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ABSTRACT

Solving Algebraic Problems with Geometry Diagrams (APGDs) poses a significant challenge in artificial intelli-
gence due to the complex and diverse geometric relations among geometric objects. Problems typically involve
both textual descriptions and geometry diagrams, requiring a joint understanding of these modalities. Although
considerable progress has been made in solving math word problems, research on solving APGDs still cannot
discover implicit geometry knowledge for solving APGDs, which limits their ability to effectively solve problems.
In this study, a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs
that involve textual and diagrammatic information. The three-phase scheme begins with the application of the state-
transformer paradigm, modeling the problem-solving process and effectively representing the intermediate states
and transformations during the process. Next, a generalized APGD-solving approach is introduced to effectively
extract geometric knowledge from the problem’s textual descriptions and diagrams. Finally, a specific algorithm
is designed focusing on diagram understanding, which utilizes the vectorized syntax-semantics model to extract
basic geometric relations from the diagram. A method for generating derived relations, which are essential for
solving APGDs, is also introduced. Experiments on real-world datasets, including geometry calculation problems
and shaded area problems, demonstrate that the proposed diagram understanding method significantly improves
problem-solving accuracy compared to methods relying solely on simple diagram parsing.

KEYWORDS
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1 Introduction

Solving Algebraic Problems with Geometry Diagrams (APGDs) is a challenging task in artificial
intelligence due to the complexity and diversity of geometric relations that exist between geometric
objects. APGDs are typically narrated by both textual descriptions and geometry diagrams, making it
a multimodal reasoning task that requires a joint understanding of both modalities [1]. The additional
information provided by the diagram, such as the relative location of lines and points, makes it
essential for solvers to be able to parse the diagram. Furthermore, APGDs often require extra theorem
knowledge in the problem-solving process. Although significant progress has been made in developing
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algorithms for solving math word problems [2,3], the research on solving APGDs is still limited. This
presents a significant research challenge and opportunity to develop algorithms that can automatically
solve APGDs, potentially providing valuable applications in education, such as intelligent tutoring
systems.

In recent years, various methods have been developed to address APGD solving. These methods
can be primarily categorized into two main types: Sequence-to-sequence (Seq2seq) methods and
relation-centric methods. Seq2seq methods, such as Neural Geometric Solver (NGS) [4] and Geo-
former [5], show the feasibility of using Seq2seq solution generation for solving APGDs. However,
these methods currently suffer from limited readability and interpretability of the generated solution
steps, which are often represented as sequential structures that do not resemble natural language.
Additionally, the accuracy of these methods in solving APGDs remains a challenge, with existing
methods often failing to achieve high accuracy rates. These limitations hinder the potential of using
Seq2seq methods for effectively tutoring students in APGD solving.

Except for Seq2seq methods, the majority of current algorithms for solving APGDs, which
belong to relation-centric methods, can be divided into two primary steps: problem understanding and
symbolic solving. Similar to the algorithms used in solving arithmetic word problems [3], the symbolic
solver in solving APGDs heavily relies on the relations of the output of problem understanding. The
ability to obtain the necessary geometric knowledge for problem-solving from geometry diagrams
is a critical issue. As a result, significant research focus on developing algorithms for understanding
APGDs. As demonstrated by previous research [6], understanding APGDs involves two primary tasks:
text understanding and diagram understanding. Both tasks are critical, with diagram understanding
playing a key role in acquiring the knowledge from the diagram for solving the APGD. The challenge
lies in effectively extracting and utilizing advanced knowledge embedded within the problem text and
diagram. For text understanding, previous studies [1,7] showed that methods based on syntax semantic
models can be successfully applied to extracting geometric knowledge in the problem text. In contrast,
diagrams offer supplemental geometric information that complements the data not explicitly stated
in the problem text. To achieve diagram understanding, the previous methods can be divided into
two primary categories: rule-based method [8-10] and machine learning-based method [11]. Both
rule-based and machine learning-based methods primarily focus on identifying basic elements and
labels in geometry diagrams, which serves as a fundamental step toward generating simple geometric
relations. However, a deep understanding of geometric relations is necessary for accurate problem-
solving. Unfortunately, there are currently few studies that focus on achieving a deep understanding
of geometric relations in geometry diagrams. Thus, there remains a need for a more comprehensive
and effective approach to understanding diagrams in APGDs.

In this study, a three-phase scheme for solving APGDs is proposed, consisting of three phases:
applying the state-transformer paradigm, employing the generalized APGD-solving approach, and
developing a specific APGD-solving algorithm. This scheme underscores a progressive algorithm
design process, transitioning from abstract concepts to concrete implementations, enabling a system-
atic and modular blueprint for constructing APGD-solving approaches. With the structured guidance
of the three-phase scheme, a specialized APGD-solving algorithm is designed, encompassing the
following key components: 1) the text understanding part employs the Syntax-Semantics (S?) model
[1,7] for extracting geometric relations from problem text; 2) the diagram understanding part takes
parsed diagrams as inputs and uses a vectorized S* model to extract basic geometric relations; 3)
derived geometric relations are generated based on the diagramet theory proposed by Xia et al. [6].
After integrating all extracted relations, the comprehensive set of relations is fed into existing solvers.
Fig. 1 illustrates the process of solving a given APGD by the proposed algorithm, which is designed to
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ensure a more in-depth understanding of the problem and holds the potential to provide more accurate
and comprehensive solutions to APGDs. The experiments are conducted on datasets of APGDs from
both primary and secondary school levels, including geometry calculation problems and shaded area
problems, demonstrating that the proposed APGD-solving method significantly improves problem-
solving accuracy.
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Figure 1: The process that the proposed algorithm solves the given APGD

In summary, this study contributes to solving APGDs by:

1. Proposing a novel three-phase scheme, specifically designed to systematize and modularize
APGD-solving approaches. This scheme bridges the gap between abstract problem-solving
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concepts and their practical implementation, allowing for more efficient and effective explo-
ration of the APGD-solving process.

2. Development of a unique algorithm, the first of its kind to lay special emphasis on diagram
understanding in the context of APGDs. The algorithm employs the vectorized S* model for
extracting basic geometric relations and leverages diagramet theory-based method to generate
derived geometric relations. This combination fosters a more comprehensive understanding of
the geometric diagrams, thereby enhancing the algorithm’s overall problem-solving capability.

