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ABSTRACT

Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics, which
aid in the prevention of several diseases including heart-related abnormalities. In this context, regular monitoring
of cardiac patients through smart healthcare systems based on Electrocardiogram (ECG) signals has the potential
to save many lives. In existing studies, several heart disease diagnostic systems are proposed by employing different
state-of-the-art methods, however, improving such methods is always an intriguing area of research. Hence, in this
research, a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals. The proposed
framework extracts both linear and time-series information on the ECG signals and fuses them into a single
framework concurrently. The linear characteristics of ECG signals are extracted by convolution layers followed
by Gaussian Error Linear Units (GeLu) and time series characteristics of ECG beats are extracted by Vanilla Long
Short-Term Memory Networks (LSTM). Following on, the feature reduction of linear information is done with the
help of ID Generalized Gated Pooling (GGP). In addition, data misbalancing issues are also addressed with the
help of the Synthetic Minority Oversampling Technique (SMOTE). The performance assessment of the proposed
model is done over the two publicly available datasets named MIT-BIH arrhythmia database (MITDB) and PTB
Diagnostic ECG database (PTBDB). The proposed framework achieves an average accuracy performance of 99.14%
along with a 95% recall value.
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1 Introduction

Currently, for all the future generation technologies, the Internet of Things (I0T) is the developing
trend [1]. It is immersed with several healthcare applications amalgamated with wearable monitoring
systems [2]. The quality and coherence of the service are improved and magnified by employing the
aspects of IoT in medical devices. This is the main reason why different industries of healthcare are
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adopting the [oT [3]. Different people, especially older people having chronic conditions and patients
needing stable management are highly facilitated by the remarkable advantages of IoT [4]. Within
the interval of standard time, different parameters of health such as real-time changes and updates
on the severity of medical parameters are gathered by using healthcare applications based on IoT.
Due to this, a gigantic amount of health information and data is generated. Moreover, the most
pivotal future technology is IoT and it comes into view in several health industries [5]. Generally in
the environment of high risks such as in Environment, Health, and Safety (EHS) industries [6], the
great and astonishing potential of 10T is revealed. More specifically, in these environments, the life of
patients are at risk and these applications based on IoT are deployed to provide safe, cost-effective,
and dependable solutions [7]. Additionally, elderly people who prefer to stay home and are in favor of
ease, are nursed by remote monitoring using IoT [8]. Around the globe, the emergence of IoT in the
healthcare industry has encouraged different researchers in the IT field to develop smart applications
which include health-aware suggestions such as mobile healthcare, and intelligent healthcare systems
[5]. In 2021, the estimated size of the IoT healthcare market is a net worth of approximately $136 billion
[9]. A compound annual growth (CAGR) is expected to rise the market is about 23.4% in upcoming
years [9].

To examine heart disease, various types of patient data are collected. This data about the
health conditions of patients is collected by smart wearable gadgets. More explicitly, this includes
blood pressure, glucose level, and heart rate. The sensors placed on wearable equipment monitored
continuously this data and send the recorded information to smartphones [10]. The whole IoT network
is connected with ECG sensor nodes that are backed up [11]. This incorporates the functionality of
plug-and-play [12]. Cloud servers are used to store this massive data collected by smart wearable
gadgets [13]. Consequently, this data can be accessed distantly which includes both historical and
real-time data [14]. In addition, the primary reasons for heart disease include stress, obesity, excessive
use of oily and salty foods, genetic factors, hypertension, depression, and no daily exercise [15]. There
are several studies conducted on heart patients. These research studies show that within a time of total
90 days, there are about 30 patients that had been readmitted. This readmission range varies from 25%
to 54% in 3—6 months [15]. The main symptoms of heart disease include the abnormal frequency in
the heartbeat of the patient. These symptoms are known as Arrhythmias.

These arrhythmias may cause and develop more severe levels of symptoms of heart disease which
include such as rapid atrial fibrillation, persistent ventricular tachycardia, paroxysmal supraventricular
tachycardia, etc. These are also causes of chest tightness, low blood pressure, sweating, dizziness, and
sudden death [16]. All these heart conditions require early diagnosis and treatment [17]. The most
common and persistent type of arrhythmia is Atrial fibrillation (AF) [18]. The risk of heart failure,
stroke, and dementia is highly associated with AF, and it usually increases with age. Of the total
population, about 1%-2% of people have AF in 2009 [18]. Later on, in the next 20-30 years this rate
of AF patients becomes doubled and tripled in Europe and the United States [19]. In China, the AF
patient rate is about 6.5 per 1000 people and the majority of people belong to the age group of 60
and above. Its rate is lower in people of middle-aged. In addition, some other types of arrhythmias are
more dangerous and serious than AF, which include atrial flutter, ventricular bigeminy, bradycardia,
etc. There is an almost 15% global mortality rate of patients suffering from tachyarrhythmias [20].
Therefore, the scope of attaining the facilities remotely is expanded by IoT which further enhances
the quality of service [21]. These kinds of devices can facilitate chronic heart patients. Patients with
such chronic diseases have a hazard of demise because at any moment the functionality of the heart
stops working [22]. For accurate detection of heart disease, the real-time electronic stethoscope is also
designed [23]. Such kind of automated heart disease detection systems can be integrated as a module
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with different real-time systems [24]. Therefore, there is a need for an effective and timely diagnosis
of heart disease in these patients by monitoring their heartbeat signals. One of the important non-
invasive diagnostic tools for monitoring electrical changes in heart conditions over time is the ECG.
Some samples of ECG signals from MIT-DB and PTB ECG database is shown in Fig. 1.
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Figure 1: Samples of ECG signals from MITDB and PTB databases belong to several classes

