Qp, Ri), i = 1, 2,..., m denotes the pool of qualia-based knowledge models.

As a syntax relationship between entities, the qualia structure can be incorporated into the existing
S2 model to construct S2RG. The knowledge description ability of S2RG lies in the concept network
centered on nouns as entities. The QS2M allows the model to perform multi-step reasoning. The
quantity expressions indicated by knowledge entities and attributes can be modelled as a set of
S2RG. Inspired by the qualia structure system [19], the knowledge base uses the QES2 to represent
the structure of AWP, and entities form its object eo, entity attribution ea, and values. The entity
is independent and used to distinguish different knowledge entities, and attribution is attached to
the entity and used to present numeric values. A hierarchical structure of Entity−Attribution−Value
can represent the quantity relations. Object entities and their attributions form the basic form for
representing quantitative relations. Identifying an application’s object entity is the key to extracting
quantitative relations and understanding and solving problems.

The AWPs scenario has three main categories of factual facts: reflexive fact, connective fact,
and con-vergence fact. The expressions are presented as facts that facts could further translate into
mathematical operations to calculate the final answers. The knowledge entity relation can be described
as a qualia structure denoted as Rc. Each element rc is <esrc, edst, Qp, Ri>, where esrc and edst are two
knowledge entities, Qr denotes the semantic role of edst associated with esrc, Qp denotes the syntax-
semantic pattern related to Qr. The six kinds of qualia roles Qr for solving AWPs: Formal role (FOR),
Constitutive role (CON), Unit role (UNI), Material role (MAT), Telic role (TEL), Evaluation role
(EVA), Handle role (HAN), Action role (ACT) and Orientation role (ORI).

As a result, quantity facts in AWPs could be divided into the following three categories accord-
ingly:

Reflexive Fact: reflexive fact presents the expressions amount different attributes ea of a knowledge
entity object eo. The relation between the target entity and its quantity, length, weight, speed, the
relation between the speed-time distance of the target entity, etc., which associates with the qualia
roles of FOR and UNI.

Connective Fact: connective fact presents the expressions amount different entity objects eo
i, e.g.,

comparative relations: “there are five more apples than pears”, multiplicative/proportional relations:
“the number of pears is twice the number of peaches”. Which associates with qualia roles of EVA,
MAT, and ORI.

Convergence Fact: convergence fact describes the convergence relation between an object entity
and two or more object entities, e.g., summation relation: “38 trees were planted in Year 3 and 22 trees
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were planted in Year 4. How many trees were planted in both years?”. which usually associates with
qualia roles of CON, TEL, ACT, HAN, MAT, and ORI.

Based on the aforementioned definition, reflexive facts can be represented as constitutive roles
linking a mathematical entity with its associated attributes. For instance, the constitutive role C (rabbit,
leg) establishes a connection between the knowledge entity “rabbit” and its attribute “legs”. Similarly,
the constitutive role C (circle, area, radius) links the attributes “area” and “radius” of a “circle”
mathematical entity. Unlike reflexive facts, connective facts are context-dependent and may take on
various forms, such as “is-a” relationships between knowledge entities, “used-for” relations, “created-
by” relations, and so forth. For instance, the source formula “rabbit. Legs = 4” can be deduced from
the constitutive role C (rabbit, leg), and the formula “area = PI ∗ radius ∗ radius” can be derived from
the C (circle, area, radius).

This study uses the Language Technology Platform (LTP) [32] natural language processing tool
for word segmentation and part-of-speech tagging of word problems. For a DIR-AWP text P entered
in natural language, a lexical tagging(POS) algorithm uses transformers’ tokenizer to separate the
AWP into lexical subdivisions of the text andtheir lexical roles. In Algorithm 2, the explicit entities
are extracted from the S2 model, and then the entities are constructed as S2RG through the entity
dependency relation and S2 relation.

