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ABSTRACT

In the era of artificial intelligence, cognitive computing, based on cognitive science; and supported by machine
learning and big data, brings personalization into every corner of our social life. Recommendation systems are
essential applications of cognitive computing in educational scenarios. They help learners personalize their learning
better by computing student and exercise characteristics using data generated from relevant learning progress. The
paper introduces a Learning and Forgetting Convolutional Knowledge Tracking Exercise Recommendation model
(LFCKT-ER). First, the model computes students’ ability to understand each knowledge concept, and the learning
progress of each knowledge concept, and the model consider their forgetting behavior during learning progress.
Then, students’ learning stage preferences are combined with filtering the exercises that meet their learning progress
and preferences. Then students’ ability is used to evaluate whether their expectations of the difficulty of the exercises
are reasonable. Then, the model filters the exercises that best match students’ expectations again by students’
expectations. Finally, we use a simulated annealing optimization algorithm to assemble a set of exercises with
the highest diversity. From the experimental results, the LFCKT-ER model can better meet students’ personalized
learning needs and is more accurate than other exercise recommendation systems under various metrics on real
online education public datasets.
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1 Introduction

With the accelerating popularity of education informatization and mobile applications, online
education has attracted many student users to learn on online platforms. However, the massive
amount of educational resources available online dramatically increases the difficulty for learners
to find learning resources at different learning stages [1]. Hence, a science-based approach must be
used to analyze students and educational resources to provide personalized learning services for
students. Personalized recommendation algorithms can effectively solve this problem and have become
a popular research direction. As a vital educational resource, exercises are essential in testing students’
learning abilities. An important issue is how to compute students’ ability and learning progress from
their exercises and then provide learners with personalized exercise recommendations based on their
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learning stage preferences and expectations of the exercises’ difficulty. Therefore, from the viewpoint
of enhancing students’ productivity and interest, it is important to study how to accurately compute
students’ ability, compute students’ learning progress and compute the difficulty of exercises for
students, and recommend exercise resources that meet students’ different learning stages, learning stage
preferences and expectations of difficulty based on student’s ability and difficulty of exercises.

In the personalized exercises recommendation, it is crucial to compute the student’s ability to
understand different knowledge concepts accurately. Because the student’s forgetting behavior [2] and
thus the student’s ability to forget knowledge concepts decreases during the learning progress, the
difficulty of the exercises involving forgotten knowledge concepts increases for the student. A student’s
learning progress should also be considered in the personalized exercise recommendations. It is also
essential to accurately compute the progress of students’ knowledge and adjust the recommendation
process according to their changing learning stage preferences (review or exploration) to help them
learn efficiently. We also consider students’ expectations of the difficulty of the exercises to maximize
the learning needs of students, and how to evaluate whether students’ expectations are reasonable [3]
is also an issue to be considered in the recommendation system. A student’s reasonable expectation
means that the difference between their expected difficulty and their actual ability should not be too
great. From the above analysis, we know that it is very challenging to compute students’ ability and the
difficulty of the exercises in the exercise recommendation and recommend exercises that meet students’
desired difficulty according to their learning stage preferences.

In the current study, Wu et al. [4] proposed a recommendation system that recommends exercises
that match students’ abilities according to their learning progress but does not consider students’
learning stage preferences, forgetting behavior during learning, and the reasonableness of students’
expectations about the difficulty of the exercises. Zhu et al. [5] proposed an exercise recommendation
system based on cognitive diagnosis, which computes the student’s ability and combines collaborative
filtering to recommend the student exercises. However, the student’s learning progress and the student’s
learning stage preferences should be taken into account in this recommendation system. These studies
suggest that present research needs to propose valid solutions to recommend suitable exercise for
students according to their progress and abilities, especially considering their learning stage preferences
and forgetting behavior.

In this paper, LFCKT-ER is presented to address the limits of the present study. The LFCKT-ER
takes into account students’ abilities, learning stage preferences, expectations, and forgetting behavior.
It can recommend exercises for students that better match their learning stage preferences, abilities, and
learning progress to maximize personalized services for students to enhance their study productivity
and interest. Among the contributions, this paper has the following:

1) A model is proposed to compute students’ ability LFCKT-ER, which considers students’
learning rate and forgetting behavior in learning to model each student individually and output
students’ mastery of each knowledge in real-time, allowing students to understand their learning
progress better. Additionally, LFCKT-ER can provide better feedback for educators to understand
students’ learning situations better, thus providing better support.

2) By integrating students’ learning stage preferences into the learning progress computation
and evaluating whether students’ expectations for the difficulty of the exercises are reasonable,
LFCKT-ER can dynamically adjust the exercise recommendations according to student’s learning
stage preferences and expectations and use optimization algorithms to maximize the diversity of the
exercise recommendations when recommending them, maximizing students’ satisfaction and learning
efficiency.
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3) The recommendation model LFCKT-ER proposed in this paper was evaluated on three
real open-source datasets and compared with other mainstream models. LFCKT-ER improved in
the corresponding evaluation metrics. Specifically, LFCKT can recommend appropriate exercises to
students, allowing them to master knowledge more effectively and improve learning outcomes.

This paper is organized as follows. Section 2 discusses the related recommendation algorithms.
Section 3 describes the proposed exercise recommendation method LFCKT-ER. Section 4 provides
the experimental results and analyzes the experimental results. Section 5 summarizes the paper.

