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ABSTRACT

Speech emotion recognition is essential for frictionless human-machine interaction, where machines respond to
human instructions with context-aware actions. The properties of individuals’ voices vary with culture, language,
gender, and personality. These variations in speaker-specific properties may hamper the performance of standard
representations in downstream tasks such as speech emotion recognition (SER). This study demonstrates the
significance of speaker-specific speech characteristics and how considering them can be leveraged to improve the
performance of SER models. In the proposed approach, two wav2vec-based modules (a speaker-identification
network and an emotion classification network) are trained with the Arcface loss. The speaker-identification
network has a single attention block to encode an input audio waveform into a speaker-specific representation.
The emotion classification network uses a wav2vec 2.0-backbone as well as four attention blocks to encode the
same input audio waveform into an emotion representation. These two representations are then fused into a single
vector representation containing emotion and speaker-specific information. Experimental results showed that the
use of speaker-specific characteristics improves SER performance. Additionally, combining these with an angular
marginal loss such as the Arcface loss improves intra-class compactness while increasing inter-class separability,
as demonstrated by the plots of t-distributed stochastic neighbor embeddings (t-SNE). The proposed approach
outperforms previous methods using similar training strategies, with a weighted accuracy (WA) of 72.14% and
unweighted accuracy (UA) of 72.97% on the Interactive Emotional Dynamic Motion Capture (IEMOCAP) dataset.
This demonstrates its effectiveness and potential to enhance human-machine interaction through more accurate
emotion recognition in speech.
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1 Introduction

The recent rapid growth of computer technology has made human-computer interaction an
integral part of the human experience. Advances in automatic speech recognition (ASR) [1] and
text-to-speech (TTS) synthesis [2] have made smart devices capable of searching and responding to
verbal requests. However, this only supports limited interactions and is not sufficient for interactive
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conversations. Most ASR methods generally focus on the content of speech (words) without regard
for the intonation, nuance, and emotion conveyed through audio speech. Speech emotion recognition
(SER) is one of the most active research areas in the computer science field because the friction in every
human-computer interaction could be significantly reduced if machines could perceive and understand
the emotions of their users and perform context-aware actions.

Previous studies used low-level descriptors (LLDs) generated from frequency, amplitude, and
spectral properties (spectrogram, Mel-spectrogram, etc.) to recognize emotions in audio speech.
Although the potential of hand-crafted features has been demonstrated in previous works, features
and their representations should be tailored and optimized for specific tasks. Deep learning-based
representations generated from actual waveforms or LLDs have shown better performance in SER.

Studies in psychology have shown that individuals have different vocal attributes depending on
their culture, language, gender, and personality [3]. This implies that two speakers saying the same thing
with the same emotion are likely to express different acoustic properties in their voices. The merits of
considering speaker-specific properties in audio speech-related tasks have been demonstrated in several
studies [4,5].

In this paper, a novel approach in which a speaker-specific emotion representation is leveraged to
improve emotional speech recognition performance is introduced. The proposed model consists of a
speaker-identification network and an emotion classifier. The wav2vec 2.0 [6] (base model) is used as a
backbone for both of the proposed networks, where it is used to extract emotion-related and speaker-
specific features from input audio waveforms. A novel tensor fusion approach is used to combine these
representations into a speaker-specific emotion representation. In this tensor fusion operation, the
representation vectors are element-wise multiplied by a trainable fusion matrix, and then the resultant
vectors are summed up. The main contributions of this paper are summarized as follows:

• Two wav2vec 2.0-based modules (the speaker-identification network and emotion classification)
that generate a speaker-specific emotion representation from an input audio segment are
proposed. The two modules are trained and evaluated on the Interactive Emotional Dynamic
Motion Capture (IEMOCAP) dataset [7]. Training networks on the IEMOCAP dataset is prone
to over-fitting because it has only ten speakers. The representations generated by the speaker-
identification network pre-trained on the VoxCeleb1 dataset [8] facilitate better generalization
to unseen speakers.

• A novel tensor fusion approach is used to combine generated emotion and speaker-specific
representations into a single vector representation suitable for SER. The use of the Arcface
[9] and cross-entropy loss terms in the speaker-identification network was also explored, and
detailed evaluations have been provided.

2 Related Work
2.1 Hand-Crafted Audio Representations

A vast array of representations and models have been explored to improve audio speech-based
emotion recognition. LLDs such as pitch and energy contours have been employed in conjunction
with hidden Markov models [10] to recognize a speaker’s emotion from audio speech. Reference [11]
used the delta and delta-delta of a log Mel-spectrogram to reduce the impact of emotionally irrelevant
factors on speech emotion recognition. In this approach, an attention layer automatically drove focus
to emotionally relevant frames and generated discriminative utterance-level features. Global-Aware
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Multi-Scale (GLAM) [12] used Mel-frequency cepstral coefficient (MFCC) inputs and a global-aware
fusion module to learn a multi-scale feature representation, which is rich in emotional information.

Time-frequency representations such as the Mel-spectrogram and MFCCs merge frequency and
time domains into a single representation using the Fast Fourier Transform (FFT). Reference [13]
addressed the challenges associated with the tradeoff between accuracy in frequency and time domains
by employing a wavelet transform-based representation. Here, Morlet wavelets generated from an
input audio sample are decomposed into child wavelets by applying a continuous wavelet transform
(CWT) to the input signal with varying scale and translation parameters. These CWT features are
considered as a representation that can be employed in downstream tasks.