Algorithm 2: Qualia syntax-semantic model for S2RG construction
Input: The arithmetic word problem text Ptext and QS2M = (Ne, Ni, Qr, Qp, Ri), i = 1, 2, . . . , m.
Output: Syntax-semantic relation graph S2RG = (E, R), solution goal g.
1: Initialize N, E as empty

//The S2 model extraction of explicit relations and nodes.
2: Transform Ptext to part-of-speech annotation W = wi|i = 1, 2, . . . , n
3: Extracted explicit Re from the Ptext by the S2 model
4: for each wi annotated as noun in W do
5: if IsAttribute(wi) is true then
6: assign wi as na

7: else
8: assign wi as ne

9: end if
10: add na, ne to Ne

11: end for
//The dependency relation generation of S2RG

12: for each ne in Ne do
13: if exist a qualia relation Qr from ni to nj, then
14: Add directed edge <ni, nj> to S2RG
15: end if
16: end for
17: return S2RG

3.3 Implicit Knowledge Addition by Qualia Syntax-Semantic Model

Implicit relation Ri recovery refers to an entity eo corresponding to attribute ea in qualia disciplines.
However, its value does not explicit in the problem text; the paper defines this knowledge as implicit
knowledge fact. AWPs implicit knowledge contains two types of implicit relation sources: missing
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entity and subject-domain relations. The generated prompt questions Qr are embedded in the S2RG
and as clues to traverse the nodes in the S2RG. Implicit quantity relation mining is designed to discover
implicit quantity relations from the updated S2RG.

The S2RG nodes as an indicator to match the pattern of POS: entities Ee and attributes Ae from
the expressions Re, and solution goals g. The S2RG generated math relations from explicit entities
connect the solution goal g, inference domain knowledge Rd in the knowledge model. The purpose of
the S2RG generation algorithm is to implement the addition and inference of implicit expressions. On
the S2RG, the entities and attribute values are represented as nodes and relations. In the qualia role
description system, entity relations are modelled by the qualia roles of entities. Specifically, the qualia
roles of entities are determined by the syntactic structures, and the paper uses six qualia roles [19] to
describe the knowledge entity relations in Chinese AWPs.

The reasoning of the solution chains is achieved from the discrete S2RG to be holistic knowledge
as a fully connected S2RG. By modeling the entity relations of the DIR-AWP, the object roles between
entities are obtained and added to R. R holds the entity qualia roles obtained after modeling for the
input DIR-AWP. The related information in R must be completed by classifying the AWP scenario
and obtaining the entity relation combination of the current AWP scenario in Table 1.

Table 1: The six DIR-AWP examples of the implicit knowledge and their corresponding QS2M models

No. QS2M model
(Pattern R)

DIR-AWP text DIR-AWP examples
model match

Implicit
knowledge

1 (CON n v n v:
{[n,v,n,v], f = n ∗
n})

The relation between
the length L and the
area A

model 1 {A = L ∗ L}

2 (n ACT v: {[n,v],
f = k ∗ v})

I as an interest of
deposit D

model 2 {I = D ∗
rate}

3 (m n v ORI:
{[m,n,v],
f = m ∗ n})

A relation between the
price P and the weight
W

model 3 {P = k ∗ W}

4 (m n v q:
{[m,n,v,q],
f = k ∗ n + m})

The proportional
relation of the distance
D with the speed S

model 4 {D = S ∗
time}

5 (n v increase of n:
{[n,v,n],
f = k ∗ n + m })

Y is increases with the
X increases

model 5 {Y = k ∗ X
+ b}

6 (n n m CON:
{[n,n,m],
f =k ∗ n})

V is a proportional
decrease function of T

model 6 {V=k ∗ T}

3.3.1 Commonsense Foreground Knowledge: S2RG Node Generation

The S2RG of DIR-AWPs is the solving process state of reasoning missing nodes. Based on the
S2RG scenario feature, the model defines the input position sequence nodes Ne. The knowledge model
combined the manual prompt pattern for inquiring about implicit AWP knowledge entity candidates
for AWPs from the pre-train language model.



CMC, 2023, vol.77, no.1 549

After setting up the template, the explicit entities Ne follow prompt Qr to complement a node Ni,
the attributes are ea, and the links Qr. The model needs to fill the candidate entities into the structure of
the incomplete triple u = <Ne, Qr, Ni>: the label words match the Chinese pre-trained language model
L = chinese-roberta-wwm-ext for MLM (Masked Language Model) to get the Chinese grammatical
words [MASK]. Ranking the candidate entities according to scores.

Where Ni represents the output of the prompts f (Ne):

Ni = fQr(Ne) (2)

The Ne is the indicator to match pattern Qr to traverse the nodes in the S2RG. The implicit nodes
Ni and domain Rd through Qr. The prompt pattern Ni = fQr(Ne) defines the input position and explicit
nodes Ne.