3. Demonstrating the effectiveness of the proposed method through experiments on real-world
datasets. The method led to significant enhancements in the accuracy of problem-solving,
ranging from around 4% to 10% across different datasets and problem types. It exhibited a
remarkable performance, particularly in complex problem goals like shaded area calculation,
underscoring its potential for robust and effective problem-solving in the domain of APGDs.

The remainder of this paper is organized as follows: Section 2 provides an overview of related
work; Section 3 illustrates the proposed three-phase scheme, with a focus on the paradigm phase and
approach phase; Section 4 describes the proposed algorithm for solving APGDs; Section 5 presents
the experimental results; and Section 6 concludes the paper and discusses future work.

2 Related Work

In this section, two main aspects of the literature related to the study are discussed. The first
aspect provides an overview of existing methods for solving APGDs, including geometry calculation
problems and shaded area problems. Research on both Seq2seq-based methods and relation-centric
methods will be covered, highlighting their similarities and differences in addressing APGDs. The
second aspect focuses on diagram understanding, which is particularly relevant to this study, as it aims
to improve the overall performance of APGD-solving algorithms by comprehensively understanding
the geometry diagram. In this part, various techniques and methods for parsing and understanding
geometry diagrams are reviewed, which form the basis for generating geometric relations required in
relation-centric methods. By examining the state-of-the-art methods in these areas, the foundation for
the proposed method is laid, and its novelty in comparison to the existing research is demonstrated.

2.1 Methods of Solving APGDs

In recent years, two primary types of methods have emerged for solving APGDs: Seq2seq methods
and relation-centric methods. Seq2seq methods have shown promise in solving APGDs. Chen et al. [4]
introduced the GeoQA dataset and proposed NGS, which utilizes a co-attention mechanism to
fuse text and diagram representations, predicting explainable programs based on the cross-modal
representation. Chen et al. [5] advanced this research by constructing the UniGeo benchmark. They
also proposed a unified geometric transformer framework called Geoformer, which is capable of
handling geometry calculation and proof reasoning simultaneously. Despite these advancements, the
main limitations of these Seq2seq methods include the limited interpretability and generalization
capabilities and insufficient accuracy rates in their solutions.

Unlike Seq2seq methods, relation-centric methods aim to identify and utilize the underlying
relationships and structures present in APGDs. The following studies showcase some notable advance-
ments in relation-centric methods for APGD-solving tasks. G-ALIGNER by Seo et al. [8] and its
subsequent improvement, GEOS [9], are pioneering attempts that align visual elements with their
textual descriptions in APGDs. However, their approach essentially reduces the task to an optimization
problem, aiming to find which choice satisfies all constraints. This approach lacks the reasoning
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process involved in actual problem-solving. Lu et al.’s Inter-GPS [10] utilized formal language and
symbolic reasoning to address the complexities of APGD-solving tasks. However, their method focuses
too heavily on the semantic aspects of the problems, leading to less accurate relation extraction from
the given text. Yu et al. [12] proposed a two-phase algorithm for understanding and solving text-
diagram function problems with impressive accuracy. Despite its strengths, the method falls short in
terms of the interpretability of solutions, which is a crucial aspect of APGD-solving tasks. Alvin et
al.’s approach called GeoShader [13] and Feng et al.’s approach [14] are both tailored to tackle shaded
area problems, formalizing and solving such tasks efficiently. Despite their effectiveness for this specific
problem type, these methods exhibit limitations in their applicability, as they are primarily designed to
solve shaded area problems. While these studies each provide significant advancements in the field, a
common limitation across all methods is their reliance on inputting simple geometric relations into the
solver. This reliance hinders their ability to deeply understand geometry diagrams and extract more
complex geometric relations, which in turn, affects the overall accuracy of problem-solving.

The proposed method is developed after an in-depth examination of existing methods and
addressing identified strengths and weaknesses. Emphasizing the importance of diagram understand-
ing, it extracts and interprets geometric relations from diagrams through dedicated procedures. By
integrating relations from both text and diagrams, the method facilitates a profound understanding of
APGDs. Symbolic reasoning is employed in the final problem-solving phase, utilizing the consolidated
representation from previous phases for robust solution generation. The method thereby not only
enhances APGD-solving efficiency but also ensures the interpretability of solutions, applicable across
various problem types.

2.2 Methods of Understanding Geometry Diagrams

Understanding geometry diagrams is a crucial and necessary step in relation-centric methods
for solving APGDs. The ability to accurately comprehend and interpret diagrams is essential for
the subsequent identification of geometric elements and relations, which ultimately aids in problem-
solving tasks. Seo’s foundational work [8,9] primarily relies on computer vision techniques, identi-
fying simple relationships within diagrams but lacking comprehensive interpretability. Some studies
[1,15,16] utilized numerical verification-based methods to extract relations from diagrams. While
effective for specific scenarios, these methods lack a universal strategy for relation extraction, which
can limit their applicability to more diverse problem sets. Xia et al. [6] introduced the diagramet theory
for K—12 education, a promising concept still in its nascent stage and requiring further development.
Zhang et al. [11] offered PGDPNet, an end-to-end deep learning model, but it lacks interpretability,
limiting the transparency in relation identification. These studies collectively demonstrate the increas-
ing importance and feasibility of automating the process of understanding geometry diagrams, which
holds great potential for applications in education and intelligent tutoring systems. However, existing
methods struggle to deeply comprehend advanced geometric relations within diagrams and rely on
traditional methods that do not effectively handle the diversity of geometric styles and the complex
relationships between primitives. These shortcomings restrict the accuracy and overall effectiveness of
automatic APGD-solving methods.