It effectively records the abnormal frequencies, electrical activities of the heart, and rhythm of
heartbeat signals [25]. The physiological information in the ECG signals is used by cardiologists for
analyzing heart function and disorders. Due to the low amplitudes and non-linear nature of ECG
signals, the naked eye does not observe the very small changes in the ECG data [26]. In addition, for
accurate diagnosis of cardiac abnormalities in heartbeat signals, a 24-h Holter recording process is
required. The manual analysis of ECG data is time-consuming and incommodious due to large-size
recordings. Generally, each signal which belongs to a different type of arrhythmia requires different
treatments. Therefore, it is necessary to first classify the type of arrhythmias before giving treatment
to the patients.

As a result, automated systems based on current technologies are required for signal processing
procedures that have reduced the time and effort of human analysis while also improving diagnostic
accuracy in comparison to previous approaches. A great deal of work has recently been put into
developing an automated healthcare monitoring system for heart disease. All of these research studies
are classified based on the approaches used, as some used traditional machine learning methods,
while others used deep learning-based methods and ensemble learning methods [27]. Traditional
machine learning-based approaches involve different algorithms such as naive Bayes, decision trees,
K-nearest neighbor, and random forest algorithms to perform the prediction of heart diseases using
categorical attributes [28]. However, these approaches are also extended to work with ECG signals
for heart disease prediction [29,30]. Feature fusion-based approaches combine the data from different
modalities such as sensors and medical records of patients to perform the prediction of heart disease
[31]. More recently, Generative Adversarial Networks (GAN) based approaches are being used in place
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of SMOTE for heart disease diagnosis, because of its ability to produce synthetic data to tackle class-
imbalance concerns [32]. Different types of modalities are also employed to diagnose heart disease
instead of only ECG features which include clinical features and image modality such as detection
of heart disease by performing segmentation of coronary arteries [33,34]. Cardia Magnetic imaging
resonance is also utilized to detect abnormalities in coronary arteries of the heart [35]. Following
on, some ensemble deep learning-based methods are also employed in the prediction of heart disease
[36,37]. Currently, deep learning-based techniques are also heavily used in heart disease predictions.
An ToT-centered deep learning model has been designed to perform the diagnosis process in three
stages [38].

Likewise, some modified versions of deep neural networks are also proposed with substantial
improvement in accuracy to perform the classification of ECG signals into normal and abnormal
classes [39]. Such state-of-the-art deep learning models and their variants are not limited to the
detection of heart disease, they are also applicable to several other applications and domains [40-45].

In comparison with all these studies, an important research question arises what if two different
characteristics of ECG signals are modeled in a single algorithm simultaneously to classify them?
Second, some existing research studies employ different separate methods of feature selection in
ECG classification to diagnose cardiac disorders e-g Relief feature selection (FS) algorithm [46]
and stationary wavelet transform (SWT) [47], etc. In addition, the deep learning methods draw or
downscaled the set of features using pooling operations in which only maximum activations are picked
up, therefore, what if, during the feature selection or downscaling process of ECG vectors, we capture
or select more prominent and adaptive ECG features using a mixing operation rather than picking
up only the maximum activations? Moreover, the use of the activation function in the deep learning
model also plays a significant role, so what if GeLu is employed that captures a probabilistic view
of a unit’s outcome during learning? To answer these questions, a new deep-learning model for heart
disease classification using ECG signals is suggested. The proposed framework considers both linear
and time series characteristics of ECG signals simultaneously during their learning. Furthermore, a
dimensionality reduction of ECG signal features is accomplished through generalized gated pooling
which in turn downscales the feature vector in a more adaptive and generalized fashion due to mixing
operations. The GeLu is employed to further boost the model performance during learning and it
performs better than other activations functions [48]. As a result, in contrast with previous works, we
approach the problem from a different perspective, first in terms of the information that ECG holds,
then in terms of how to select the activations of ECG feature vectors in an adaptive manner, and finally,
how to enhance deep learning model performance and convergence using best activation operations
(i.e., the use of GeLu). In addition, the proposed framework is validated on two different datasets
as well as considering the data imbalance issues using SMOTE. The following are the contributions
of this work in the form of points. The proposed framework for the diagnosis of heart disease using
IoT-based ECG data is presented in Fig. 2.

e A deep learning model for heart disease diagnosis is suggested based on concurrent learning of
linear and time series characteristics of ECG signals.

e During model learning, a responsive and adaptive feature of ECG beats is selected by down-
scaling operation through generalized gating pooling.

e Gaussian Error Linear Units (GeLu) are employed as an activation function to boost the
performance of the deep learning model.

e The suggested deep learning model performs well in the diagnosis of heart disease and can serve
as a module in IoT systems for people in remote areas.
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Figure 2: A schematic overview of the proposed framework

The rest of the paper is categorized into several sections: Section 2 describes the related
work, Section 3 explains the proposed framework, and Section 4 presents the results followed by
a conclusion.