2 Related Work

Recommendation systems are essential applications of cognitive computing [6], and due to
the importance of education, many researchers have worked on recommendation technologies in
education. In particular, Linden et al. [7] proposed a K-Nearest Neighbor (KNN) collaborative
filtering method to find the students with the most similar answer profiles by calculating the Jaccard
similarity between students through their existing exercise scores, then predicting the aim students’
scores according to the most similar students’ scores, and then recommending the exercises according
to the predicted scores. Torre [8] selected exercises from the set of exercises to be recommended
according to the level of student knowledge mastery diagnosed by Deterministic Inputs, Noisy “And”
gate model (DINA) and recommended exercises related to the knowledge concepts where students’
knowledge mastery is weak and those where knowledge mastery is vital. Many studies introduce
knowledge graphs into recommendation systems [9–11], Xing et al. [9] proposed a unification-based
approach to address the interference of too-distant supplementary information in the knowledge graph
with entity information by reconstructing the knowledge graph and also designed a neighborhood
aggregation structure based on a distance strategy to achieve a shorter training overhead by reducing
the order of aggregation. Chen et al. [10] applied knowledge graph and reader portrait techniques
to book recommendation retrieval by constructing reader-book knowledge graphs and combining
book topic models and reader portraits to model the semantic associations between books and reader
preferences, respectively, to mine the semantic associations behind reader-reader, reader-book, and
book-book. The semantic relationships between readers and readers, readers and books, and books
and books are analyzed to enhance the recommendation retrieval effect. Zhang et al. [11] proposed
a knowledge graph recommendation via the influence effect of a similar user model with fused
influence effects, which expands the interaction between users and items. Many researchers apply
knowledge-tracking techniques [12–14] to recommended exercises. Ma [12] proposed a personalized
exercise recommendation method that combines a deep knowledge tracking model with a collaborative
filtering method to address the fact that most of the existing exercise recommendation methods for
knowledge modeling ignore the use of common features among similar students. Zhu et al. [13]
combined collaborative filtering with knowledge tracing to recommend exercises to students and
added the influence of forgetting factors in calculating students’ learning progress to fully explore
students’ knowledge mastery level and typical characteristics of similar students and used them based
on dynamic key-value memory networks for knowledge tracing model to accurately explore students’
knowledge concept mastery level to ensure the recommendation of appropriate difficulty exercises. He
et al. [14] proposed an exercise recommendation method based on knowledge tracing and conceptual
prerequisite relations, which considers the difficulty of the exercises and the prerequisite relations of
the knowledge concepts in the recommendation and sets thresholds for the mastery of the knowledge
concepts into very poorly mastered, essentially mastered, and very well mastered, recommending
moderately complex exercises can guide students in the right direction of learning and also stimulate
their interest in learning. However, these studies rarely consider student forgetting, student preferences,
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and student expectations during the learning progress. In this paper, we first predict students’ learning
progress and add students’ weights on learning stage preferences in the final output layer to filter out
the exercises that meet students’ learning progress and preferences, then calculate students’ ability on
each concept and evaluate the reasonableness of students’ expectations for the exercises based on their
ability and make corresponding adjustments, and finally filter out the exercises that meet students’
expectations on difficulty and maximize the diversity of the exercises using simulated annealing
optimization algorithm to stimulate students’ learning interest.

3 The Model of LFCKT-ER

The framework of the exercise recommendation system proposed in this paper is shown in
Fig. 1. First, the model computes for each knowledge concept the probability that at the next
moment based on students’ interaction sequences through the Knowledge Concept Computation with
Preference (KCCP) to select the knowledge concepts that match students’ learning stage preferences
and students’ learning progress. Then, the ability computation layer computes the student’s ability for
each knowledge concept. Finally, the exercise selection with expectation and diversity layer evaluates
whether the student’s expectations are reasonable, filters the set of exercises that best meet the student’s
expectations based on their mastery of each knowledge, and uses an improved simulated annealing
algorithm is used to optimize the combination of the filtered exercise sets to minimize the similarity
of the recommended list of exercises and to achieve the effect of diversifying the exercises to stimulate
students’ interest in learning.

Figure 1: Framework of LFCKT-ER

3.1 Definition of the Problem

An exercise generalizes a knowledge concept and usually contains one or more knowledge
concepts. In this paper, we only consider the exercise with a knowledge concept. The goal of LFCKT-
ER is to recommend exercises that match the student’s learning progress, learning stage preferences
(review or exploration), and learning expectations, and reduce the number of similar exercises after
the student has completed the exercise. In general, we can formalize an exercise recommendation as
follows: given a sequence of student interactions X = {x1, x2, · · · , xn}, the xt is a tuple (et, at) that
denotes an interaction. The et represents the exercise answered at time step t and a ∈ {0, 1} means
whether the answer to the et is correct (1 means right, 0 means incorrect).
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3.2 Knowledge Concept Computation with Preferences

For the target students at a particular time, the students’ problem sequences are firstly filtered by
KCCP to find out the exercise bank EB1 that matches the student’s learning progress and learning
stage preferences. First, the students’ interaction sequences are input into the Long Short-Term
Memory (LSTM) [15] to model the students’ learned knowledge concepts and predict the probability
of students’ possible learning concepts in the next moment. Then, an exercise bank that matches both
the student’s learning progress and their learning stage preferences is computed based on the student’s
learning stage preferences.