As a precursor to the current research, Huang et al. [1 7] introduced a uniform vectorized S* model
for automatic APGD understanding. This foundational method provided a simultaneous approach
to both text and diagram understanding, which distinguished it from traditional methods. Building
upon this foundational work, the present research introduces significant advancements, notably
in efficiency, accuracy, and scalability. It employs an innovative three-phase scheme for APGD-
solving that fosters a more systematic problem-solving approach, better equipped to handle complex
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problems, and enhances the interpretability of the solution process. These improvements represent a
clear progression from the prototype-like algorithm of the previous work. Furthermore, this study
strives to advance relation-centric methods in APGD-solving tasks, addressing the limitations noted
in previous studies. A more robust problem-understanding method based on the vectorized S* model
is proposed, which transforms problem text and diagrams into geometric relations automatically.
Emphasizing interpretability, the proposed method utilizes symbolic reasoning and incorporates
theorem knowledge as conditional rules, facilitating step-by-step reasoning, and enhancing the
performance of APGD-solving algorithms. This advancement marks a significant improvement over
previous research, making a considerable contribution to the field of automatic APGD-solving.

3 State-Transformer Paradigm and Generalized APGD-Solving Approach

In this study, a three-phase scheme (paradigm, approach, and algorithm) is adopted for solving
APGDs. This scheme establishes a bridge between abstract concepts and specific implementations,
offering a hierarchical and systematic framework for the research. Firstly, the state-transformer
paradigm is established, serving as the foundation for the problem-solving approach design. Next, a
generalized APGD-solving approach under the state-transformer paradigm is illustrated, outlining the
solving process that encompasses multiple methods. Lastly, details of the algorithmic implementation
are delved into, with the development and optimization of techniques to efficiently navigate through
the states and transformers, ultimately generating a reliable and accurate solution to the given APGD.
Through the adoption of this three-phase scheme, a comprehensive and coherent exploration of
the research topic is facilitated. Each phase builds upon the previous one, ultimately resulting in a
well-rounded and effective problem-solving method. This section presents the details of the state-
transformer paradigm and APGD-solving approach.

3.1 State-Transformer Paradigm

The first phase, the state-transformer paradigm, is inspired by the state-action paradigm proposed
by Yuet al. [3]. The state-transformer paradigm, as shown in Fig. 2, is a general framework for solving
APGDs. It consists of various states representing different phases of the APGD-solving process and
transformers representing different operations that enable transitions between these states. The core
idea behind the state-transformer paradigm is to systematically explore the state space by applying
different transformers, enabling the algorithm to effectively navigate from an initial problem state to
a desired solution state.

é Transformer !

Figure 2: The state-transformer paradigm for solving APGDs

Definition 1 (State) A state signifies the diverse phases or conditions that the APGD problem-
solving process traverses. Each state is characterized by its distinctive input and output formats,
capturing a particular facet of the problem-solving process.
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Definition 2 (Transformer) A transformer corresponds to the operations or procedures affecting
transitions between different states. [t encapsulates the distinct algorithms that convert the output from
one state into the input of another, thus allowing for the modularity and reusability of the components
of the APGD-solving approach.

The shift from the original state-action paradigm to the state-transformer paradigm has been
made in this study to emphasize the crucial role of transformers in enabling transitions between
different states during the APGD-solving process. For a comprehensive understanding of the original
state-action paradigm and its definitions, refer to the study [3].

3.2 Generalized APGD-Solving Approach

In the second phase, the state-transformer paradigm is elaborated on by describing a generalized
approach for solving APGDs. This approach encapsulates the common characteristics and processing
steps found in various methods. Fig. 3 below illustrates the transitions between different states using
the transformers in the proposed approach. An elliptical node represents a state, and an arrow
represents a transformer.

Input Problem

i

Basic Relations

d.Derived Relations Computable Sequence
Generation vl

Integrated Relations

Y

Equation Set
v

Output Answer
Vil
Figure 3: APGD-solving approach under state-transformer paradigm

The key components of the proposed approach include:
States:
e Input Problem: The original APGD, including the text and diagrams.
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e Parsed Problem: The problem after parsing, which includes structured data of the APGD. These
structured data encapsulate the essential information extracted from both the problem text and
diagrams, organized in a systematic and structured manner conducive to further processing and
problem-solving.

e Basic Relations: A group of geometric relations that present fundamental connections between
elements like points, lines, and shapes, including adjacency, collinearity, parallelism, etc.

e Integrated Relations: A group of geometric relations that integrate basic and derived relations,
offering a more comprehensive understanding of geometric problems.

e Equation Set: A collection of mathematical equations generated from geometric relations.

o Computable Sequence: A sequence that can be directly computed to obtain the final answer.

e Output Answer: The final answer to the APGD.

Transformers:

e Parsing: Parse the text and diagrams into structured data called parsed problem.

e Diagram Understanding: Analyze a geometric diagram to identify and interpret geometric
primitives and symbols, ultimately generating basic geometric relations that capture the visual
information in the diagram.

e Text Understanding: The process of extracting and interpreting geometric keywords and entities
from the textual description of the APGD. The outcome is basic geometric relations extracted
from the problem text.

e Derived Relations Generation: The process of combining basic relations extracted from text and
diagram understanding to generate derived relations that are more complex than basic relations.

e Relation Processing: Convert geometric relations into equations.

e Symbolic Solving: Solve equations and get the solution to the APGD.

e Seq2seq Solution Generation: Use the Seq2seq method to directly generate the computable
sequence.

e Computation: Computes the final answer from the computable sequence.

Table 1 presents concrete examples illustrating how this generalized approach can be applied to
various methods: Seq2seq methods directly embed the text and diagrams through transformer a, then
decode the embeddings using transformer / to generate the computable sequence, and finally utilize
transformer i to obtain the final answer. Traditional relation-centric methods parse geometry diagrams
with transformer a, acquire basic relations through transformers b and ¢, convert basic relations into
equations using transformer f, and input equations into a symbolic solver to obtain the final answer
through transformer g.

Table 1: Comparison of different methods and their corresponding transformers used for transitioning
between states

Methods Transformers
Seq2seq methods [4,5] a, h, i
Traditional relation-centric methods [8-10]  a, (b, ¢), f, g
Proposed method a, (b, ), d, e g

In this study, a state called Integrated Relations is introduced. By considering both basic and
derived relations, a comprehensive representation of the diagram is obtained. In contrast to traditional
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relation-centric methods, the proposed method employs transformer d to generate derived relations
and fuses them with basic relations to obtain integrated relations. Then, these integrated relations are
converted into equations using transformer e, enabling more accurate and efficient solutions when
utilized.