2.2 Learning Audio Representation Using Supervised Learning

In more recent approaches, models learn a representation directly from raw waveforms instead of
hand-crafted representations like the human perception emulating Mel-filter banks used to generate
the Mel-spectrogram. Time-Domain (TD) filter banks [14] use complex convolutional weights ini-
tialized with Gabor wavelets to learn filter banks from raw speech for end-to-end phone recognition.
The proposed architecture has a convolutional layer followed by an l2 feature pooling-based modulus
operation and a low-pass filter. It can be used as a learnable replacement to Mel-filter banks in existing
deep learning models. In order to approximate the Mel-filter banks, the square of the Hanning window
was used, and the biases of the convolutional layers were set to zero. Due to the absence of positivity
constraints, a 1 was added to the output before applying log compression. A key limitation of this
approach is that the log-scale compression and normalization that were used reduce the scale of
spectrograms, regardless of their contents.

Wang et al. [15] also proposed a learned drop-in alternative to the Mel-filter banks but replaced
static log compression with dynamic compression and addressed the channel distortion problems in
the Mel-spectrogram log transformation using Per-Channel Energy Normalization (PCEN). This was
calculated using a smoothed version of the filter bank energy function, which was computed from a
first-order infinite impulse response (IIR) filter. A smoothing coefficient was used in combining the
smoothed version of the filter bank energy function and the current spectrogram energy function. In
order to address the compression function’s fixed non-linearity, PCEN was modified to learn channel-
dependent smoothing coefficients alongside the other hyper-parameters [16] in a version of the model
referred to as sPer-Channel Energy Normalization (sPCEN).

2.3 Learned Audio Representation Using Self-Supervised Learning

In supervised learning, class labels are used to design convolution filters and generate task-
specific representations. Due to the vast amounts of unlabeled audio data available, self-supervised
learning (SSL) methods have been proposed for obtaining generalized representations of input audio
waveforms for downstream tasks. These audio SSL methods can be categorized into auto-encoding,
siamese, clustering, and contrastive techniques [17].

Audio2vec [18] was inspired by word2vec [19] and learned general-purpose audio representations
using an auto-encoder-like architecture to reconstruct a Mel-spectrogram slice from past and future
slices. Continuous Bags of Words (CBoW) and skip-gram variants were also implemented and
evaluated. In the Mockingjay [20] network, bidirectional Transformer encoders trained to predict the
current frame from past and future contexts were used to generate general-purpose audio represen-
tations. Bootstrap your own latent for audio (BYOL-A) [21] is a Siamese model-based architecture
that assumes no relationships exist between time segments of audio samples. In this architecture,
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two neural networks were trained by maximizing the agreement in their outputs given the same
input. Normalization and augmentation techniques were also used to differentiate between augmented
versions of the same audio segment, thereby learning a general-purpose audio representation. Hidden
unit bidirectional encoder representations from Transformers (HuBERT) [22] addressed the challenges
associated with multiple sound units in utterance, the absence of a lexicon of input sounds, and the
variable length of sound units by using an offline clustering step to provide aligned target labels for a
prediction loss similar to that in BERT [23]. This prediction loss was only applied over masked regions,
forcing the model to learn a combined acoustic and language model over continuous inputs. The
model was based on the wav2vec 2.0 architecture that consists of a convolutional waveform encoder,
projection layer, and code embedding layer but has no quantization layer. The HuBERT and wav2vec
2.0 models have similar architectures but differ in the self-supervised training techniques that they
employ. More specifically, the wav2vec 2.0 masks a speech sequence in the latent space and solves
a contrastive task defined over a quantization of the latent representation. On the other hand, the
HuBERT model learns combined acoustic and language properties over continuous input by using an
offline clustering step to provide aligned target labels for a BERT-like prediction loss applied over only
the masked regions. Pseudo labels for encoded vectors were generated by applying K-means clustering
on the MFCCs of the input waveforms.

Contrastive methods generate an output representation using a loss function that encourages
the separation of positive from negative samples. For instance, Contrastive Learning of Auditory
Representations (CLAR) [24] encoded both the waveform and spectrogram into audio representations.
Here, the encoded representations of the positive and negative pairs are used contrastively.

2.4 Using Speaker Attributes in SER

The Individual Standardization Network (ISNet) [4] showed that considering speaker-specific
attributes can improve emotion classification accuracy. Reference [4] used an aggregation of individu-
als’ neutral speech to standardize emotional speech and improve the robustness of individual-agnostic
emotion representations. A key limitation of this approach is that it only applies to cases where labeled
neutral training data for each speaker is available. Self-Speaker Attentive Convolutional Recurrent
Neural Net (SSA-CRNN) [5] uses two classifiers that interact through a self-attention mechanism to
focus on emotional information and ignore speaker-specific information. This approach is limited by
its inability to generalize to unseen speakers.

2.5 Wav2vec 2.0

Wav2vec 2.0 converted an input speech waveform into spectrogram-like features by predicting
the masked quantization representation over an entire speech sequence [6]. The first wav2vec [25]
architecture attempted to predict future samples from a given signal context. It consists of an encoder
network that embeds the audio signal into a latent space and a context network that combines
multiple time steps of the encoder to obtain contextualized representations. VQ-wav2vec [26], a vector
quantized (VQ) version of the wav2vec model, learned discrete representations of audio segments using
a future time step prediction task in line with previous methods but replaced the original representation
with a Gumbel-Softmax-based quantization module. Wav2vec 2.0 adopted both the contrastive and
diversity loss in the VQ-wav2vec framework. In other words, wav2vec 2.0 compared positive and
negative samples without predicting future samples.