3.2.1 Knowledge Concept Computation

Using the order of occurrence of knowledge concepts from 0 to t to compute the probability of
occurrence of each knowledge concept at the moment t + 1 is a sequence prediction problem. LSTM
[15] can predict students’ learning progress. Fig. 2 shows the LSTM-based knowledge learning progress
model, where the A indicates the model’s current state at the moment t. The Kt denotes the knowledge
concept appearing at the moment t, which can be obtained from student interactions X . The Kt+1

indicates the probability of the knowledge concept appearing at the moment t + 1 accepted by model
prediction.

Figure 2: Framework of LSTM

The one-hot encoding [16] of Kt is required before the sequence of students’ doing exercises is
input into the LSTM model, and the result is ϕ(Kt). The model’s input is a vector with a dimension
equivalent to the amount of all knowledge concepts, and the model’s output has an extent equal to the
input dimension. The model’s output represents the prediction of the knowledge concept at the next
moment, and the input ϕ(Kt+1) at the moment t+1 represents the learning vector of actual knowledge
concepts. LSTM models the knowledge concept learning range prediction problem at the end of a
training period T . The loss function uses binary cross-entropy to train the model as in Eq. (1).

L =
T∑

t=0

� (Kt+1 · ϕ (Kt+1), 1) (1)
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where T denotes an LSTM training period, Kt+1 denotes the vector of the actual t + 1 moment
knowledge concepts, and ϕ (Kt+1) denotes the vector of t + 1 moment knowledge concept predictions
output by the model.

The output of the final model is a vector of length as long as the amount of knowledge concepts,
as in Eq. (2).

Y (K) = [y (k1), y (k2) , · · ·, y (km)] (2)

where y (ki) denotes the probability that the i th knowledge concept occurs at the moment t + 1 and
m denotes the number of all knowledge concepts.

3.2.2 Exercises Selection with Preference

The fundamental purpose of exercise recommendation is to help students master knowledge,
including not only new knowledge that they have not been exposed to but also old knowledge that
they have not learned and need to review. Hence, it needs to be studied and explored dynamically
according to students’ learning stage preferences. To satisfy students’ stage preferences for learning, a
weight vector matching students’ learning stage preferences is added to the output layer of the LSTM
model, as shown in Fig. 3. This ensures that exercises that students have already done but have a
high error rate can have a relatively high weighting and can also satisfy different stage preferences of
students. It has a length equal to the amount of knowledge concepts as in Eq. (3).

W (K) = [w (k1) , w (k2) , · · · , w (km)] (3)

The w (ki) is expressed as Eq. (4).

w (ki) =
{

1 − ri

ci

, ci �= 0

{0, 1} , ci = 0
(4)

where ci denotes the number of times students learned a knowledge concept i in the period T , and
ri denotes the number of times students correctly answered the knowledge concept i in the period T .
When the ci is equal to 0, it means students have not done exercises on this knowledge concept. The
value w (ki) depends on students’ learning stage preferences, for example, the w (ki) = 0 indicates
that students’ learning stage preferences is to review. The w (ki) = 1 indicates students’ learning stage
preferences is to explore.

The combination of the output of the LSTM model and the weight vector can be used to obtain the
probability vector of the occurrence of the student’s preferred knowledge concept in the next exercise
P (Kt+1), as in Eq. (5).

P (Kt+1) = Y (K) · W (K) (5)

where Kt+1 denotes the knowledge concept at the moment t+1, and P (Kt+1) means the probability of the
student’s knowledge concept at the moment t + 1 after adding the student’s learning stage preference;
Y (K) denotes the LSTM model output vector with the length of the number of all knowledge concepts,
which represents the probability vector of the student’s learning progress; W (K) denotes the student’s
vector about learning stage preference with the length of the number of all knowledge concepts.
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After obtaining the probability of the occurrence of students’ knowledge concepts about prefer-
ences, an initial selection of the exercises is performed to filter out the top N sets of knowledge concepts
that most closely match what students are most likely to learn about their preferences EB1.

Figure 3: Process of KCCP

3.3 Ability Computation

The cognitive computing model used in this paper adopts the LFCKT [17] model. Fig. 4 shows the
framework diagram of the model, which consists of an embedding module, knowledge state extraction
module, forgetting module, and prediction module. The model first stitching the exercise embedding
with the student’s answer results as interaction records through the embedding vector of the embedding
layer learning exercises, and then obtains the students’ learning behavior information through the
students’ historical interaction sequence. Then the data on students’ learning behavior is obtained
through historical interaction sequences. Then, LFCKT has a hierarchical convolutional layer to
extract students’ knowledge state features. Then the forgetting layer update the matrix of the student’s
ability at the present moment. Lastly, the probability that the students answer the following exercise
correctly is obtained from the predicting layer.