Through this section, the state-transformer paradigm and its application in the approach for
APGD solving are introduced. In the next section, a detailed description of the algorithm design that
stems from the APGD-solving approach will be provided.

4 The Proposed Algorithm for APGD Solving

This section introduces the proposed algorithm for solving APGDs, which demonstrates a
concrete implementation of the generalized APGD-solving approach.

4.1 Algorithm Outline

In this section, a three-step algorithm based on the APGD-solving approach to address APGDs
is presented. The first step involves acquiring a set of basic geometric relations through text under-
standing and diagram understanding. The second step generates derived geometric relations based on
basic geometric relations, while the third step transforms all geometric relations into equations that are
then input into a symbolic solver to determine the unknown value, which serves as the solution to the
APGD. These three steps form the proposed algorithm, as illustrated in Algorithm 1. To implement the
tasks of the algorithm, three procedures are employed: Procedure 1 for text understanding, Procedure
2 for diagram understanding, and Procedure 3 for derived relations generation.

Algorithm 1: The Algorithm for APGD Solving

Input: An APGD

Output: The answers

Step 1: Use Procedures 1 and 2 to acquire basic geometry relations separately;

Step 2: Use Procedure 3 to generate derived geometric relations based on basic geometric relations;
Step 3: Transform all geometric relations into equations and then input equations into a symbolic
solver to get the final answers.

4.2 Geometric Relations Extraction

This subsection outlines the methods for extracting geometric relations in detail. It encompasses
three components: (1) text understanding, (2) diagram understanding, and (3) derived relations gener-
ation. Before delving into text understanding and diagram understanding, it is crucial to preprocess the
raw text and diagram separately to obtain structured representations suitable for further analysis. For
the original text, parsing and annotation methods mentioned in [1] are employed to transform it into
a sequence of tokens with associated Part-Of-Speech (POS) labels. This structured text representation
serves as the input for text understanding. For the diagram, a combination of techniques, including
the Hough transform [18] and object detector such as RetinaNet [19], is used to extract geometric
primitives (points, lines, angles, arcs, circles), labels (textual description of geometric primitives) and
symbols (vertical and parallel symbols, etc.). After obtaining the structured diagram representation,
it becomes the input for diagram understanding, which helps build a comprehensive understanding of
the problem and extract essential geometric relations for solution generation.
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4.2.1 Text Understanding

In this part, an S? model-based method [1,7] is introduced to implement text understanding for
APGDs. The syntax elements of the S* models consist of POS patterns, while the semantic elements are
formed by keyword structures. The S* models are employed in Procedure 1 for extracting geometric
relations from the text. Procedure 1 operates effectively once a suitable pool of S* models has been
prepared.

Definition 1 (S* Model) An S* model, or syntax-semantics model, can be represented by a triplet
m = (K, P, R),where K stands for semantic keyword structures, P denotes POS labels, and R denotes
the output geometric relations. The collection of all prepared S* models is symbolized by M = {m, =
(K;, P,R)|i=1, 2, ..., n}, and is referred to as the pool of S* models for APGDs.

In Fig. 4, an example of an S? model and its components are provided. The S* model identifies the
keyword structure K and the corresponding POS labels P within the parsed text 7'. It then replaces the
elements in the matched sections of 7" with the geometric relation template R, generating the output.

T point/n B/point is/v the/r midpoint/n of/p line/n AC/line

K+P [ p2/point][midpoint/n][ p1ps/line]

R IsMidPointO f(pa, Line(p1,ps))

Figure 4: Example of an S* model and its components

Procedure 1: Text Understanding
Input: Parsed problem text T’
Output: A group of basic geometric relations X
Step 1: Initialize X, as empty;
Step 2: Load the pool of prepared S* models M = {m; | i =1,2,...,n};
Step 3: fori = 1 ton do
Match K; and P; of m; with each of the portions of 7;
for each matched portion do
Use the geometric entities in the text to instantiate the elements in m1;;
Put an instance of R; of m; into X;;
end

end

As shown in Procedure 1, the text understanding process starts with initializing an empty group
of basic geometric relations ;. Then, the pool of prepared S* models M = {m;li = 1,2,...,n}is
loaded. For each model in the pool, the algorithm attempts to match the model with the portions
of the parsed problem text. For every matched portion, the geometric entities in the text are used
to instantiate the elements in the corresponding S* model. Finally, an instance of the relation of the
matched model is added to the set X ;. This process iterates through all the models in the pool, ensuring
that all geometric relations are extracted from the given input text. The output of this procedure is a
set of geometric relations that are used for further analysis.
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4.2.2 Diagram Understanding

This part introduces a method for understanding diagrams using a vectorized model called
the Syntax-Semantics Diagram S,D model. The S?D model is particularly useful for analyzing the
geometric diagram because it converts the diagram into a form that is suitable for efficient matching.
Consequently, vectorization reduces the dimensionality of the data and speeds up the matching
process, resulting in a more accurate and robust understanding of the diagram.

The S$?D model extends the concepts of semantic keyword structures and syntactic POS labels
from the S* model to geometric diagrams. In the S*D model, the structure of geometric primitives
defines the type of geometric primitives that are placed in each position of the vector, thus providing
the underlying semantic structure of the diagram. The geometric primitives reveal information about
the type of geometric primitive in each location, thus providing the syntactic structure of the diagram.
In addition, some geometric relations require numerical validation of the geometric primitives within
them (e.g., perpendicularity, bisection). Therefore, the matching functions are added to determine
whether the numerical relationships between geometric primitives match the model.

Definition 2 (S°D Model) An S*D model is represented by a quadruplet m = (V,GP,F,R). V
denotes the structure of geometric primitives, GP denotes the geometric primitives, F represents the
matching functions, R represents the output geometric relations. The collection of all prepared S*D
models is symbolized by M = {m, = (V,, GP,,F.,R)|i=1, 2, ..., n}, and is referred to as the pool
of $2D models for APGDs.