2 Literature Review

In literature, there is an immense amount of work put forward by various researchers. An extensive
set of models are designed to diagnose heart disease. In this section, some existing frameworks for this
problem are described.

The literature on IoT base frameworks for the detection of heart diseases includes different types
of studies such as sensor-based studies, machine-learning methods, hybrid machine-learning methods,
and deep-learning methods. In sensor-based studies, Abdel-Basset et al. [49] took data from several
sources to analyze patients with heart failure by using computer-supported frameworks with IoT.
Initially, the users first provide the data of symptoms of heart failure from the body sensors. This data
is taken from users’ mobile with the help of Bluetooth and further, it is transmitted to the database
of the cloud by the smart gateway. Depending upon the symptoms of the diseases, the patients are
divided into several groups by clinicians. In the end, the neutrosophic multi-criteria decision-making
(NMCDM) method is combined with the [oT framework to diagnose the patients with optimal time
and cost as well as observe heart failures. The efficiency and performance of the high-level system
are corroborated by experimental outcomes. Similarly, for the storage and processing of abundant
wearable sensor data, a three-tier scalable architecture is recommended by Kumar et al. [50]. The data
complications from the several wearable loT-based sensor devices are taken care of by Tier 1. In the
environment of cloud computing, this data is further stored in Apache HBase by Tier 2. Subsequently,
a prediction framework based on the logistic regression for the disease of the heart by using Apache
Mahoutis stored in Tier 3. Furthermore, grave diseases are observed and analyzed by Kumaretal. [51].
In their work, a mobile healthcare application based on IoT along with the cloud was proposed. To
examine the health conditions, a fuzzy temporal-based neural classifier is employed in the framework.
The experimental analysis of their work shows the superiority of their system in comparison with other
frameworks.
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Aside from sensor-based approaches, the automated detection of cardiac diseases is further
utilized in basic frameworks using machine learning as in the work of Ali et al. [52]. In their work,
the feature vectors are first normalized before their division into two non-overlapping sets of train
and test. In the next stage, the neural network approach is followed to operate on training data and
attain good performance. Al-Makhadmeh et al. used the high-order Boltzmann deep belief neural
networks (NN) for the diagnosis of heart disease [53]. Vijayashree et al. proposed an algorithm based
on Particle swarm optimization and support vector machine (PSO-SVM) to recognize heart disease
using six categorical attributes [54]. More precisely, a PSO combined with an SVM is used to build
the fitness function. Based on the functions of tuning and diversities of the population this fitness
function finds the optimal weights. They compared their performance with other suggested models
and reported suitable improvements over them. Liu et al. proposed their work into two stages [46]. In
the first stage, three separate modules are developed: (i) discretization of data, (ii) feature extraction
by utilizing the FS algorithm, and (iii) heuristic rough set algorithm for feature reduction. In the
second stage, ensemble learning is used with the help of the C4.5 classifier. In addition, a dataset
from the UCI repository named Statlog (Heart) dataset is used for experimentation. Furthermore,
a traditional machine-learning-based automated system was developed by Haq et al. to perform
the predictions of heart disease [55]. In their work, three different feature selection algorithms are
deployed which are combined with several classifiers. Their proposed technique efficiently classifies
healthy and unhealthy patients. Similarly, hybrid machine learning models are used in the work
of Mohan et al. for the prediction of cardiovascular disease [56]. A linear model was coined with
a hybrid random forest referred to as HRFLM which shows a performance of 88.7%. Moreover,
the classification of heart disease using features engineering techniques with the input of ECG
signals is also exploited by a different group of researchers. These techniques are mainly divided into
feature extraction of signals followed by the classification process. The most commonly used feature
extraction techniques include the RR intervals [57], segmentation of ECG curves [58], samples, signal
energy, wavelet coefficients, and high-order statistics. For this type of method, the effectiveness and
correlation of features are very important. To remove noise, several techniques are adopted such as
the weighted LD model [59] and floating sequential search. Afterward, several classifiers are used
to classify the signals such as SVM, Artificial Neural Networks (ANN), and K-nearest neighbor
(KNN). For example, Acharya et al. proposed a traditional machine-learning-based computer-aided
diagnosis (CAD) system for ECG signals classification [60]. In their work, ECG is classified into four
different classes by first extracting the feature vectors of signals using entropy. Sufi et al. diagnose
cardiac abnormalities with the help of a rule-based system and attained 97% accuracy [01]. The
approach of independent component analysis (ICA) was adopted by Martis et al. to classify ECG
signals into three different classes which include normal, atrial flutter, and atrial fibrillation [62].
Varatharajan et al. presented the approach of classifying ECG signals in cloud computing by using
enhanced SVM combined with Linear Discriminant Analysis (LDA) [63]. Yeh et al. diagnosed cardiac
arrhythmia by analyzing the ECG signals using the method of cluster analysis (CA) [64]. This method
accurately classifies the beats into normal and abnormal classes. Li et al. used the random forest and
wavelet packet entropy (WPE) to perform the classification of ECG signals followed by the Association
for the Advancement of Medical Instrumentation (AAMI) recommendations and the scheme of inter
patients [65]. de Albuquerque et al. proposed the automated approach for the detection of arrhythmia
using the Optimum-Path Forest (OPF) classifier [66]. Ptawiak proposed innovative research in which
cardiac disorders are classified into 17 different classes based on the analysis of ECG signals as an
evolutionary-neural system [07]. In general, these traditional methods show very effective results
in classifying the ECG signals of the known database, but their performance suddenly drops when
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appearing in new data due to poor generalization. They also exhibit overfitting issues on new data.
Thus, these methods are unreliable and not applicable to real-world IoT systems.