We design a module in the model for learning the degree of knowledge loss in ability computation
matrix and the final output of the student’s knowledge state matrix Z ∈ RN×K at each time step, which
N denotes the number of student interaction records and zt ∈ RK represents the student’s knowledge
state at the moment. The probability p (t+1) that the student correctly answers the following exercise
et+1 is obtained by the dot product operation of the student’s knowledge state zt with the exercise et+1

to be answered at the next step, as shown in Eq. (6).

p (t + 1) = sigmoid (et+1 · zt) (6)

where p (t+1) denotes the percentage of students answering the exercise et+1 correctly in the next
moment and zt indicates the student’s knowledge mastery. sigmoid (·) is the mapping of the obtained
probabilities to [0,1].
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3.4 Exercise Selection with Expectations and Diversity

The previous section described how to select the knowledge concepts among them to match
students’ learning stage preferences and progress. The LFCKT-ER has already obtained the students’
mastery of the knowledge concepts Z. This section will build on that to select the exercises that meet
the students’ expected difficulty and maximize the diversity of the recommended exercises at a time.
Fig. 5 shows the structure. First, the model obtains students’ knowledge mastery status according to
their interaction sequences. Then, the model computes the distance between each knowledge concept
mastery status and expectation in EB1, according to students’ expectation to take the top M knowledge
concepts. Finally, the model combines the most diverse set of exercises recommended to students by a
simulated annealing optimization algorithm [18–20].

Figure 4: Framework of LFCKT

Figure 5: Process of exercise selection
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3.4.1 Exercise Selection with Expectations

The primary purpose of this subsection is to select the exercise that best matches the student’s
expectation of difficulty E after filtering the exercises that match the student’s learning progress and
preference. After the students set their expectations (E ∈ [0, 1]), it is critical to evaluate whether their
expectations are reasonable, as shown in Eq. (7).

E =
⎧⎨
⎩

E, if E − Ze ≤ β, e ∈ EB1
E − α, if E − Ze > β, e ∈ EB1
E + α, if Ze > E, e ∈ EB1

(7)

where E denotes the student’s expectation, Ze means the student’s average mastery state of the
knowledge concept e in EB1 and α, β denotes parameters, and the size of parameters verifies in the
experiment section. The model will remind students to lower their expectations if their expectations
are too different from their knowledge mastery. Conversely, if their expectations exceed their ability,
the model will remind them to raise their expectations.

After evaluating that the student’s expectations are reasonable, the distance between the mastery
state of each knowledge concept and the expectation is calculated based on the student’s expectation,
and the top M exercises that are closest to the expectation are selected in order. Eq. (8) shows the
formula for calculating the distance.

Dis = abs (E − pe) , e ∈ EB1 (8)

where Dis denotes the distance between the student’s expectation and the possibility of answering the
exercise correctly, abs (·) means the absolute value, E denotes the student’s expectation, and pe denotes
the student’s probability of answering the exercise e correctly at the next moment. The EB1 denotes a
library of exercises filtered by learning stage preference and learning progress.

3.4.2 Exercise Selection with Diversity

After selecting the first M exercises EB2 closest to the student’s desired difficulty, the exercises
which are in EB2 are combined and optimized using a simulated annealing algorithm to choose a set
of exercises with the most diversity. It can be understood as a function optimization problem with
multivariate conditional constraints in optimization problems. In LFCKT-ER, the model learns the
representation vector of different knowledge concepts. Then the objective function of the optimization
problem is to select a set of exercises with the slightest similarity to recommend to students to stimulate
their learning interest as in Eq. (9).

f =
∑

ei ,ej∈EB2,i �=j

Cossim
(
ei, ej

)
(9)

where f is the objective function of the simulated annealing optimization algorithm, ei, ej, denotes the
exercise that is selected to be closest to the desired difficulty, and CosSim (·) suggests the similarity
between different exercises.

The LFCKT-ER personalized exercise recommendation method selects exercises matching stu-
dents’ learning progress and learning stage preferences by calculating and combining their learning
progress with their learning stage preferences. It then recommends exercises to students based on their
expectations of exercise difficulty. LFCKT-ER can evaluate whether a student’s expectation of exercise
difficulty is reasonable and adjust their expectations accordingly. The recommended exercises can
reflect students’ current learning progress and recommend various personalized exercises for students
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who desire a specific level of difficulty, thus enhancing students’ learning interests and abilities. The
algorithm for LFCKT-ER is described in Algorithm 1.

Algorithm 1: Algorithm of LFCKT-ER
Input: Xt, EB, per, E, number {record of exercises, all of the exercises, learning stage preference, the
expectation of difficulty, number of exercises recommended}
Output: REL {recommendation exercises list}
Y (K) ← LSTM (Xt) {compute the vector of students’ knowledge progress at the next moment}
W {compute preference weight vector based on students’ stage preferences and their problem records}
P (Kt+1) ← Y (K) · W {probability of student’s knowledge concept about preference}
for i<size (EB) do

ei ← select (EB, 1) {Select an exercise from EB}
Sim (ei) ← cossim [P (Kt+1) , ei] {get the CosineSimilarity}

end for
Sort (EB, Sim) {sort the exercise from largest to smallest according to Sim}
EB1 ← Select (EB, N) {filter the top N most similar exercises}
E ← f (E) {evaluate E is reasonable}
for j<size (EB1) do

ej ← select (EB1, 1) {Select an exercise from EB1}
dis ← abs

(
E − pj

) {get the distance between expectation and ability}
end for
Sort (EB1, dis) {sort the exercise from largest to smallest according to dis}
EB2 ← Select (EB1, M) {filter the top M most similar exercises}
REL ← SA (EB2, number) {simulated annealing algorithm to select the most diverse exercises}

Algorithm 1 shows the whole process of exercise recommendation by LFCKT-ER. After calculat-
ing the probability P (Kt+1) of occurrence of the students’ knowledge concepts about preferences, this
probability can calculate the similarity with each exercise in the exercise bank. Then the similarity is
sorted from largest to smallest. Finally, the top N exercises that best meet the conditions are selected.
Then the students’ expectations are adjusted, the M exercises that best meet the expectations are
computed according to the expectations, and finally, the most diverse REL is combined according
to the simulated annealing optimization algorithm.