Procedure 2: Diagram Understanding
Input: Parsed geometry diagram D
Output: A group of basic geometric relations X,
Step 1: Initialize X, as empty;
Step 2: Load the pool of prepared S2D models M = {m, | i = 1,2,
Step 3: Cluster M and create a list of tensors I'y = {y,” [ j = 1,2,
Step 4: Encode D into the vector form Ep;
Step 5: Generate a list of candidate tensors to be matched I', = {ij li=12,..., k} based on I';; and
E,; Initialize the list W as empty;
Step 6: for j = 1 to k do

Match each candidate in y,” with each model in y*;

for each matched candidate do

Put the pair of matched candidate and corresponding model into WW;

...,n}
Lk

end
end
Step 7: for each matched candidate in 1 do
Decode the matched candidate and put it into X,
end

In Fig. 5, a visual representation of an S*D model and its components, based on an example
diagram D, is provided. The geometric primitives GP and its structure V' are combined to form a
single vector, which will be utilized for matching with the portions of the diagrams. The matching
function set F contains primitives that require numerical verification and corresponding functions.
The geometric relations set R which contains the relation templates are provided as the output.
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Figure 5: Example of an $?D model and its components

As shown in Procedure 2, the process begins by initializing an empty set X,. Next, the pool of
prepared S>D models M isloaded. The models are clustered to create a list of tensors I'y;. The geometry
diagram is encoded into the vector form E,. Based on I';; and E), a list I', which consists of candidate
tensors to be matched is generated, and an empty list ¥ is initialized. For each tensor in I'j, the
method attempts to match the candidates with the corresponding models in I';z. When a candidate
matches a model, the pair of candidate and model is added to the list . After all candidates have
been processed, the algorithm iterates through each matched candidate in 1, decodes the candidate,
and adds it to the set X,. This diagram understanding method efficiently extracts geometric relations
from the given diagram input. The overview of the diagram understanding method is shown in Fig. 6.

Diagram hing Candid J
Encoding (Generation J
& "
.' Matched Candidates
52D Models| - 5D Models Decoding
g2p | Clustering i Matching )
Models .

Geometric
Relations

Figure 6: The method of diagram understanding based on S*D models

In the following discussion, the details of Steps 3 to 7 in Procedure 2 are further explored.

Step 3: S°D Model Clustering

Given a pool of prepared S>D models M, each model comprises the structure of geometric
primitives, multiple primitives, matching functions, and the geometric relations provided as output.
As there are five distinct primitives, the primitive-count vector of model 7, can be defined as N, =
[n,,, n, n,, N, nc], with n,, n;, n,, n,, n, representing the count of points, lines, angles, arc segments, and
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circles included in m?”, respectively. The models in M are clustered based on their primitive-count

vector, resulting in a cluster set C = {¢;|j = 1,2,...,k}. The primitive-count vectors of C can be
expressed as ® = {N,|j = 1,2,...,k}, where N, represents the primitive-count vector of all $*D
models in ¢;.

As a result, all vectorized S$*D models in the cluster ¢; can be created as tensor yjﬁ. Then, a list of
tensors I'yy = {y”|j = 1,2,..., k} can be generated, making it feasible for model matching.

This clustering process enables the prepared S>D models to be represented as tensors, which are
essential for matching with the unique features of diagrams and for enhancing the matching speed and
accuracy.

Step 4: Diagram Encoding

The geometric diagram complements the textual description by providing additional geometric
information for problem-solving. To enable efficient matching with the S?D models, the geometric
diagram should be represented in vector form as well. Inspired by the vector graph representations
in [20], a bilayer undirected graph is designed to model the point-line-angle relationships. In the first
layer, each segment represents a point in the diagram, and each element within a segment corresponds
to a line that passes through that point. Since each line is associated with two points, it appears in
two segments. Pointers to the other end of the line are kept in the elements of the segmented vector,
which facilitates graph traversal. Additionally, a separate vector containing the lengths of each line is
used to encode the line length information. In the second layer, each segment corresponds to a line in
the diagram, and each element within a segment represents an angle formed by that line. Similarly, an
additional vector that contains the degrees of the angles is used to include the angle information of
the diagram. By using this bilayer undirected graph, the geometry diagram is encoded into the vector
form E), consisting of vector tables.

Fig. 7 shows an example of encoding the geometry diagram into vector tables. The left side
of Fig. 7 shows an undirected graph that represents the topological structure between geometric
primitives, while the right side shows the corresponding vector table. The Fig. 7 demonstrates how
points are connected to form lines within the diagram, while the lower table reveals how lines
interact with each other to form angles in the same diagram. The “segment-descriptor” in the table
header represents the number of edges connected to the corresponding vertex (e.g., the segment-
descriptor of A is 2, which means that vertex 4 is connected to two edges, AC and AM). The
“cross-pointer” represents the indices of the vertices connected to the corresponding vertex (e.g.,
the cross-pointer of A4 is 4, indicating that 4 is connected with vertex C, which has an index of 4,
to form the edge AC).

The next step will use this vector table to generate candidate vectors. The advantage of this method
is that it ensures that the primitives in the generated candidate vectors exist in the geometry diagram,
which can avoid the occurrence of invalid candidate vectors and speed up the matching process.
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A index 0 1 |2 3 |4 5 6 |7 8 9
vertex A B C M
M segment-descriptor 2 2 3 3
cross-pointer 4 7 5 8 0 2 9 1 3 6
C B edge (line) AC AM [BC BM [CA CB CM [MA MB MC
AC AM index 0 1 2 (3 4 5 |6 7 8 |9 10 m [12 13 14 15
vertex AC AM BC BM CM
CM segment-descriptor 3 2 3 2 4
cross-pointer 4 13 8 12 0 nm |15 10 2 4 7 5 |3 1 9 6
BC BM edge (angle) ccAM zAcM ACB| cAMC <MAC CAMB £BCM CBM ZBCA| ZBMC cMBC ZBMA| LCMA ZMCA £CMB ZMCB

Figure 7: Example of encoding the geometry diagram into vector tables

Step 5: Candidate Vectors Generation

A combination function is introduced to generate a diverse range of candidate vectors for a
specified geometric diagram. Given the encoded representation of a geometric diagram, E),, the
combination module stochastically selects primitives from £, to construct candidate vectors by the set
of primitive-count vectors ® of I'y;. For each N, € P, the combination module can identify numerous
vector sequences sharing identical primitive counts:

y? = Comb (E,, N,,) (1)

where Comb represents a combination function that locates all candidate vectors with the same
primitive counts and groups them into a tensor.