Moreover, the classification of heart disease based on ECG signals using deep learning techniques
is also employed. In such techniques, the data of ECG signals is given as input to a deep learning-
based framework. These methods exclude the overhead of signal preprocessing and feature extraction
and selection. The deep learning approaches are given preference over traditional machine learning
approaches, especially for the interpretation of medical imaging-related problems. Convolutional
Neural networks (CNN) are noise-insensitive, and if the ECG signal is noisy, and are also capable
of extracting relevant information from the noisy signal [68]. The performance of CNNs is greatly
dependent upon the layer-by-layer architecture and hyper-parameters configurations. For example,
an 11-layer deep architecture is proposed by Acharya et al. to classify the ECG segments of duration 2
to 5s[26]. These ECG signals belong to four different types of classes of heart disease. They attained
an accuracy of 98.09%.

In some recent works, Yildirim used the deep bidirectional LSTM model along with wavelet
sequence (DBLSTM-WS) to classify the ECG signals into five different classes [69]. In their work,
they claimed that the improvement in the performance of ECG signals is due to the wavelet sequence.
The pathologies present in 12-lead ECG signals are detected by Mostayed et al. with the help of
the recurrent neural networks (RNN) network which is comprised of two bi-directional LSTM
layers [70]. A classification algorithm based on specific ECG was proposed by Zhang et al. by
using RNN [71]. This algorithm learns the correlation of time from the samples of ECG signals
having different heart rates. Similarly, Kiranyaz et al. utilized the approach of 1D CNNs to classify
ECG signals in real-time which are patient-specific [72]. Li et al. classified the ECG signals into
five types using 1D CNN [73]. These classes are ventricular premature contraction, normal, right
bundle branch block, atrial premature contraction, and left bundle branch block. Yin et al. integrated
the Impulse Radio Ultra-Wideband (IR-UWB) radar with the monitoring system of ECG by using
CNN [74]. Jun et al. proposed the 2D CNN for the classification of arrhythmia ECG and reported
outstanding results in the pattern recognition field [75]. Salem et al. utilized the technique of transfer
learning by using 2D-CNN to classify ECG patterns into four distinct classes [76]. Jabeen et al. [77]
proposed an IoT-based automated recommender system for cardiovascular disease and achieve 98%
results. Cinar et al. [78] suggested the LSTM and hybrid CNN-SVM-based model to perform the
classification of heartbeats for the early detection of congestive heart failure. In their work, ECG
signals are represented in the form of spectrogram images and have achieved 96.77% accuracy.
Similarly, Li et al. [79] performed the ECG beats classification by employing the deep residual network
(ResNet) with 1D-convolutional layers. In their work, five different types of heartbeats are classified
with an average accuracy of 99.38%. Radhakrishnan et al. [80] proposed the automated method for the
detection of AF which is the most common kind of cardiac arrhythmia. In addition, El Bouny et al. [47]
designed the framework in which discriminative heartbeat features are extracted using SWT. Later,
CNN is used in conjunction with SWT to perform the classification. It is observed that in most of the
recent works, deep neural networks are the most used approach for ECG signals analysis to perform
heart disease diagnosis.

However, these approaches are not only widely used in heart disease; they are also widely used
in other diseases, such as COVID-19, which is the most common disease at the present time [81].
Continuing to expand on established approaches, this research study presents a new technique for
classifying ECG signals which considers two different types of information that ECG carries and fused
them into a single model. The model learns both types of information simultaneously along with the
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more responsive method of downscaling of features i-e generalized gated pool along with powerful
GELU units to bring non-linearity.

3 Methodology

In this section, we describe the data and materials used in the research and proposed methodology
to classify the ECG data. The section begins by discussing ECG data preparation, followed by the
suggested technique for classifying ECG signals. The ECG signals from different IoT devices are given
as input to the framework whose outputs are predictions regarding the signals as abnormal or normal.
The internal architecture of the proposed work is given in Fig. 3.
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Figure 3: The internal architecture of the proposed work

3.1 Preprocessing of ECG Signals

The ECG signals are given as input to the IoT-based heart disease prediction framework.
The simple and effective method for extracting beats includes seven different steps [82]. First, the
continuous ECG signals are divided into the window of 10s. In the range between 0 and 1, all the
amplitudes of ECG signals are normalized. Afterward, based on the methods of zero crossings of the
first derivative, the local maximums set is derived. Then the candidate set of ECG-R peaks is found
by applying a 0.9 threshold on local maximums which are normalized in the previous step.