4 Experiments

We perform a multi-group experimental study to validate the validity and advantages of our
model. The performance of the proposed model LFCKT-ER in computing students’ ability is
compared with the performance of different methods on different datasets and the recommendation
performance of the LFCKT-ER practice recommendation algorithm on various datasets.

4.1 Datasets

Three publicly available datasets are used to validate the validity of our experiments, ASSIST-
ments2009 and ASSISTments2015 are elementary school math problem-solving datasets collected
from the online education platform ASSISTments in 2009 and 2015, respectively. Statics2011 comes
from the “Engineering Statics” course. They are widely used open-source educational datasets. Table 1
shows a brief description of all datasets.
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Table 1: Overview of datasets

Dataset Records Students Concepts Website

ASSISTment2009 325637 4417 110 https://sites.google.com/site/
assistmentsdata/home/
assistment-2009-2010data/
skill-builder-data-2009-2010

ASSISTment2015 683801 19917 100 https://sites.google.com/site/
assistmentsdata/home/2015-
assistments-skill-builderdata

Statics 189297 333 1223 https://pslcdatashop.web.cmu.
edu/DatasetInfo?
datasetId=507

4.2 Experimental Setup

4.2.1 LFCKT-ER Model Training

In the data preprocessing, we remove the answer records which are fewer than five, and students
with more than 383 answer records were truncated to improve the performance of the model better.
The parameters of the LFCKT-ER model in this paper are set as follows. The learning rate of model
training is 0.003. An epoch is 50 times. Each iteration is ten rounds, the decay coefficient of the
learning rate is 0.2; the dimension of exercise embedding is 100; each layer has six convolutional kernels.
The initial value of the dropout rate for the set of residual modules was 0.05. LFCKT-ER has been
validated for computing student ability in our previous work [17].

4.2.2 LSTM Model Training

The input dimension of the model is the amount of knowledge concepts in the datasets. When the
i th bit of the vector is 1 indicates that the exercise belongs to the knowledge concept i. The datasets
with less than five response records are removed in the data processing stage. Epoch set 100. To prevent
overfitting, the dropout between layers sets 0.4 [21]. The dropout helps to randomly drop out some of
the units in the LSTM network during training, which prevents the network from relying too heavily on
any single unit or feature. This encourages the network to learn more generalizable features and reduces
the risk of overfitting the training data. The optimization is performed using the Adam optimizer.

4.3 Baseline Approaches

4.3.1 Ability Computation Baseline Approach

Three typical knowledge tracking models are chosen for the comparison experiments, which are
Deep Knowledge Tracing (DKT) [22], Dynamic Key-Value Memory Networks for Knowledge Tracing
(DKVMN) [23], and Convolutional Knowledge Tracing (CKT) [24], and they are broadly described
as follows:

DKT: For the first time, recurrent neural networks are used for knowledge tracking tasks, a
classical model widely used in knowledge tracking.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builderdata
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builderdata
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builderdata
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
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DKVMN: Using dynamic key-value pair memory networks to store and update students’ knowl-
edge states for each knowledge concept improves the interpretability of the model.

CKT: Student features are enriched by considering students’ prior knowledge and using convolu-
tional neural networks to extract students’ learning rates when computing student states.

4.3.2 Exercise Recommendation Baseline Approach

The experiments compare the recommendation algorithm proposed in this paper with the
following two baseline models, Student-Based Collaborative Filter (SB-CF) [25] and Exercise-Based
Collaborative Filter (EB-CF) [26].

SB-CF: This model refers to collaborative filtering to find exciting content for specific users. In the
exercise recommendation, the recommendation is based on the similarity of students. The similarity
matrix among students is constructed based on their question records. Then the top 10 students with
the most similar answers to the target students are identified. Then the questions of practical difficulty
are extracted from the answer records of each similar student for the recommendation.

EB-CF: This model refers to the idea of recommendation by the similarity between items and
uses the intrinsic quality or inherent properties of things to make recommendations. In the exercise
recommendation, we set difficulty weights for each exercise based on the student’s answers to the
exercises, then calculate the exercise similarity matrix and extract from it the exercises that are similar
to the exercises already done, and then make recommendations based on the desired difficulty weights
of the exercises.

4.4 Evaluation Metrics

4.4.1 Knowledge Tracing Evaluation Metrics

We compare our model with three other knowledge tracking models using evaluation metrics
commonly used in the knowledge tracking domain, as follows:

• Area Under the Curve (AUC) is a commonly used evaluation metric for knowledge tracking.
This area is the area under the receiver operation characteristic curve that is often used to detect
how accurate a method is. The larger the AUC is, the better the model performs.