Wav2vec 2.0 comprises a feature encoder, contextual encoder, and quantization module. First, the
feature encoder converts the normalized waveform into a two-dimensional (2-d) latent representation.
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The feature encoder was implemented using seven one-dimensional (1-d) convolution layers with
different kernel sizes and strides. A Hanning window of the same size as the kernel and a short-
time Fourier transform (STFT) with a hop length equal to the stride were used. The encoding that
the convolutional layers generate from an input waveform is normalized and passed as inputs to
two separate branches (the contextual encoder and quantization module). The contextual encoder
consists of a linear projection layer, a relative positional encoding 1-d convolution layer followed
by a Gaussian error linear unit (GeLU), and a transformer model. More specifically, each input is
projected to a higher dimensional feature space and then encoded based on its relative position in the
speech sequence. Here, the projected and encoded input, along with its relative position, are summed
and normalized. The resultant speech features are randomly masked and fed into the Transformer,
aggregating the local features into a context representation (C). The quantization module discretizes
the feature encoder’s output into a finite set of speech representations. This is achieved by choosing
V quantized representations (codebook entries) from multiple codebooks using a Gumbel softmax
operation, concatenating them, and applying a linear transformation to the final output. A diversity
loss encourages the model to use code book entries equally often.

The contextual representation ct of the masked time step (t) is compared with the quantized latent
representation qt at the same time step (t). The contrastive loss makes ct similar to qt and ct dissimilar
to K sampled quantized representations in every masked time step (Q ∼ qt). The contrastive task’s
loss term is defined as

Lm = −log
exp

(
cT

t qt

‖ ct ‖‖ qt ‖ κ

)

∑
q∼∼Qt

exp
(

cT
t q∼

‖ ct ‖‖ q∼ ‖ κ

) , (1)

where κ is the temperature of the contrastive loss. The diversity loss and the contrastive loss are
balanced using a hyper-parameter. A more detailed description is available in the wav2vec 2.0
paper [6].

Several variations of the wav2vec 2.0 model have been proposed in recent studies [27–29]. The
wav2vec 2.0-robust model [27] was trained on more general setups where the domain of the unlabeled
data for pre-training data differs from that of the labeled data for fine-tuning. This study demonstrated
that pre-training on various domains improves the performance of fine-tuned models on downstream
tasks. In order to make speech technology accessible for other languages, several studies pre-trained
the wav2vec 2.0 model on a wide range of tasks, domains, data regimes, and languages to achieve
cross-lingual representations [28,29]. More specifically, in the wav2vec 2.0-xlsr and wav2vec 2.0-xls-
r variations of the wav2vec 2.0 model such as wav2vec 2.0-large-xlsr-53, wav2vec 2.0-large-xlsr-53-
extended, wav2vec 2.0-xls-r-300m, and wav2vec 2.0-xls-r-1b, “xlsr” indicates that a single wav2vec 2.0
model was pre-trained to generate cross-lingual speech representations for multiple languages. Here,
the “xlsr-53” model is large and was pre-trained on datasets containing 53 languages. Unlike the “xlsr”
variations, the “xls-r” model variations are large-scale and were pre-trained on several large datasets
with up to 128 languages. Here, the “300m” and “1b” refer to the number of model parameters used.
The difference between the “300m” and “1b” variations is mainly in the number of Transformer model
parameters.

The wav2vec 2.0 representation has been employed in various SER studies because of its outstand-
ing ability to create generalized representations that can be used to improve acoustic model training.
SUPERB [30] evaluated how well pre-trained audio SSL approaches performed on ten speech tasks.
The pre-trained SSL networks with high performance can be frozen and employed on downstream
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tasks. SUPERB’s wav2vec 2.0 models are variations of the wav2vec 2.0 with the original weights frozen
and an extra fully connected layer added. For the SER task, the IEMOCAP dataset was used. Since the
outputs of SSL networks effectively represent the frequency features in the speech sequence, the length
of representations varies with the length of utterances. In order to obtain a fixed-size representation for
utterances, average time pooling is performed before the fully connected layer. In [31], the feasibility of
partly or entirely fine-tuning these weights was examined. Reference [32] proposed a transfer learning
approach in which the outputs of several layers of the pre-trained wav2vec 2.0 model were combined
using trainable weights that were learned jointly with a downstream model. In order to improve
SER performance, reference [33] employed various fine-tuning strategies on the wav2vec 2.0 model,
including task adaptive pre-training (TAPT) and pseudo-label task adaptive pre-training (P-TAPT).
TAPT addressed the mismatch between the pre-training and target domain by continuing to pre-train
on the target dataset. P-TAPT achieves better performance than the TAPT approach by altering its
training objective of predicting the cluster assignment of emotion-specific features in masked frames.
The emotion-specific features act as pseudo labels and are generated by applying k-means clustering
on representations generated using the wav2vec model.

2.6 Additive Angular Margin Loss

Despite their popularity, earlier losses like the cross-entropy did not encourage intra-class com-
pactness and inter-class separability [34] for classification tasks. In order to address this limitation,
contrastive, triplet [35], center [36], and Sphereface [37] losses encouraged the separability between
learned representations. Additive Angular Margin Loss (Arcface) [9] and Cosface [38] achieved
better separability by encouraging stronger boundaries between representations. In Arcface, the
representations were distributed around feature centers in a hypersphere with a fixed radius. An
additive angular penalty was employed to simultaneously enhance the intra-class compactness and
inter-class discrepancy. Here the angular difference between an input feature vector (x ∈ Rd) and the
center representation vectors of classes (W ∈ RN×d) are calculated. A margin is added to the angular
difference between features in the same class to make learned features separable with a larger angular
distance. Reference [39] used the Arcface loss to train a bimodal audio text network for SER and
reported improved performance. A similar loss term is used in the proposed method.