The median of RR intervals of time is computed with the help of the nominal heartbeat of the
window (W). The signal length of 1.2 W is chosen for each R-Peak. In the end, all the records are
padded with the help of inserting zeros to a specified fixed dimension. With different morphologies,
this preprocessing is effective and simple in the extraction of RR intervals. Additionally, the lengths of
all beats that are extracted are identical. These same length beats are essential to give as an input to all
further parts of processing. The description of data in the form of attributes, classes, total instances,
and per-class instances is given in Table | for both datasets. As we see that the number of instances
in some classes for both databases is unbalanced. So, to resolve the data misbalancing, the SMOTE
oversampling is used over those classes.
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Table 1: ECG signals details in databases

Dataset Total signals  Total classes  Sampling frequency

1 MIT-BIH 109446 5 125Hz

2 PTB-ECG 14552 2 125Hz
ECG signals per class

1 Normal PTB-ECG 4046

2 Abnormal PTB-ECG 10506

3 Class-(N) MIT-BIH 90587

4 Class-(S) MIT-BIH 2779

5 Class-(V) MIT-BIH 7236

6 Class-(F) MIT-BIH 803

7 Class-(Q) MIT-BIH 8039

3.2 Oversampling of ECG Data

Synthetic Minority Oversampling Technique (SMOTE) is one of the most popular oversampling
techniques to solve the issues of an imbalanced dataset [83—87]. With the help of this technique, the
minority class is oversampled to create a balanced dataset. It uses the intuition of K-nearest neighbors
and creates several synthetic examples in the direction of nearest neighbors. The oversampling ratio
is determined by the number of nearest neighbors considered. In the first step, the difference between
the nearest neighbors of the underlying instance is taken. Afterward, a random number between 0 and
1 is used to multiply with this difference and the resultant value is added to the underlying instance.
Between two particular features, this operation causes random point selection along the segment of
the line. This technique significantly forces the decision boundaries of minority classes in the dataset
to become more general. Here in the study, we applied SMOTE oversampling over both datasets. This
sampling efficiently overcomes the problem of data misbalancing.

3.3 Linear Characteristics of ECG Signals

To extract the linear characteristics of ECG signals, we have used CNN which is the most used type
of artificial neural network as shown in Fig. 3. They were commonly applied to the interpretation of
visual imagery data with feed-forward connections [88]. They were developed originally in the early 90s
by LeCun [89]. In general, CNN consists of several layers such as convolution layers along with their
weights, pooling, and fully connected layers. These layers incorporate the rotational and translational
invariance along with compositionality to the learning model.

3.3.1 Convolutional Layers

For each sub-region of the input vector, this layer computes the dot product with the help
of the kernel matrix along with the additional bias term. After that, the input feature vectors are
passed through the non-linear activation function and then passed the resultant feature vectors to the
subsequent layers.
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Consider the input of the vector of ECG beats x! = [x,, X, X3, ..., x,] where n denotes the total
number length of ECG signal beat, the resultant output after passing the input through this layer is
computed by Eq. (1):

M
¢l = (b, +>° w,;x?iml) (1)
m=1

In the above Eq. (1), the I represents the index of the layer, the non-linear activation function is
denoted by 4, while the bias term is represented by symbol b and the total size of the filter is M. The
weight for the feature vector j is denoted by w/ at the m” filter index. The pictorial representation is
also shown in Fig. 4.

1D Conv result

Figure 4: 1D convolution operation on ECG beat

3.3.2 Gaussian Error Linear Units

The Gaussian Error Linear unit (GELu) is used during the extraction of linear characteristics to
bring the non-linearity [48]. A GELu is mathematically described in Eq. (2):

GELU (x) = xP (X < x) = x® (x) = xé [1 +oerf (%)] ?)

Moreover, the approximation of GELU is done by Eq. (3):

O.Sx(l + tanh [\/g (x + 0.044715x3)D 3)

Or
xo (1.702x) “4)

In GELu, the error function is used to compute the cumulative distribution function of a Gaussian.
This expression indicates the scaling of x by the amount of time it is greater than other inputs. For
stochastic regularizer, the non-linearity is the transformation that is expected on the input x, which is
® (x) x Ix+ (1 — @ (x)) x 0x = x® (x) . The sample graph of GELU in the range [+11, —11] is shown
in Fig. 5.
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3.3.3 Generalized Gated Pooling

The second name for the max-pool layer is the subsampling layer. This operation is usually
followed to reduce the size of feature vectors. This layer’s input consists of small regions from which
it generates a single output. This singular output can be computed in several ways. Here in this study,
we use the more generalized form of pooling known as “Generalized Gated pooling” [90].

Consider the feature vector of ECG beats x) = [x,, x,, X3, . . ., x,] where n denotes the total number
length of ECG signal beats, the generalized Gated pooling on this input is defined as in Eq. (5):
fg‘{ut(’ (X) =0 (WT'X) '.fmax (X) + (1 — 0 (WTX)) 'ﬁtvg (.X) (5)

In gate pooling, a dot product is taken among the region of the ECG feature vector that is
being pooled and the gating mask. Both the gating mask and the region being pooled have the
same dimensions. The resultant scalar value which resulted from this dot product is passed through
the sigmoid to yield the mixing proportion. The features which are present in the ECG beat vector
are operated with adaptation with this mixing proportion. Usually, in the case of max-pooling only
maximum activations are picked up while in average pooling, the minimum activations slow down the
impact of maximum activations. To overcome both issues, this pooling method is more suitable to
select more prominent and significant values from a given feature vector. Fig. 6 shows the generalized
Gated pooling pictorially.