Ultimately, a collection of candidate tensors can be produced as ', = {)(].D[j =1,2,...,k}.
Step 6: S>D Model Matching

In the model-matching process, the objective is to identify matched models in yjﬁ corresponding
to a given candidate in y,°. To ascertain whether the model matches the candidate, a two-step process
is employed: anchoring and numerical verification.

Definition 3 (Anchoring) Anchoring is the initial step in the S$*D model matching process, which
aims to find matched models whose primitive structures are identical to the primitive structure of a
given candidate vector. Successful anchoring between the two vectors implies that they share the same
topology in the geometry diagram.

To implement the anchoring process, the simplest method would be to directly compare each
primitive in the candidate vector with the corresponding primitive in the model vector. However, this
method requires considering the order of primitives during matching, resulting in the generation of
numerous candidate vectors with varying primitive orders, which in turn reduces matching efficiency.
Therefore, this study adopts a method that transforms vector matching into graph matching. During
the matching process, only the topological structure of the primitives within the vectors needs to be
considered, without considering the order of the primitives. This significantly reduces the number of
candidate vectors generated and improves matching efficiency.
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To perform the anchoring process between candidate vectors and model vectors using graph
matching, first, both the candidate vector and the model vector are converted into graph structures,
with these graphs hierarchically divided based on points, lines, and angles. Next, matching between the
two graphs is carried out by focusing on the outdegree of nodes. For each node in both the candidate
graph and the model graph, a list is created, consisting of the node’s outdegree and the outdegrees of
its child nodes. By comparing these lists of outdegrees for each node in the candidate vector graph
with the corresponding lists in the model vector graph, it becomes possible to identify one-to-one
correspondences between nodes. When two nodes from the candidate graph and the model graph have
identical outdegree lists, it indicates that they share a one-to-one correspondence. Finally, if every node
in the two graphs has a one-to-one correspondence, a mapping between the points in the candidate
vector and the points in the model vector is obtained as below:

n: GP, — GP, )

where p is a mapping between the primitives in the two vectors, GP, and GP,; are the primitives in the
h-th candidate vector to be matched and the vector of S D model 771;, respectively. Due to the symmetry
characteristics of geometric diagrams, the obtained mapping may not be unique at times. In such cases,
it is essential to eliminate unreasonable combinations and select the appropriate mapping for decoding
matched candidates.

An illustrative example of the anchoring process is provided in Fig. 8, which visually demonstrates
the aforementioned steps. The anchoring process is performed between the S*D model vector and
the candidate vector composed of points (4, M, B), lines (M A, MB), and angle (:BMA). After the
successful anchoring process, a mapping between the points (4, M, B) in the diagram and those in the
S$?D model is obtained.

Candidate 52D Model
A
\
™
. .M o
Diagram
n P2 Ps

Vector B)(A) (M) (M) (BM BMA] [: P1) (P2) | Ps) (pwpa) (Paps) Pupaps
B)(A) (M (m) (p2) (s
Graph MA) | BM PP (PP
~ ~
BMA PivaFs

P3 m
Mapping B < A < M <—> p2
n P3

Figure 8: Example of the anchoring process based on graph matching

If the anchoring process fails, it indicates that the model vector and the candidate vector do
not match. However, if the anchoring process is successful, the next step is to perform numerical
verification for the primitives. This is necessary because some geometric relations cannot be confirmed
solely based on topological relationships. Using the primitive mapping obtained from the anchoring
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process, the variables in the matching function of the S*D model are replaced with the corresponding
primitives from the candidate vector. Let f (x, x,,...,x,) be one of the matching functions of 1,
where x,, X, ..., X, are the variables representing a portion of primitives in GP;. After substituting the
corresponding primitives from the candidate vector using the mapping function u, the verification is
considered successful if the following condition is satisfied:

f(yl,yb""yn):() (3)

where yy, ,, ..., ), represents a portion of primitives in GP,.

In the case of Fig. &, by using the mapping, the lengths of lines and the measure of angle are
substituted into the matching functions F in S*D model. Then, it is verified whether the lengths of
segments A M and MB are equal and if zBM A measures 180 degrees.

To sum up, if both the anchoring process and numerical verification are completed, it indicates
that the candidate vector matches the S*D model. Following the above process, all the successfully
matched candidate vectors and their corresponding models are added to a list W for decoding.

Step 7: Matched Candidates Decoding

In the final decoding phase, for each candidate vector in the list I, the corresponding S?D model’s
geometric relation template is instantiated using the previously obtained mapping from the anchoring
process. By substituting the primitives from the candidate vector into the model’s geometric relation
template, the template is effectively instantiated with the specific primitives, resulting in a concrete
geometric relation that reflects the original input diagram. These instantiated geometric relations
are then collected into a set X,. The set X, represents the basic geometric relations obtained after
performing diagram understanding on the input diagram D.

4.2.3 Derived Relations Generation

In this part of the process, the set of basic geometric relations X, is obtained by integrating geo-
metric relations X, and X,, which are extracted from text understanding and diagram understanding:

EO - ZT U ZD (4)

Most basic features of the geometry diagram, including the quantity and position of geometric
primitives, can be described by the basic geometric relations in X,. However, these basic geometric
relations alone are insufficient to solve the geometric problem. Therefore, it becomes necessary to
consider derived relations, which are generated from the basic geometric relations, to describe more
advanced geometric features.

Following the diagramet theory proposed in [6], a derived relations generation model is introduced
that can define a type of diagramet and generate the corresponding derived geometric relations.
To constrain the model’s scope, a diagram corpus U containing all diagrams from plane geometry
theorems is defined, along with a pool of diagramets for U.

The generation process of derived relations is outlined in Procedure 3. First, a pool of diagramet
models for the geometry problem is loaded. The model searches the pool based on the relations in X,
and identifies instances of diagramets. Next, a mapping between primitives in the basic relations and
primitives in the relation representation of the diagramet is established, leading to the generation of the
derived relation. Finally, all obtained derived relations are collected into X,. This comprehensive set of
derived relations, combined with the basic geometric relations, provides a more complete and accurate
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representation of the geometric problem, allowing for a deeper understanding of the underlying
geometric features and relations.