3.3.2 Subject-Domain Background Knowledge: S2RG Implicit Relation Generation

Subject-domain relations exist in the DIR-AWP scenario-solving process, represented as S2RG
complements the DIR-AWP’s problem-solution chain. The construction of entities by obtaining the
qualia roles of entities based on a syntactic format and then describing the entity relations through
the qualia roles.

Ri = fDomainFormula(E1, E2, ..., En) (3)

Compared with the S2 model defined in Yu et al. [1], this definition extends the QS2M method
that provides a mechanism for acquiring the knowledge items from function problem text. The paper
manually designs 150 logical cues for arithmetic reasoning based on the problem context of the topic
by splitting the solution expression into multiple sub-expressions based on different topic contexts and
giving logical explanations described in natural language based on each sub-operational unit according
to the pattern of thought chain reasoning. which covered the five contextual categories summarised
in Table 1, including 20 for the plane problem; 32 for the task problem; 38 for price problems; 36 for
task problems; 24 for MovePath problems.

Solving DIR-AWPs involves combining explicit and implicit knowledge into a fully connected
graph S2RG, which involves searching for a chain of nodes that connect the known information to the
solution goal g. The S2RG is enhanced using a structural qualia syntax-semantic pattern, transforming
it into a relation-centric representation. This pattern includes various elements such as lexical markers,
keywords, dependency relations, and sequential relations within the sentence to construct a semantic
scenario. Overall, the approach provides a more comprehensive and rigorous framework for problem-
solving in Algorithm 3.

Ri = fs2(E1, E2, ..., En) (4)

Algorithm 3: Implicit knowledge acquisition and transformation into quantity relations
Input: The syntax-semantic relation graph S2RG = (Ne, Re),

The qualia structure patterns Qr = (fa, fb, fc).
Output: Quantity relation set R�.

//Traverse solution goal g and known entities ne to add ni.
1: for each ne in S2RG do
2: if g not contain relation with ne then
3: Add ni and Qr from ne to S2RG;

(Continued)
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Algorithm 3 (continued)
4: else if g and ne has a loop then
5: continue;
6: end if
7: end for

//Traverse connected S2RG to expand knowledge point
8: for matching fact sub-graph fi in S2RG do
9: if fi only contain two nodes then
10: add fi to Gi remove the re;
11: else if fi has a loop then
12: continue;
13: end if
14: end for

// Transform connected S2RG to math relations
15: for each sub-graph fi in Fa U Fb U Fc do
16: Translate fi to Ri according to formulas;
17: end for
18: return R�

4 Experiment

The paper presents the “scenario category” for the DIR-AWPs and constructs a comprehensive
entity relation graph S2RG. Specifically, the study investigates five scenario categories of primary
school DIR-AWPs and provides a detailed account of each category’s entity and qualia role combina-
tions. These findings shed light on the underlying structures of the DIR-AWP types and offer insights
into how to model entity relations effectively. This section presents the empirical findings compared
to the Math23K, a publicly available dataset.

4.1 Dataset

In this study, the paper employed the Math23K [11] dataset, which is widely used to evaluate math
problem solvers, and contains both story and non-story problems (e.g., equations, formulas, numbers).
The approach, QS2M, was explicitly applied to story problems. Previous researches by Mayer [33],
Cheng et al. [34], Hong et al. [35], and He et al. [36] have shown that AWPs can be classified into
various scenarios based on their storylines, which impact the problem-solving process and the quantity
relations involved. To assess the effectiveness of the algorithm on different problem categories, the
paper classified 6030 problems from Math23K into five distinct groups to create a new dataset for
evaluation. The goal was to evaluate the performance of QS2M across these different categories. The
newly created dataset comprises only one-quarter of the original Math23K dataset and comprises five
DIR-AWPs types. The dataset includes 6030 problems, sufficient to demonstrate the universality of
AWP solvers, as it represents typical cases encountered in AWPs. Table 2 provides detailed information
regarding the new dataset and is available for download.

Baselines. Three methods compared the model as below:

• S2 model [2]: a theoretical framework has been developed for addressing arithmetic word
problems that involve explicit statements and require the use of a set of S2 models. This framework
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offers a systematic approach to solving such problems by incorporating various linguistic and
mathematical concepts to represent and manipulate the problem’s elements effectively.