Eq. (2) is the equivalent of calculating the softmax with a bias of 0. After applying a logit
transformation, Eq. (2) can be rewritten as Eq. (3).

L = − 1
N

∑N

i=1
log

eWT
yi xi∑n

j=1 eWT
j xi

, (2)

L = − 1
N

∑N

i=1
log

e‖Wyi ‖‖xi‖cosθyi∑n

j=1 e‖Wj‖‖xi‖cosθj
, (3)

where ‖ · ‖ is the l2 normalization and θj is the angle between Wj and xi. In Eq. (4), the additive margin
penalty (m) is only added to the angle (θyi ) between the target weight (Wyi ) and the features (xi). The
features are re-scaled using the scaling factor (s). The final loss is defined as:

L = − 1
N

∑
i=1

N

log
es(cos(θyi +m))

es(cos(θyi +m)) + ∑n

j=1,j �=yi
es(cosθj )

. (4)

Reference [39] demonstrated the Arcface loss term’s ability to improve the performance of SER
models. It is therefore employed in training the modules proposed in this study.
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3 Methodology

In order to leverage speaker-specific speech characteristics to improve the performance of SER
models, two wav2vec 2.0-based modules (the speaker-identification network and emotion classification
network) trained with the Arcface loss are proposed. The speaker-identification network extends the
wav2vec 2.0 model with a single attention block, and it encodes an input audio waveform into a
speaker-specific representation. The emotion classification network uses a wav2vec 2.0-backbone as
well as four attention blocks to encode the same input audio waveform into an emotion representation.
These two representations are then fused into a single vector representation that contains both emotion
and speaker-specific information.

3.1 Speaker-Identification and Emotion Classification Networks

The speaker-identification network (Fig. 1) encodes the vocal properties of a speaker into a fixed-
dimension vector (d). The wav2vec 2.0 model encodes input utterances into a latent 2-d representation
of shape R768 ×T , where T is the number of frames generated from the input waveform. This latent
representation is passed to a single attention block prior to performing a max-pooling operation
that results in a 1-d vector of length 768. Only a single attention block was used in the speaker-
identification network because it is assumed that the core properties of a speaker’s voice are unaffected
by his or her emotional state. In other words, a speaker can be identified by his/her voice regardless of
his/her emotional state. In order to achieve a more robust distinction between speakers, the Rd shape
speaker-identification representation (Hid) and the R#ID×d shape Arcface center representation vector
(Wid) for speaker classes are l2 normalized, and their cosine similarity is computed. Configurations
of the speaker-identification network using the cross-entropy loss were also explored. In experiments
using the cross-entropy loss, the Arcface center representation vectors for speaker classes were replaced
with a fully connected (FC) layer. Then, the FC outputs were fed into a softmax function, and the
probability of each speaker class was obtained. In Fig. 1, “#ID” represents the index of each speaker
class. For example, in the VoxCeleb1 dataset with 1,251 speakers, the final #ID is #1,251.

Figure 1: Architecture of the speaker-identification network with the extended wav2vec 2.0 model (left)
and l2 normalization, cosine similarity and cross-entropy loss computation (right), and a single output
for each speaker class

In the emotion classification network (Fig. 2), the wav2vec 2.0 model encodes input utterances
into a R768×T shape representation. The encoding generated is passed to a ReLU activation layer before
being fed into an FC layer and eventually passed to four attention blocks. The four attention blocks
identify the parts of the generated emotion representation that are most relevant to SER. Experiments
were also conducted for configurations with one, two, as well as three attention blocks. Max-pooling
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is applied across the time axis to the outputs of each attention block. The max pooled outputs of
the attention blocks hi are concatenated before the tensor fusion operation. During tensor fusion, an
element-wise multiplication between Hemo = {h1, h2, · · · , hk} and a trainable fusion matrix (Wfusion ∈
Rk×d) is performed. As shown in Eq. (5), all the k vectors are summed to generate the final embedding.

Figure 2: Architecture of the emotion classification network. Extended wav2vec 2.0 model (left) with
four attention blocks and a tensor fusion operation. l2 normalization, cosine similarity, and cross-
entropy loss computation (right) for emotion classes with a single output for each emotion class

E =
∑k

i=1
ei =

∑k

i=1
Wfusion,i � hi, (5)

where ei ∈ Rd and Wfusion,i ∈ Rd. The final embedding (E) is l2 normalized prior to computing
the cosine similarity between the Arcface center representation vectors (Wemo ∈ R#EMO×d). In Fig. 2,
“#EMO” represents the emotion class indices defined in the IEMOCAP dataset. Here, 1_EMO,
2_EMO, 3_EMO, and 4_EMO represent angry, happy, sad, and neutral emotion classes, respectively.