Procedure 3: Derived Relations Generation

Input: A set of basic geometric relations X, of geometry diagram D

Output: A set of derived geometric relations ¥,

Step 1: Load the pool of diagramet models of the geometry problem;

Step 2: Identify a group of the instances of diagramets from D by searching in the pool according to
20,

Step 3: Generate a group of relations for each diagramet instance, and collect all obtained relations
nto X,;

5 Experiments
5.1 Experimental Settings

5.1.1 Datasets and Evaluation Metrics

Experiments are conducted on four datasets: Geometry Calculation Problems for Primary School
(GCP-PS), Geometry Calculation Problems for Secondary School (GCP-SS), Shaded Area Problems
for Primary School (SAP-PS), and Shaded Area Problems for Secondary School (SAP-SS). In the
GCP-PS dataset, 217 problems are collected from multiple versions of primary school math textbooks
(including Beijing Normal University Press, People’s Education Press, and Jiangsu Education Press).
For GCP-SS, the Geometry3K dataset [10] is used, containing 3,002 problems. Regarding the SAP-PS
dataset, 120 problems are collected from various versions of primary school math textbooks, while for
SAP-SS, Feng’s dataset [14] containing 192 problems is utilized. All problem texts have been translated
into English.

To evaluate the performance of the proposed method, accuracy on different datasets is considered.
To facilitate the evaluation of the solutions, all problems are transformed into a single-choice question
format with four numerical choices. For the proposed method, if the obtained numerical result has the
smallest absolute difference with a choice corresponding to the ground truth, the answer is considered
correct. If the numerical result has the same absolute difference with multiple choices, a random
selection is made from these choices. If the method fails to produce a result, a random choice is selected
from the four choices.

5.1.2 Baselines

In the following section, the performance of the proposed method, referred to as PROPOSED, will
be compared with several existing baseline methods on the four datasets. The aim of this comparison
is to evaluate the effectiveness and robustness of PROPOSED against established approaches in the
field.

GEOS [9] is the first automated system that solves SAT geometry problems by combining text
understanding and diagram interpretation. The approach identifies a formal problem description
compatible with both problem text and diagram and then feeds it into a geometric solver to determine
the correct answer.

Inter-GPS [10] is a geometry problem-solving approach that leverages formal language and
symbolic reasoning. It parses problem text and diagrams into formal language using rule-based text
parsing and neural object detection. Inter-GPS incorporates theorem knowledge as conditional rules
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and performs symbolic reasoning step-by-step. As a key component of the approach, it features a
theorem predictor, which is responsible for inferring the theorem application sequence, ultimately
leading to a more efficient and reasonable search path.

FengAlg [14] is a method specifically designed for solving shaded area problems. It focuses on
constructing equations to generate readable solutions, addressing the challenges associated with the
diverse expressions of such problems and the complex relationships between shaded areas and other
areas. By acquiring a system of equations and using a variety of techniques to construct them from
inputs, FengAlg offers a concise and understandable solving process.

Due to GEOS and Inter-GPS being specialized in solving geometry calculation problems, and
FengAlg being focused on shaded area problems, PROPOSED will be compared with GEOS and
Inter-GPS on GCP-PS and GCP-SS, and with FengAlg on SAP-PS and SAP-SS.

5.1.3 Implementation Details

In the experimental process, both the proposed method and the baselines follow a similar process
that starts by taking the problem, including the textual description and associated geometry diagram,
as input. Each method employs a phase for understanding the problem text and the diagram separately,
extracting relevant geometric relations. These relations are subsequently integrated into a unified
representation that is used as input to the symbolic solver.

During the experiments, different symbolic solvers are employed for two types of problems.

For geometry calculation problems, the symbolic solver proposed in [10] is adopted, which takes
the geometric relations extracted from PROPOSED as input. This solver has proven effective in
handling various geometric calculations and provides a robust solution for problems in this category.

For shaded area problems, the symbolic solver from Feng’s method [14] is selected, which also
takes the geometric relations obtained by PROPOSED as input. This solver is specifically designed
to address the challenges associated with computing shaded areas in geometric diagrams. It considers
the unique aspects of such problems and delivers accurate results accordingly.

5.2 Experimental Results

5.2.1 Comparisons with Baselines

In the evaluation, a comparison of PROPOSED with several baseline methods on four datasets is
presented: GCP-PS and GCP-SS for Table 2, and SAP-PS and SAP-SS for Table 3. Considering that
geometry calculation problems encompass multiple problem goals (length, angle, area, and ratio), the
performance of several methods is measured in terms of solving accuracy across different problem
goals on GCP-PS and GCP-SS datasets. On the other hand, shaded area problems focus solely on area
calculation; hence, only the overall solving accuracy is considered on SAP-PS and SAP-SS datasets.

Table 2 showcases the solving accuracy of PROPOSED and the baselines on both GCP-PS and
GCP-SS datasets. PROPOSED outperforms all other methods, achieving an accuracy of 81.5% and
67.6% on the GCP-PS and GCP-SS datasets, respectively. It can be observed that the improvement of
PROPOSED over the other baselines on the GCP-PS dataset is not as significant as on the GCP-SS
dataset. The reason for this difference is that the GCP-PS dataset contains problems related to primary
school geometry, which involve relatively simple geometric relations. In contrast, the GCP-SS dataset
includes problems of secondary school geometry, which require more complex geometric relations
to solve. This demonstrates that PROPOSED exhibits a greater advantage when tackling problems
involving complex geometric relations. Notably, PROPOSED shows a significant improvement in the
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problem goal Area compared to the baselines. The substantial improvement in the problem goal Area
can be attributed to the fact that area calculation typically necessitates a more extensive set of geometric
relations. PROPOSED is particularly effective in extracting these more geometric relations, which
contributes to its enhanced performance in the problem goal Area.