3.4 Time Series Characteristics of ECG Signals

The time-series information of ECG signals is extracted by Vanilla LSTM cells. Generally, RNNs
are an important sub-field of deep learning algorithms. It is widely used in time series and sequence
data. RNN models come in a variety of variants, including LSTM, Bi-directional LSTM (Bi-LSTM),
and Gated Recurrent Unit (GRU). The main limitations of RNNSs include that they are not capable
of storing large sequence information. To overcome this issue, the LSTM and Echo State Networks
are introduced by researchers. The use of a memory cell is the central idea behind the architecture
of LSTM. The state over time and non-linear units of gating are maintained by this memory cell.
However, the original LSTM architecture was first proposed in 1997 by Hochreiter et al. [91]. This
LSTM overcomes the problem of error backflow. In addition, although the input sequences are noisy,
this is adapted to bridge time gaps of more than 1000 steps. On the other hand, these original LSTM
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architectures have no forgot gate and did not perform well on some tasks. Later on, the LSTM
architectures proposed by Graves et al. are the most commonly used and referred to as Vanilla LSTM
by people [92]. They will perform well on continual tasks due to the incorporation of forgot gates and
during training, they will use full gradients. The main architecture of vanilla LSTM includes the input,
forgot, and output gates. The decision-making in the cell about information thrown is done by forgot
gate. Mathematically, forgot gate is described in Eqs. (6) and (7):

/7,=VV/"X+R/"//114+Z7/' (6)
fi=a(7) )

Input ECG Feature Vector x

SEsEEnEREE

a(WTx) 1-a(WTx)

e

Figure 6: A generalized gated pooling

In the above equations, the output of forgot gate is represented by £, and £, respectively. The input
of forgot gate at time ¢ includes weights of the input W, bias term b, and recurrent weights R;.The
symbol o denotes the non-linear activation which is sigmoid. Next, the decision about the states that
need to be updated is taken by the input gate. A new candidate value in the form of a vector C, is
created by a non-linear tanh activation function. These vectors are added to the state. Further, the
states are updated by combining these two parts given in Eqs. (8)—(11):

I = W.X,+ R.h_, +b, ®)
it =0 (it) (9)
C.=W..X, +R. ., +b, (10)

C=¢ (5) (11)
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In the above equatioils, the input and recurrent weights along with bias terms are (W, R;, b;) and

(W.,R.,b,). The a and a exhibits the same meaning asf, and]_‘t. Moreover, in last the old state of a
cellis C,_; into the new state C, as given in Eq. (12):

C=f+C_+ix*C (12)

Finally, the output cell decides which part of the information is passed as an output. Ultimately, at
times ¢, the 4, which is the output of the LSTM cell obtained by multiplying the values of output gates
by the cell state on which the hyperbolic tangent function is applied. The output /4, is mathematically
computed by Eqgs. (13)—(15):

0, =W, X,+R,.h_, +b, (13)
0, =0 (0,) (14)
h,=o0,%2(C, (15)

In the above equations, the weights and bias of the output gate are denoted as (W,, b,). The
activation function of tanh is denoted by @. The terms o, and 0, also exhibit similar meanings as
f,and f,. The gradients and biases values are computed everywhere with the help of this presented
Vanilla LSTM.

3.5 Network Architecture

In the proposed research study, two different deep learning models are employed to extract
information from ECG signals as shown in Fig. 3. The non-linear characteristics of the ECG beats are
extracted by layers of CNN, while on the other hand, the time-series information in beats is extracted
by vanilla LSTM. During linear learning of features of ECG signals, generalized gated pooling layers
are deployed as shown in Fig. 6. More specifically, this input of ECG signal is fed into two separate
models in parallel form. The total dimension of the ECG signals is a fixed size of 188 and 187 in both
datasets. The ECG signals are passed to the first 1D convolution layer having a kernel size of 3 * 3 with
16 filters. Afterward, the GELu layer is deployed to bring non-linearity to the model. So, similarly, the
output produced from GELu is given as an input to generalized gated pooling to reduce the dimensions
of the input using a mixing operation with a selection of responsive features. Similarly, the output
from generalized gated pooling is given to the second one-dimensional convolution layer of kernel size
3 % 3 and 32 filters. The features produced from this layer are given as an input to GELu followed
by generalized gated pooling. In generalized mixed pooling, the pool size of f,,, and f,,.. 15 2 * 2.
Subsequently, this process is repeated one more time, i.e., input passes from the third 1D convolution
layer of the same kernel size as used in the previous two layers with total filters set to 64. The output
from this third 1D convolution layer is then propagated to the GELu unit and then to generalized
gated pooling. Moreover, on the other hand, the input is also given as an input to Vanilla LSTM to
extract the time-series information of (signals). The total number of hidden units present in the Vanilla
LSTM cell is 60. Afterward, both linear and time series characteristics are merged and concatenated
and passed to fully connected layers. The neurons in the fully connected layer are 64. Finally, the
classification layer with activation function of the sigmoid (for binary classification) and softmax (for
multi-class classification) is deployed to classify the normal and abnormal ECG signals with total
units equal to total classes. The hyper-parameter settings of the model include the weight optimizer
algorithm, number of hidden units, kernels, loss functions, etc., and these are all tuned to their best
values after performing several experiments. The Adaptive moment estimation (Adam) optimizer is
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utilized to find optimal weights. The loss function for the MITDB database is categorical cross-entropy
because it has more than two classes while for the PTB dataset, it is binary cross-entropy because it
contains two ECG classes. Moreover, standard backpropagation is used to train the network along
with the input size of the batch which is set to 16. The mathematical formulation for weights and
biases is given in Eqs. (16) and (17):