• Accuracy (ACC) is the number of correct predictions as a percentage of the overall results, and
when the value of ACC is higher, it means that the model has better predictions.

• The square of Pearson correlation (R2) can normalize relative to the variance in the data set,
and is a measure of the proportion of variance.

4.4.2 Exercise Recommendation Evaluation Metrics

We use four standard evaluation metrics to compare our exercise recommendation model with
others, which are as follows:

1) Accuracy

Accuracy [27,28] here refers to whether the difficulty of the recommended exercises to the students
meets the students’ expectations. The higher the accuracy value, the more the recommended exercises
encounter the ideal problem for the students. Here we compute the distance between the student’s
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expectation and the difficulty of the exercise for the student, that is, the student’s mastery of the
knowledge concept, and the smaller the distance, the more consistent it is, as in Eq. (10):

Accuracy = 1 −

i=len(REL)∑
i=0

abs
(
E − pei

)
len (REL)

(10)

where i denotes the number of recommended exercises, REL represents the list of exercises recom-
mended to the student, E denotes the student’s expectation, and pei denotes the probability that the
student may answer correctly about the exercise ei, which is the difficulty of the exercise for the student.

2) Novelty

The second evaluation metric is the novelty [29] of the exercises; the more students’ unanswered
knowledge or incorrectly answered knowledge concepts are included in the recommended exercises,
the greater the wonder. We usually use the Jaccard similarity coefficient [30] to compare the similarity
and difference between finite sample sets; the more significant the coefficient, the greater the sample
similarity. Since we use only consider the case where the exercise contains one knowledge concept,
the e (i) can then represent the knowledge concept of the i th exercise and e (i)r defines whether the
knowledge concept e (i) is answered correctly, with a correct answer of 1 and a no in of 0. Thus the
novelty of the recommended exercise can be expressed as Eq. (11):

Novelty =

i=len(REL)∑
i=1

1 − Jaccsim [e (i) , e (i)r]

len (REL)
(11)

where e (i) denotes the knowledge concept of the i th exercise, e (i)r designates whether the knowledge
concept of the i th exercise is answered correctly, and has been answered correctly is indicated by 1;
otherwise is 0. REL denotes the list of recommended exercises at one time, and len (REL) denotes the
number of recommended exercises at one time.

3) Diversity

The third evaluation index is the diversity [31,32] of the recommended exercises at a time. In the
LFCKT-ER model, we learn the representation vector of each exercise, which can be understood as an
embedded representation of the knowledge concept since the exercises considered in this paper contain
only one knowledge concept. The variance of the diversity representation recommended exercises is
expressed quantitatively by the cosine similarity between the knowledge concepts of the two exercises.
The degree of difference in knowledge concepts between each exercise in the recommended list is first
calculated, and then averaged to obtain the diversity value of the exercise as in Eq. (12):

Diversity =

len(REL)∑
i=1,j=1,i �=j

1 − Cossim
(
ei, ej

)
len (REL)

(12)

where e (i) , e (j) denote the different exercises in the recommended list, Cossim means the calculation of
cosine similarity between the exercises, REL denotes the recommended list of exercises, and len (REL)

denotes the number of recommended exercises.

4) Knowledge state improvement

The fourth evaluation metric uses improving the student’s knowledge state [14] to indicate that
the student wants to do the least number of exercises to get the maximum improvement in learning
performance. When the number of recommended exercises is fixed, the more the student’s knowledge
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state improves, the better the performance of the recommendation algorithm. In this experiment, if
the probability of a student answering an exercise is more significant than 0.7 [13], then we assume
that the student answered the exercise; otherwise, the student answered the exercise incorrectly. After
one round of recommendations, the model simulates the student’s behavior to determine how much
the student’s knowledge state has improved.

4.5 Experiments and the Analysis of the Results

4.5.1 Analysis of the Results of Ability Computation

As shown in Table 2 above, our model has the best AUC and ACC values as opposed to the others,
which means that our model performs better than the other three models in terms of prediction. In
particular, on the ASSISTment2015 dataset, the AUC is increased by nearly 10% over DKVMN.
It indicates that combining learning and forgetting behaviors in the ability computing has better
prediction performance. For the internal validity of the algorithm, we employed several methods to
avoid vanishing gradients and network degradation. For example, we introduced gated linear units
[33] in the convolutional layers to avoid vanishing gradients and added residual connections between
convolutional layers to accelerate training and avoid network degradation. For the external validity of
the algorithm, we used widely used educational datasets and evaluated the algorithm’s performance
by comparing it with multiple evaluation metrics and baseline methods. We found that our algorithm
performed better than other methods on all three datasets in the experiments, indicating its high
external validity.