Table 2: Comparison of the solving accuracy for PROPOSED and other methods on GCP-PS and
GCP-SS datasets, considering the performance across different problem goals

Dataset Methods Accuracy (%)
All Length Angle Area Ratio
GEOS 65.2 72.9 67.4 48.8 -
GCP-PS Inter-GPS 76.1 83.4 78.3 62.3 -
PROPOSED 81.5 86.3 80.6 73.1 -
GEOS 42.5 46.5 44.0 21.0 32.5
GCP-SS Inter-GPS 57.7 62.0 59.3 30.5 50.2
PROPOSED 67.6 71.8 69.9 40.3 55.1

Table 3: Comparison of the solving accuracy for PROPOSED and other methods on SAP-PS and
SAP-SS datasets

Dataset Methods Accuracy (%)

SAP-PS FengAlg 63.4
PROPOSED 68.1

SAP-SS FengAlg 54.2

PROPOSED 62.9

Table 3 compares PROPOSED with FengAlg on the SAP-PS and SAP-SS datasets. PROPOSED
again surpasses the baseline method, achieving an accuracy of 68.1% on the SAP-PS dataset and
62.9% on the SAP-SS dataset. FengAlg, as a baseline, shows a reasonable performance but is still
outperformed by PROPOSED.

In summary, PROPOSED demonstrates superior performance across all datasets and problem
goals, indicating its effectiveness in solving APGDs. The results also highlight the improvements
achieved by PROPOSED, particularly in the more challenging problem goals such as Area.

5.2.2 Ablation Study

In the ablation study, the examination of the impact of various components of PROPOSED on
the overall accuracy is divided into two cases: (1) comparing the performance of using basic relations
and integrated relations, and (2) comparing the performance with and without text understanding and
diagram understanding. The results are presented in Table 4.
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Table 4: Ablation study results for PROPOSED across four datasets

Cases Methods Accuracy (%)
All GCP-PS  GCP-SS  SAP-PS SAP-SS
Case 1 Basic 61.3 78.5 60.2 66.8 56.5
Integrated (ours) 68.2 81.5 67.6 68.1 62.9
Case 2 Text & diagram w/o 25.4 25.2 25.5 25.0 25.0
Text w/o & diagram 53.7 74.6 52.1 62.9 48.7
Text & diagram 68.2 81.5 67.6 68.1 62.9
(ours)

In Case 1, the performance of the method when using only basic geometric relations (Basic) vs. the
proposed approach of utilizing integrated geometric relations (Integrated) is compared. The method
using integrated relations significantly improves the accuracy across all datasets, with a 6.9% increase
in overall accuracy. Notably, the improvements in GCP-SS and SAP-SS datasets are more pronounced,
indicating that integrated relations play a more substantial role in solving problems that require more
complex relations.

In Case 2, the importance of text understanding and diagram understanding in PROPOSED is
assessed. In the case of Text & Diagram w/o, the results show that relying solely on the text without
the diagram is insufficient for solving APGDs accurately. On the other hand, when only diagram
understanding is included (Text w/o & Diagram), the accuracy improves substantially, indicating that
relying on the information from the diagrams alone can still solve a portion of APGDs. The highest
accuracy is achieved when both text understanding and diagram understanding are combined (Text &
Diagram), emphasizing the importance of utilizing both components.

5.2.3 Threats to Validity

Threats to validity are potential weaknesses in the design or execution of a study that could impact
the credibility of the results. In the case of this research, certain limitations are present that could pose
threats to both the internal and external validity of the findings.

In terms of internal validity, certain limitations are identified that directly affect the accuracy of the
results. Two specific instances where PROPOSED encounters these limitations are illustrated in Fig. 9.
The first example shows a situation where the problem requires the construction of auxiliary lines
within the diagram for its solution. Currently, PROPOSED lacks the capability to draw auxiliary lines
in the geometry diagrams, a vital step in solving specific types of problems. This constraint contributes
to an incomplete solution in this case. The second example highlights a failure case where PROPOSED
is unable to interpret the implicit information present within the text. As a result, it fails to establish
a connection between calculating the geometric area and the actual problem-solving goal. This points
out a limitation in the text understanding component, necessitating improvements to better handle
implicit information and effectively link textual data with the geometric diagram.



CMC, 2023, vol.77, no.1 537

a)
There is a flower bed on campus,
calculate its area. 2 2m
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(b)
The shape of a piece of land is
shown in the diagram on the right.
A harvester has a working width
of 1.8 meters and travels at a speed
of 5 kilometers per hour. Approximately
how many hours will it take to harvest
the entire piece of land?
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Figure 9: Failure examples of PROPOSED

Regarding the external validity, the method is designed to handle a broad range of APGDs.
Nevertheless, its effectiveness may vary based on the complexity and specificity of the problem. The
current research primarily targets standard geometric problems typically encountered in primary
school textbooks. The applicability of PROPOSED to other types of problems is yet to be thoroughly
tested, posing a potential threat to the generalizability of the findings.

Future efforts will aim to mitigate these threats to validity, with a focus on improving the
performance and broad applicability of PROPOSED.

6 Conclusion

In this paper, the problem of solving APGDs is addressed by employing an algorithm designed
based on a systematic and modular three-phase scheme. The state-transformer paradigm is first
applied to model the problem-solving process, which effectively represents the intermediate states
and transformations that occur during the process. This paradigm paves the way for a structured
approach to problem-solving and facilitates the integration of various algorithms and techniques.
Next, the generalized APGD-solving approach is employed, which provides a high-level strategy for
extracting and utilizing geometric knowledge from both textual descriptions and geometry diagrams.
This approach ensures the effective extraction of relevant information and lays the foundation for
developing specific APGD-solving algorithms. Lastly, a specific APGD-solving algorithm is developed
that incorporates the S* model for extracting geometric relations from the problem text and the S*D
model for relation extraction from diagrams. In addition, a derived geometric relations generation
method is proposed to extract derived relations from the basic geometric relations. The proposed
method enables a more in-depth understanding of the problem and leads to a more accurate and
comprehensive solution to APGDs. The experimental results on real-world datasets of primary and
secondary school level problems demonstrate that the proposed method significantly improves APGD
problem-solving accuracy across various problem types, including geometry calculation problems and
shaded area problems.

However, there are limitations to the current approach, as demonstrated by the failure cases.
These cases indicate areas for future improvement, such as developing the ability to construct auxiliary
lines in diagrams and enhancing the understanding of implicit textual information. Future work will
focus on addressing these limitations and further enhancing the proposed method’s capabilities to
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provide more accurate and comprehensive solutions to APGDs. This will not only contribute to the
advancement of research in artificial intelligence but also pave the way for valuable applications in
education, such as intelligent tutoring systems.
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