3.2 Speaker-Specific Emotion Representation Network

Fig. 3 shows the architecture of the proposed SER approach. The same waveform is passed
to the speaker-identification network as well as the emotion classification network. The speaker
representation generated by the pre-trained speaker-identification network is passed to the emotion
classification network. More specifically, the output vector of the attention block from the speaker-
identification network is concatenated to the outputs of the emotion classification network’s four
attention blocks, resulting in a total of five attention block outputs (H ∈ R5×d). The fusion operation
shown in Eq. (5) combines these representations into a single speaker-specific emotion representation
(E). The angular distance between the normalized tensor fused output vector and the normalized
center of the four emotion representation vectors is calculated using Eq. (4). The emotion class
predicted for any input waveform is determined by how close its representation vector is to an emotion
class’s center vector.
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Figure 3: Architecture of the speaker-specific emotion representation model with the speaker-
identification network (up) that generates a speaker representation and the emotion classi-
fication (down) that generates a speaker-specific emotion representation from emotion and
speaker-identification representations

4 Experiment Details
4.1 Dataset

The IEMOCAP [7] is a multimodal, multi-speaker emotion database recorded across five sessions
with five pairs of male and female speakers performing improvisations and scripted scenarios.
It comprises approximately 12 h of audio-visual data, including facial images, speech, and text
transcripts. The audio speech data provided is used to train and evaluate models for emotion
recognition. Categorical (angry, happy, sad, and neutral) as well as dimensional (valence, activation,
and dominance) labels are provided. Due to imbalances in the number of samples available for each
label category, only neutral, happy (combined with exciting), sad, and angry classes have been used
in line with previous studies [4,30–33,39,40]. The 16 kHz audio sampling rate used in the original
dataset is retained. The average length of audio files is 4.56 s, with a standard deviation of 3.06 s. The
minimum and maximum lengths of audio files are 0.58 and 34.14 s, respectively. Audio files longer
than 15 s are truncated to 15 s because almost all of the audio samples in the dataset were less than
15 s long. For audio files shorter than 3 s, a copy of the original waveform is recursively appended to
the end of the audio file until the audio file is at least 3 s long. Fig. 4 shows how often various emotions
are expressed by male and female speakers over five sessions in the IEMOCAP dataset. As shown in
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Fig. 4, the dataset is unevenly distributed across emotion classes, with significantly more neutral and
happy samples in most sessions.

Figure 4: Distribution of male and female speakers across emotion classes in the IEMOCAP dataset

In order to generate an evenly distributed random set of samples at each epoch, emotion classes
with more samples are under-sampled. This implies that samples of the training dataset are evenly
distributed across all the emotional classes. Leave-one-session-out five-fold cross-validation is used.

In this study, VoxCeleb1’s [8] large variation and diversity allow the speaker-identification module
to be trained for better generalization to unseen speakers. VoxCeleb1 is an audio-visual dataset
comprising 22,496 short interview clips extracted from YouTube videos. It features 1,251 speakers
from diverse backgrounds and is commonly used for speaker identification and verification tasks. Its
audio files have a sampling rate of 16 kHz with an average length of 8.2 s as well as minimum and
maximum lengths of 4 and 145 s, respectively. Additionally, audio clips in VoxCeleb1 are also limited
to a maximum length of 15 s for consistency in the experiments.

4.2 Implementation Details

In recent studies [31,32], pre-training the wav2vec model on the Librispeech dataset [41] (with
no fine-tuning for ASR tasks) has been shown to deliver better performance for SER tasks. In this
study, the wav2vec 2.0 base model was selected because the wav2vec 2.0 large model does not offer
any significant improvement in performance despite an increase in computational cost [31,32]. The
key difference between the “wav2vec2-large” and its base model is that it consists of an additional 12
Transformer layers that are intended to improve its generalization capacity. Using other versions of
the wav2vec 2.0 model or weights may improve performance depending on the target dataset and
the pre-training strategy [27–29,33]. This study proposes two networks based on the wav2vec 2.0
representation (Sub-section 2.5). In addition, reference [31] showed that either partially or entirely
fine-tuning the wav2vec 2.0 segments results in the same boost in model performance on SER tasks
despite the differences in computational costs. Therefore, the wav2vec 2.0 modules (the contextual
encoder) used in this study were only partially fine-tuned. The model and weights are provided by
Facebook research under the Fairseq sequence modeling toolkit [42].

A two-step training process ensures that the proposed network learns the appropriate attributes.
First, the speaker-identification network and emotion network are trained separately. Then, the pre-
trained networks are integrated and fine-tuned with the extended tensor fusion matrix to match the size
of concatenated speaker-identification and emotion representations. In order to prevent over-fitting
and exploding gradients, gradient values are clipped at 100 with n-step gradient accumulations. A 10−8
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weight decay is applied, and the Adam [43] optimizer with beta values set to (0.9, 0.98) is used. The
LambdaLR scheduler reduces the learning rate by multiplying it by 0.98 after every epoch. An early
stopping criterion is added to prevent over-fitting. Each attention block consists of four attention
heads with a dropout rate of 0.1. In the Arcface loss calculation, the feature re-scaling factor (s) is
set to 30 and the additive margin penalty (m) to 0.3 for the experiments. Experiments were conducted
using Pytorch in an Ubuntu 20.04 training environment running on a single GeForce RTX 3090 GPU.
The specific hyper-parameters used in the experiments are shown in Table 1.