Table 2: The result of the ability computation

Methods ASSISTment2009 ASSISTment2015 Statics

AUC ACC R2 AUC ACC R2 AUC ACC R2

DKT 0.823 0.776 0.315 0.734 0.753 0.135 0.826 0.813 0.258
DKVMN 0.814 0.762 0.304 0.728 0.752 0.132 0.829 0.810 0.251
CKT 0.826 0.778 0.299 0.737 0.755 0.138 0.830 0.816 0.268
LFCKT-ER 0.889 0.824 0.394 0.813 0.785 0.260 0.890 0.842 0.394

Fig. 6 below visualizes the cosine similarity of some knowledge concepts in the datasets ASSIST-
ment2009. A darker green color indicates a higher similarity between two knowledge concepts, and
a lighter green color indicates that two knowledge concepts are less similar. The numbers on the
horizontal and vertical axes represent the knowledge concepts, and the knowledge concepts are
illustrated at the top of Fig. 6. It can be seen that LFCKT can learn the embedding representation
of different knowledge concepts better. 86 and 75 related to Volume have a higher similarity with 0.65;
89 and 99 associated with Line Equations have a higher similarity with 0.48; the others have a lower
similarity.

4.5.2 Analysis of the Results of Exercise Recommendation

To compare each exercise recommendation model’s effectiveness, the experiment uses those
mentioned three public datasets, in which 20% of the student data can test the efficacy of the
recommendation model. In the exercise selection stage, the exercises can rank according to students’
knowledge mastery and students’ expectations, and the set of exercises closest to students’ expectation
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difficulty is selected. Then the most diverse collection of exercises is optimized using a simulated
annealing algorithm for combination. The most varied group of exercises is then optimized using a
simulated annealing algorithm.

Figure 6: Similarity between exercises

Fig. 7 shows the accuracy of the recommended exercises, Fig. 8 shows the diversity, Fig. 9 shows
the novelty of the exercises, and Fig. 10 shows the improvement of the student’s knowledge state.

Figure 7: Accuracy of exercise recommendations

The experimental results show that the traditional exercise recommendation algorithms SB-
CF and EB-CF could improve recommendation accuracy. In contrast, the accuracy of the method
LFCKT-ER model proposed in this paper has significantly enhanced, proving the LFCKT model’s
effectiveness in enhancing recommendation accuracy. LFCKT-ER uses cognitive computation based
on a convolutional neural network, which can more accurately calculate the mastery level of students’
knowledge. Hence, the accuracy of the exercise recommendation is significantly better than the other
two models.
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Figure 8: Diversity of exercise recommendations

Figure 9: Novelty of exercise recommendations

Figure 10: Knowledge state improvement after exercise recommendations

Fig. 8 shows the recommended diversity of the exercises. The diversity results of the LFCKT-ER
model proposed in this paper are about 20% higher than the other two models for the three datasets,
which is due to the simulated annealing algorithm used in this paper to optimize the combination of the
filtered exercises, intending to minimize the similarity between the combined exercises and maximizing
the diversity of the exercises to improve student’s learning interest.

Fig. 9 shows the novelty of the recommended exercises, which shows that the LFCKT-ER model
performs better in recommending the novelty of the exercises when the students’ learning stage
preferences is exploration. LFCKT incorporates the attribute of a student forgetting in the cognitive
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computation, and the cognitive state of students changes during the problem-solving process. In the
recommendation process, students are given more weight to exercises that have not been done or
have a high error rate to satisfy their exploration preferences. Therefore, this model is higher than
the traditional exercise recommendation algorithm in terms of the novelty of recommended exercises.

Fig. 10 shows the improvement student’s ability after doing the recommended exercises. We
simulate the students’ behavior in doing the exercises. Inputting the exercises into the cognitive
computational model LFCKT gives the probability that the student will answer the exercises cor-
rectly. In the simulation, we consider that a student’s likelihood is more significant than 0.7, which
means the student can answer rightly. Otherwise, the student can not answer the exercise correctly.
Fig. 10 shows that LFCKT-ER is much better than the traditional recommendation algorithm in
improving the student’s knowledge state. This is because, in the recommendation process, LFCKT-ER
considers the students’ perceptions and expectations. In the recommendation, the model will evaluate
whether the students’ expectations are reasonable and help them understand themselves correctly to
promote efficient learning.

We visualize the recommendations for each student, select 125 students in the datasets
for recommendations, and record the comparison between our model and the other two models.
Our model is much better than SB-CF and EB-CF regarding accuracy, novelty, and complexity.
The model of LFCKT-ER is mainly in the ideal region. Fig. 11 shows the performance of the
recommendation algorithm in terms of accuracy and diversity, Fig. 12 shows the performance of
the recommendation algorithm in terms of accuracy and novelty, and Fig. 13 shows the performance
of the recommendation algorithm in terms of diversity and novelty, with the points in the figure
closer to the top right indicating the better performance of the model. Our model’s recommendation
performance for students is closer to the upper right corner than the other two models.