oC

AW, 4+ 1) = -2, = 22 4 maw, (1) (16)
raC noWw,

AB (t+1) = 22~ 4 mAB, (1) (17)

n dB,

In the above equations, the symbols W,x, B,/,n,t,m,. and C denote the weights, learning
rate, bias, number of layers, total training instances, updating step, momentum, the parameter of
regularization, and loss function. To determine the consistency of results the model runs for 25 epochs.
The layer-by-layer parameters are also shown in Table 2. In addition, the Glorot normal initializer
algorithm is used to initialize the weights of the layers. The random units of the network are also
eliminated by adding the dropout layers in the model with a rate of 0.1. This layer prevents the
adaptation of hidden units to training data. Additionally, the model has approximately 1 M learnable
parameters. Moreover, all the simulations are run on Google Colab with 12 GB NVIDIA Tesla K80
GPU in Python.

Table 2: Parameters of layers of the model

Layers  Layers type  Filters/units  Kernel/pool size Stride

0 ECGsignal - - —
1 ConvlD 16 3 1
3 GELU - - —
4 Gated pool  — 2 2
5 ConvlD 32 3 -
6 GELU - - -
7 Gated pool - 2 2
8 ConvlD 64 3 1
9 GELU - - -
10 Gated pool  — - -
11 ECG signal - - -
12 LSTM Units =60 - -
13 Fusion - - -
14 Dense 64 - —
15 Dense 5 - -

Algorithm 1: Heart Disease Diagnosis Using ECG

1. Input: Data points (ECG beats) X with each instance of the form x! = [x,, x,, x3, ..., x,], where n
denotes the total number length of ECG signal, itr is current iteration or loop variable while max_itr
is the total number of iterations (epochs).

(Continued)
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Algorithm 1 (continued)

2. Output: The trained model to diagnose heart disease using ECG beats.
3. while itr < max _itr

4. Initialize weights vector using Glorot normal as W, = w, w, ws, ..., w])
5. LC = Linear Characteristics(x) = [x,, X3, X3, . . ., X,])
6. foril to 3:

& =n (b + i)
GELU (x) =xP(X <x)=x® (x) = x.% |:1 + erf (%)]
Sewe @) =0 (W'x) - fre )+ (1 =0 (W'x)). [, ¥

7. TC = Time Series Info(x) =[x}, x5, X3,. .., X,])
8. foreach beat x, € X
9. Vanilla LSTM Cell (x;)
10. for each beat x; € X
11. feature vectors f, = Fusion (TC, LC)
12. classification <— FC Layers (layers, f,)
13. Compute loss functions
14. Update weights and bias
x aC

15 AW, (t+1) ==22w, =22 L maw, @
r noW,

xoC
n 4B,

17. end for
18. end for
19. end while

4 Experiments and Discussions

In this section, we describe the data and results of the proposed framework along with the criteria
for evaluation.

4.1 ECG Data

In this research study, the ECG signals and their corresponding annotation files are taken from
public databases of PhysioNet. The first dataset is the MIT-BIH arrhythmia database (MITDB) which
consists of six different classes of ECG signals from 47 subjects. The ECG recordings in this database
are ambulatory and 48 half-hour excerpts of two-channel. The 360 samples per second and per channel
are used to digitize each recording. Over a 10 mV range, the resolution is set to 11-bit. All the recordings
are annotated by two or more expert cardiologists. In this dataset, all the five categories of beats
annotation are according to the Association for the AAMI ECS57 standard as shown in Table 3.

The second database that is used is the PTB. The ECG recording in this dataset is taken from a
non-commercial prototype recorder with 16 input channels. The resolution, input voltage, and input
resistance are set to 16-bit, =16 mV, and 100 ohm, respectively. This database consists of the data of 290
subjects from age group 17 to 87 with a total of 549 records. There is a total of nine classes present in
the dataset out of which one is a normal class. All other eight classes belong to different types of heart
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disorders which include Myocardial infarction, Dysrhythmia, Myocardial hypertrophy, Valvular heart
disease, Bundle branch block, Cardiomyopathy/Heart failure, Myocarditis, and Miscellaneous. Here
we are using the segmented and preprocessed form of ECG data of both datasets publicly available on
Kaggle [93]. The details of those preprocessing steps on signals are described in Section 3.1.