Table 1: Hyper-parameters used during model evaluation

Module Learning rate Batch size n-step gradient
accumulation

Early stopping
limit

Total epoch

Speaker-
identification
network

3 ∗ 10−5 16 2 5 50

Emotion network 3 ∗ 10−5 6 4 10 150
Integrate and
fine-tune
networks

10−5 6 4 10 100

4.3 Evaluation Metrics

In this paper, weighted and unweighted accuracy metrics were used to evaluate the performance of
the proposed model. Weighted accuracy (WA) is an evaluation index that intuitively represents model
prediction performance as the ratio of correct predictions to the overall number of predictions. WA can

be computed from a confusion matrix containing prediction scores as WA = TP + TN
TP + TN + FP + FN

,

where the number of true positive, true negative, false positive, and false negative cases are TP, TN,
FP, and FN, respectively. In order to mitigate the biases associated with the weighted accuracy in
imbalanced datasets such as the IEMOCAP dataset, unweighted accuracy (UA), also called average

recall, is widely employed and can be computed using UA = 1
C

∑
i=1

C TPi

TPi + FPi

, where C is the total

number of emotion classes and is set to four for all the results presented in this study.

5 Experimental Results
5.1 Performance of Speaker-Identification Network and Emotion Classification Network

Table 2 shows the performance of the speaker-identification network on the VoxCeleb1 identi-
fication test dataset. Training the speaker identification network using the Arcface loss resulted in
significantly better speaker classification than training with the cross-entropy loss. This indicates that
the angular margin in the Arcface loss improves the network’s discriminative abilities for speaker
identification. Fig. 5 shows a t-distributed stochastic neighbor embedding (t-SNE) plot of speaker-
specific representations generated from the IEMOCAP dataset using two configurations of the
speaker-identification network. As shown in Fig. 5, training with the Arcface loss results in more
distinct separations between speaker representations than training with the cross-entropy loss. As
shown in Fig. 6, the speaker identification network may be unable to generate accurate representations
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for audio samples that are too short. Representations of audio clips that are less than 3 s long
are particularly likely to be misclassified. In order to ensure that input audio waveforms have the
information necessary to generate a speaker-specific emotion representation, a 3-s requirement is
imposed. In cases where the audio waveform is shorter than 3 s, a copy of the original waveform
is recursively appended to the end of the waveform until it is at least 3 s long.

Table 2: Overall performance of the proposed method when either the cross-entropy or Arcface loss
was used in the speaker-identification network

Loss WA (%) UA (%)

Cross-entropy 87.98 87.19
Arcface 93.89 94.22

Figure 5: t-SNE plot of speaker-specific representations generated by the speaker-identification
network when trained with different loss functions: (a) Cross-entropy (b) Arcface

Figure 6: t-SNE plot of speaker-specific representations generated by the speaker-identification
network when trained with audio segments of varying minimum lengths: (a) 1 s (b) 2 s (c) 3 s (4) 4 s
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Table 3 shows a comparison of the proposed methods’ performance against that of previous
studies. The first four methods employed the wav2vec 2.0 representation and used the cross-entropy
loss [30–32]. Tang et al. [39] employed hand-crafted features and used the Arcface loss. Here, the
individual vocal properties provided by the speaker-identification network are not used. Table 3 shows
that the method proposed by Tang et al. [39] has a higher WA than UA. This implies that emotion
classes with more samples, particularly in the imbalanced IEMOCAP dataset, are better recognized.
The wav2vec 2.0-based methods [30–32] used average time pooling to combine features across the
time axis. Reference [32] also included a long short-term memory (LSTM) layer to better model the
temporal features. In the proposed method, the Arcface loss is used instead of the cross-entropy loss,
and an attention block is used to model temporal features. Table 3 shows that the proposed attention-
based method outperforms previous methods with similar training paradigms. It also demonstrates
that using four attention blocks results in significantly better performance than using one, two, or
three attention blocks. This is because four attention blocks can more effectively identify the segments
of the combined emotion representation that are most relevant to SER. Reference [33]’s outstanding
performance can be attributed to the use of a pseudo-task adaptive pretraining (P-TAPT) strategy that
is described in Subsection 2.5.

Table 3: Comparing the performance of the proposed emotion classification approach (with a varying
number of attention blocks) against that of previous methods also trained with the Arcface loss

Models # of emotion attention blocks WA (%) UA (%)

SUPERB [30]: wav2vec 2.0 (base/large) – 63.43/65.64 –
Wang et al. [31]: w2v partly Fine-tuned
(base/large)

– 70.21/70.99 –

Pepino et al. [32]: Global normalized – – 66.3 ± 0.7
Pepino et al. [32]: Speaker normalized – – 67.2 ± 0.7
Chen et al. [33]: P-TAPT – – 74.30
Tang et al. [39]: Audio only – 71.80 69.60

Proposed method

1 70.03 71.37
2 70.26 71.14
3 70.36 71.14
4 71.05 72.15

5.2 Partially and Entirely Fine-Tuning Networks

The proposed speaker-identification network was fine-tuned under three different configurations:
fine-tuning with the entire pre-trained network frozen (All Frozen), fine-tuning with the wav2vec
2.0 segment frozen and the Arcface center representation vectors unfrozen (Arcface Fine-tuned),
and fine-tuning with both the wav2vec 2.0 weights and the Arcface center representation vectors
unfrozen (All Fine-tuned). The wav2vec 2.0 feature encoder (convolutional layers) is frozen in all cases
[31]. The IEMOCAP dataset only has 10 individuals. Therefore, the Arcface center representation
vectors are reduced from 1,251 (in the VoxCeleb1 dataset) to 8 while jointly fine-tuning both the
speaker-identification network and the emotion classification network. While fine-tuning with both
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the wav2vec 2.0 weights and the Arcface vectors unfrozen, the loss is computed as a combination of
emotion and identification loss terms as shown in Eq. (6):

L = α × Lemotion + β × Lidentification, (6)

α and β are used to control the extent to which emotion and identification losses, respectively,
affect the emotion recognition results. Since training the emotion classification network with four
attention blocks showed the best performance in prior experiments, fine-tuning performance was
evaluated under this configuration. Fig. 7 shows that freezing the speaker-identification network
provides the best overall performance. Due to the small number of speakers in the IEMOCAP dataset,
the model quickly converged on a representation that could distinguish speakers it was trained on
but was unable to generalize to unseen speakers. More specifically, the frozen version of the speaker-
identification module was trained on the VoxCeleb1 dataset and frozen because it has 1,251 speakers’
utterances. These utterances provide significantly larger variation and diversity than the utterances
of the 8 speakers (training dataset) in the IEMOCAP dataset. This implies that the frozen version
can better generalize to unseen speakers than versions fine-tuned on the 8 speakers of the IEMOCAP
dataset, as shown in Figs. 7b and 7c.