Figure 11: Accuracy and diversity compared

Figure 12: Accuracy and novelty compared
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Figure 13: Diversity and novelty compared

4.5.3 The Results of Tune Parameters

Then, we try to discuss the effect of students’ expectations E and learning stage preferences on the
recommendation performance to maximize the student’s learning efficiency at each recommendation.
Accuracy, Novelty, Diversity, and Knowledge State Improvement (KSI) were metrics. When changing
preferences and E, we also used other parameters REL for experiments on dataset ASSISTment2009,
where Z denotes the average of the cognitively calculated student knowledge point mastery. The results
are shown in Table 3:

Table 3: Effects of different parameters

E Preference REL Accuracy Novelty Diversity KSI

5 0.8573 0.8044 0.8265 0.0148
10 0.8580 0.8149 0.8530 0.0175

Exploration 15 0.8663 0.8833 0.8832 0.0182
20 0.8780 0.9547 0.9058 0.0194

Z 5 0.8629 0.3981 0.8205 0.0137
10 0.8688 0.3738 0.8488 0.0160

Review 15 0.8754 0.3627 0.8614 0.0189
20 0.8904 0.3683 0.8661 0.0196
5 0.8643 0.8027 0.8029 0.0163
10 0.8661 0.8115 0.8307 0.0208

Exploration 15 0.8671 0.8447 0.8631 0.0303
20 0.8787 0.8636 0.8823 0.0345

Z+0.05 5 0.8420 0.3909 0.8328 0.0179
10 0.8545 0.3629 0.8441 0.0196

Review 15 0.8531 0.3622 0.8844 0.0244
20 0.8647 0.3486 0.9213 0.0286
5 0.8449 0.8270 0.8200 0.0233
10 0.8461 0.8503 0.8369 0.0247

(Continued)
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Table 3 (continued)

E Preference REL Accuracy Novelty Diversity KSI

Exploration 15 0.8515 0.8665 0.8572 0.0326
20 0.8657 0.8746 0.8813 0.0417

Z+0.1 5 0.8410 0.4184 0.8130 0.0228
10 0.8526 0.3969 0.8358 0.0249

Review 15 0.8532 0.3703 0.8544 0.0291
20 0.8673 0.3533 0.8695 0.0353
5 0.8591 0.8195 0.8275 0.0248
10 0.8597 0.8373 0.8437 0.0283

Exploration 15 0.8700 0.8637 0.8706 0.0352
20 0.8739 0.8853 0.9013 0.0416

Z+0.15 5 0.8435 0.4015 0.8317 0.0213
10 0.8574 0.3850 0.8396 0.0255

Review 15 0.8588 0.3558 0.8517 0.0324
20 0.8642 0.3413 0.8869 0.0371
5 0.8389 0.8009 0.8206 0.0227
10 0.8451 0.8371 0.8428 0.0246

Exploration 15 0.8513 0.8522 0.8660 0.0314
20 0.8673 0.8853 0.8742 0.0338

Z+0.20 5 0.8465 0.4149 0.8324 0.0197
10 0.8482 0.3862 0.8519 0.0241

Review 15 0.8671 0.3643 0.8713 0.0305
20 0.8687 0.3458 0.8990 0.0324
5 0.8437 0.8264 0.8193 0.0173
10 0.8464 0.8335 0.8365 0.0195

Exploration 15 0.8584 0.8634 0.8598 0.0243
20 0.8720 0.9017 0.8913 0.0266

Z+0.25 5 0.8343 0.5124 0.8245 0.0107
10 0.8551 0.4723 0.8387 0.0148

Review 15 0.8626 0.4348 0.8419 0.0161
20 0.8781 0.3791 0.8723 0.0209

Table 3 shows that students’ expectations of the difficulty of the exercises are lower than they are.
When exceeding 0.2 of their knowledge level, it was found that all four of our evaluation indicators
decreased. Students’ knowledge states are steadily increasing within the vicinity of their knowledge
state. This is why we have a basis for evaluating whether students’ expectations are reasonable in
Eq. (7). Students will see their ability values and then adjust their expectations appropriately according
to the system’s prompts to achieve an effect of improving their ability the fastest.
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5 Conclusion

This paper proposes an exercise recommendation algorithm specifically designed for online
learning platforms. Using students’ exercise records, the proposed algorithm calculates their abil-
ity and learning progress and incorporates their exercise learning stage preferences and students’
expectations of difficulty to generate personalized exercise recommendations. The ultimate goal of
the proposed algorithm is to enhance students’ interest and competence in learning. To demonstrate
the effectiveness of the proposed algorithm, we conducted simulation experiments and compared its
performance with several baseline methods. The results show that the proposed algorithm outperforms
the recommendation accuracy and knowledge state improvement baselines. The proposed algorithm
addresses the challenge of providing appropriate exercise recommendations to students who need
to complete exercises to test their mastery of knowledge points and who also need to choose the
appropriate exercises based on their learning progress, students’ expectations of difficulty, and learning
stage preferences. By providing tailored exercise recommendations, the proposed algorithm can better
meet students’ exercise needs and help them achieve better learning outcomes. Therefore, the proposed
exercise recommendation algorithm has practical value in online learning platforms and can benefit
students by improving their learning experience and results.

This paper studies the effect of students’ forgetting behavior on their state of knowledge. It
calculates their learning progress, learning stage preferences, and expected difficulty of the exercises
in the recommendation to build a dynamic exercise recommendation system. The proposed algorithm
enriches the diversity of exercises in the recommendation to meet students’ learning needs and interests
to the maximum. However, there are still some rooms to improve. For example, this paper just
utilized knowledge concepts instead of exercises. Although it could solve the cold exercise start [34–36]
problem, limited information involved in the exercises cannot provide more accurate recommendation
results. Also, this paper only utilized a limited number of tags, e.g., the number of questions answered,
knowledge points, and correctness. In future work, other types of labels could also be utilized for
the recommendation, e.g., the number of attempts to answer questions and the number of a student’s
reviews of reference solutions.
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