• GTS [21]: a math word problem solver, structured as a goal-oriented tree, is utilized for the
purpose of producing solution expressions.

• Graph2Tree [18]: a deep learning architecture that integrates the strengths of graph-based
encoders and tree-based decoders to generate expressive solutions. This model achieves enhanced
performance in generating solution expressions by leveraging the inherent structural properties of both
graph and tree representations.

• QS2M: the model proposed in this paper.

Table 2: The distribution of Math23K over five types of problems

Scenario of DIR-AWP Number of DIR-AWP Distribution

Percentage 1379 6.1%
Plane 1106 4.5%
Price 246 1.3%
Task 246 6.5%
MovePath 1830 7.8%
Total 6030 26.2%

4.2 Performance on Quantity Relation Extraction

The evaluation of quantity relation extraction is not commonly performed by all neural solvers,
and the lack of large-scale ground truth for quantity relation evaluation posed a significant challenge.
To assess the performance of quantity relation extraction, accuracy (Acc), recall (R), and F1-score
metrics were compared to the V−S2 model. The results of the test are summarized in Table 3 and
show that the proposed QS2M model significantly outperforms the V–S2 model by 7.8% in overall
accuracy. Specifically, the QS2M model outperforms neural models by 11.8% and 11.1% on the Plane
and MovePath problems, respectively.

Table 3: The extraction result (%) of math relations compared with the V−S2 method

Scenario of DIR-AWP Number of question V-S2 model QS2M

Acc R F1 Acc R F1

Percentage 152 0.811 0.721 0.733 0.821 0.850 0.835
Plane 223 0.825 0.870 0.847 0.943 0.913 0.927
Price 232 0.812 0.722 0.764 0.975 0.847 0.861
Task 643 0.905 0.779 0.837 0.916 0.943 0.955
Movepath 248 0.755 0.632 0.687 0.866 0.854 0.859
Total 1498 0.845 0.753 0.795 0.923 0.911 0.917

The authors of [37] employed a methodology where they encoded the problem statement and
the output of Algorithm 2 using the AWP solvers, such as GTS and Graph2Tree. This approach was
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designed to evaluate problem-solving accuracy, and the results were reported in Table 4. According to
the results presented in Table 4, it can be observed that the incorporation of the QS2M tasks has led
to a significant improvement in the average accuracy of both the Graph2Tree and GTS models.

Table 4: The accuracy result (%) of problem-solving

Scenario of DIR-AWP GTS Graph2Tree GTS + QS2M Graph2Tree + QS2M

Percentage 82.7 80.9 95.0 92.9
Plane 89.6 88.9 91.7 91.2
Price 86.2 82.8 97.9 94.9
Task 27.7 34.7 42.7 62.0
MovePath 43.9 44.3 57.2 59.7
Average 65.8 66.5 78.5 82.0

Specifically, the injection of the extracted quantity expressions has resulted in an average accuracy
of 82.0% and 78.5% for the Graph2Tree and GTS models, respectively. These findings suggest that the
proposed approach is highly effective in solving AWPs that require more implicit relations.

5 Conclusions and Future Work

This paper acknowledges the notable advancements achieved in solving AWPs. However, it also
recognizes the absence of an effective method for uncovering deep implicit relations for addressing
DIR-AWPs, including those related to common sense or subject-specific knowledge. The present paper
suggests utilizing the three-step qualia-quantity approach for discovering deep implicit relations. In
the initial stage, the S2 method extracts all the explicit relations and identifies scenarios using a pre-
existing set of qualia-quantity models. Subsequently, the missing entities are incorporated under the
identified scenarios, and qualia-quantity models are employed to establish deep implicit relations.
Finally, an S2RG is proposed to represent all the obtained relations, which is then condensed by
pruning superfluous branches to solve the given problem. The answers are obtained by solving the
distilled relations.

The study proposed a novel method called QS2M that represents quantity expressions linked with
uncorrelated entities to address the lack of hidden relations in complex scenarios. In future endeavors,
the paper aims to enhance this solver for a broader range of issues and construct a more comprehensive
knowledge repository, based on qualia role, to construct problem solvers. Furthermore, the paper
has plans to design an intelligent tutoring system and to explore more efficient educational strategies
utilizing the system to guide and teach students.
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