Figure 7: Performance of the proposed method with the speaker-identification network fine-tuned to
various levels: (a) All Frozen (b) Arcface Fine-tuned (c) All Fine-tuned

Fig. 7b shows that increasing β, which controls the significance of the identification loss, improves
emotion classification accuracy when the Arcface center representation vectors are frozen. Conversely,
Fig. 7c shows that increasing β, causes the emotion classification accuracy to deteriorate when the
entire model is fine-tuned. This implies that partly or entirely freezing the weights of the speaker-
identification network preserves the representation learned from the 1,251 speakers of the VoxCeleb1
dataset, resulting in better emotion classification performance. On the other hand, fine-tuning the
entire model on the IEMOCAP dataset’s eight speakers degrades the speaker-identification network’s
generalization ability. More specifically, in the partly frozen version, only the attention-pooling and
speaker classification layers are fine-tuned, leaving the pre-trained weights of the speaker-identification
network intact.

Figs. 8 and 9 show t-SNE plots of emotion representations generated by the emotion classification
network under various configurations. In Figs. 8a and 8b, the left column contains representations
generated from the training set, and the right column contains those generated from the test set. In
the top row of Figs. 8a and 8b, a representation’s color indicates its predicted emotion class, and in
the bottom row, it indicates its predicted speaker class. The same descriptors apply to Figs. 9a and
9b. More specifically, Fig. 8 illustrates the effect of employing the speaker-specific representations
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generated by the frozen speaker-identification network in the emotion classification network. As
shown in Fig. 8, using the speaker-specific representations improves intra-class compactness and
increases inter-class separability between emotional classes compared to training without the speaker-
specific representation. The emotion representations generated when speaker-specific information
was utilized how a clear distinction between the eight speakers of the IEMOCAP dataset and their
corresponding emotion classes.

Figure 8: t-SNE plot of emotion representations generated by the emotion classification network
under two configurations: (a) without the speaker-specific representation (b) with the speaker-specific
representation

Figure 9: t-SNE plot of emotion representations generated by the emotion classification network under
two configurations: (a) Only Arcface vector weights fine-tuned (b) All fine-tuned
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In contrast to Figs. 9a and 9b, the result shows that fine-tuning both the speaker-identification
network and the emotion classification network increases inter-class separability between the emotion
representations of speakers while retaining speaker-specific information. This results in a slight
improvement in the overall SER performance, which is in line with the findings shown in Figs. 7b
and 7c.

5.3 Comparing the Proposed Method against Previous Methods

In Table 3, the proposed method is compared against previous SER methods that are based on the
wav2vec 2.0 model or employ the Arcface loss. In Table 4, the performance of the proposed method
under various configurations is compared against that of existing approaches on the IEMOCAP
dataset. In Table 4, “EF” and “PF” stand for “entirely fine-tuned” and “partially fine-tuned,”
respectively. Experiments showed that the configuration using four attention blocks in the emotion
network and fine-tuning with the speaker-identification network frozen (Fig. 7a) provided the best
performance. Therefore, this configuration was used when comparing the proposed method against
previous methods. The proposed method significantly improves the performance of SER models,
even allowing smaller models to achieve performance close to that of much larger models. As shown
in Table 4, reference [33] achieved better performance than the proposed method because it uses a
pseudo-task adaptive pretraining (P-TAPT) strategy, as described in Subsection 2.5.

Reference [44] was a HuBERT-large based model which employs label-adaptive mixup as a data
augmentation approach. It achieved the best performance among the approaches listed in Table 4. This
is because they created a label-adaptive mixup method in which linear interpolation is applied in the
feature space. Reference [45] employed balanced augmentation sampling on triple channel log Mel-
spectrograms before using a CNN and attention-based bidirectional LSTM. Although this method
was trained for several tasks, such as gender, valence/arousal, and emotion classification, it did not
perform as well as the proposed method. This is because the proposed method uses speaker-specific
properties while generating emotional representations from speaker utterances.

Table 4: Comparing the performance of the proposed method against previous SER methods

Models Configuration # of folds WA (%) UA (%)

SERAB [46] BYOL-S/CvT 2048 – 65.10 –
SUPERB [30] wav2vec 2.0 (base/large)

5

63.43/65.64 –
SUPERB [30] HuBERT (base/large) 64.92/67.92
Pepino et al. [32] Fusion-global normalized – 66.3 ± 0.7
Pepino et al. [32] Dense-speaker normalized – 67.2 ± 0.7
Chen et al. [33] P-TAPT – 74.30
Hou et al. [40] – – 66.64
Fan et al. [4] – 70.43 65.02
Kang et al. [44] HuBERT-large 75.37 76.04
Wang et al. [31] wav2vec-base (EF/PT)

10

70.75/70.21 –
Wang et al. [31] wav2vec-large (EF/PT) 70.96/70.99
Wang et al. [31] HuBERT-base (EF/PT) 69.83/69.68 –
Wang et al. [31] HuBERT-large (EF/PT) 72.31/73.01

(Continued)
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Table 4 (continued)

Models Configuration # of folds WA (%) UA (%)

Liu et al. [45] Combination of valence and
arousal

70.27 66.27

Tang et al. [39] Audio only 71.80 69.60
Proposed method Four attention blocks with

speaker-identification
network (all frozen)

5 72.14 72.97

5.4 Ablation Study

Since the audio segments in the IEMOCAP are unevenly distributed across emotion classes,
emotion classes with more samples were under-sampled. In order to examine the effects of an
imbalanced dataset, additional experiments were conducted with varying amounts of training data.
More specifically, the model was trained on the entire dataset with and without under-sampling to
examine the effects of an imbalanced dataset. The best-performing configuration of the proposed
model (the speaker-specific emotion representation network with four attention blocks and the
speaker-identification network frozen) was used in these experiments. Table 5 shows the results of
experiments conducted under four configurations. In the experiment results, both pre-trained and fine-
tuned model variations showed their best performance when trained using the undersampled version
of the IEMOCAP dataset. This is because under-sampling addresses the dataset’s imbalance problem
adequately.

Table 5: Performance of the speaker-specific emotion representation network trained under four
training configurations (with under-sampled and complete versions of the IEMOCAP dataset)

Pre-training

Under-sampled dataset Complete dataset

Accuracy (%) WA (%) UA (%) WA (%) UA (%)

Fine-tuning Under-sampled dataset 72.14 72.79 70.86 71.84
Complete dataset 70.92 71.96 71.68 72.26

In order to investigate the effects of using the speaker-specific representation, experiments were
conducted at first using just the emotion classification network and then using the speaker-specific
emotion representation network. More specifically, cross-entropy and Arcface losses, as well as
configurations of the networks with 1, 2, 3, and 4 attention blocks, were used to investigate the
effects of using the speaker-specific representation. As shown in Table 6, the inter-class compactness
and inter-class separability facilitated by the Arcface loss results in better performance than when
the cross-entropy loss is used for almost all cases. Using the speaker-specific emotion representation
outperformed the bare emotion representation under almost all configurations.



1026 CMC, 2023, vol.77, no.1

Table 6: Performance (accuracy) of the speaker-specific emotion representation network under 1, 2, 3,
and 4 attention block configurations and trained with cross-entropy and Arcface losses

# of attention blocks 1 2 3 4

Emotion classification
network

Cross-entropy
WA 70.16 69.10 68.96 68.48
UA 70.36 69.91 70.45 70.00

Arcface
WA 70.03 70.26 70.36 71.05
UA 71.37 71.14 71.14 72.15

Speaker-specific emotion
representation network

Cross-entropy
WA 70.14 70.26 70.02 69.33
UA 70.91 71.00 70.99 70.64

Arcface
WA 71.02 70.67 70.03 72.14
UA 71.35 71.37 71.74 72.97

The computation time of the proposed method under various configurations was examined. The
length of input audio segments (3, 5, 10, and 15 s) and number of attention blocks (1, 2, 3, and
4) were varied. The proposed model (speaker-specific emotion representation network) consists of
two networks (speaker-identification and emotion classification). Table 6 shows the two networks’
separate and combined computation times under the abovementioned configurations. As shown in
Table 7, computation time increases as the length of input audio segments and the number of attention
blocks increases. Experiments show that the proposed model’s best-performing configuration is that
in which the speaker-specific emotion representation network has four attention blocks. Under this
configuration, the model can process an audio segment in 27 ms.

Table 7: Computation time (ms) of the proposed networks (speaker-identification, emotion classifi-
cation, and speaker-specific emotion representation networks) for input audio segments of varying
lengths (3, 5, 10, and 15 s)

Input audio segment length (seconds)

3 5 10 15

Speaker-identification network 2.52 4.20 8.32 13.08

Emotion
classification
network

# of attention blocks 1 2.49 4.16 8.24 12.96
2 2.57 4.28 8.52 13.41
3 2.64 4.40 8.78 13.84
4 2.71 4.52 9.00 14.22

Speaker-specific emotion representation network (four
attention blocks)

5.28 8.79 17.39 27.26

6 Conclusion

This study proposes two modules for generating a speaker-specific emotion representation for
SER. The proposed emotion classification and speaker-identification networks are based on the
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wav2vec 2.0 model. The networks are trained to respectively generate emotion and speaker representa-
tions from an input audio waveform using the Arcface loss. A novel tensor fusion approach was used
to combine these representations into a speaker-specific representation. Employing attention blocks
and max-pooling layers improved the performance of the emotion classification network. This was
associated with the attention blocks’ ability to identify which segments of the generated representation
were most relevant to SER. Training the speaker-identification network on the VoxCeleb1 dataset
(1,251 speakers) and entirely freezing it while using four attention blocks in the emotion network
provided the best overall performance. This is because of the proposed method’s robust generalization
capabilities that extend to unseen speakers in the IEMOCAP dataset. The experiment results showed
that the proposed approach outperforms previous methods with similar training strategies. In future
works, various wav2vec 2.0 and HuBERT model variations are to be employed to improve the proposed
method’s performance. Novel pre-training and fine-tuning strategies, such as TAPT and P-TAPT, are
also to be explored.
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