Table 3: Mapping summary between AAMI EC57 and signals labelling

Classes in MIT-BIH Summary

Class-Q Normal and paced fusion and paced

Class-F Ventricular and normal fusion

Class-V Ventricular escape and premature ventricular contraction

Class-S Nodal and atrial premature, aberrant atrial and supra-ventricular premature
Class-N Atrial and nodal escape, bundle branch block right/left and normal

4.2 Evaluation Criteria

The evaluation criteria used in the simulation include accuracy, recall, precision, and F-1 score.
All these are described below in detail.

4.2.1 Accuracy

This measures the total number of classes that are predicted correctly by the underlying model out
of all the classes [45,94,95]. Generally, it determines that out of all patients that are under-tested have
a chance of heart disease and those who have not. The value of accuracy is high for the models which
are better. The equation for computing the accuracy is given below:

TP+ TN

A - 18
Y = TP TN+ FP + FN (18)

4.2.2 Precision

This measures the ratio of true positives among all positive cases. In the case of heart disease, it is
a measure of the model of correctly identifying those persons who have heart disease. Mathematically,
it is defined as in Eq. (19):
TP

Precision — 1
recision TP+ EP 19)

4.2.3 Recall

The recall measures how our model accurately identifies the total heart patients from the overall
relevant data. The mathematical equation is given in Eq. (20):

TP

Recall = ——
= TP rFN

(20)
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4.2.4 F-1 Score
This measures the overall accuracy of the model by combining both precision and recall metrics.
It can be computed by Eq. (21):
Precision.Recall

F-1score = 2. — (21)
Precision + Recall

In the above Eqs. (18)—(21), “TN” denotes True negative, “TP” denotes true positive, “FP” denotes
false positive, and “FN” denotes false negative.

4.3 Results on MIT-BIH Arrhythmia Database

To evaluate the performance of the proposed framework we first evaluate it on the MIT-BIH
Database. As mentioned before the total number of instances per class in this database is highly
imbalanced. We will apply the SMOTE oversampling technique over minority classes to create a
balanced dataset for training. The training and test sets are formed by an 80-20 split ratio of
division. After division, the total number of training and testing instances per class is shown in
Table 4. Following on, the training data of ECG signals is given as input to the proposed framework.
The framework first extracts the linear characteristics of ECG beats which are further refined by
Generalized Gated pooling. On the other hand, the time series information is also extracted from the
ECG signals concurrently in the same model. Each piece of information is fused and passed to fully
connected layers for classification. The class-wise performance of the MITBIH arrhythmia database is
also given in Table 5. The model performs excellently on all classes present in the dataset. The precision
in classes N, S, V, and F reaches above 90. Similarly, the recall of all classes and F-1 scores of all classes
also achieved a good score. Similarly, the class-wise performance without any SMOTE technique is
also given in Table 6. Furthermore, the combined results of the MIT-DB dataset on the test set are
given in Table 7. As shown in Table 7, the proposed framework achieves the value of accuracy of
98.38%. Moreover, the other evaluation metrics which include precision, recall, and F-1 score in this
experiment are 92%, 91%, and 91%, respectively.

Table 4: Total number of samples in training and testing set in MIT-BIH database

No. (N) (S) V)  (F) (Q)  Total
Training 72470 2223 5788 2000 6431 88912
Test 18117 556 1488 162 1608 21891
Total 90587 2779 7276 2162 8039 110803

Table 5: Class-wise performance on MIT-BIH arrhythmia database with SMOTE

Classes Precision  Recall F-1 score
Class (N) 99% 99% 99%
Class (S) 90% 77% 83%
Class (V) 96% 94%, 95%
Class (F) 78% 83% 80%

Class (Q)  99% 99%  99%
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Table 6: Class-wise performance on MIT-BIH arrhythmia database without SMOTE

Classes Precisio

n Recall

F-1 score

Class (N)  99%
Class (S) 84%
Class (V) 95%
Class (F) 87%
Class (Q)  99%

99%
T1%
95%
68%
99%

99%
81%
95%
76%
99%

Table 7: Overall performance on both datasets

Dataset

Accuracy Precision Recall F-1 score

MIT-BIH (with oversampling)
MIT-BIH (without oversampling)
PTB (with sampling)
PTB-(without oversampling)
Average

98.38%
98.25
100%
100%
99.14%

92%
93%
100%
100%
96.25%

91% 91%
88% 90%
100%  100%
100%  100%
95% 95.2%

It is observed that without SMOTE sampling the results are less as compared to the experiment
with SMOTE oversampling. More specifically, as shown in Tables 5 and 6, the precision values for class
S are improved by 6% after SMOTE. Similarly, in class F there is an improvement of 9% in precision
after applying the SMOTE. On the other hand, we have also plotted the confusion matrices of these
experiments (with and without oversampling) which are shown in Fig. 7. These matrices provide the
overall summary of model prediction among each class present in the dataset. It is observed from the
results that the proposed framework shows good performance in classifying the ECG signals into five

different classes.
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Figure 7: Confusion matrix for MIT-BIH database (a) with SMOTE and (b) without SMOTE
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The main reason behind the good results is the effective learning of the characteristics of ECG
signals. The fusion of two different types of information lifts the results. A high-performance unit
named GELU brings effective non-linearity to the model. Moreover, the responsiveness nature of
generalized gated pooling due to mixing operation selects more prominent features of ECG beats
during linear learning. It is also necessary to mention here that our model has overall fewer parameters,
which makes the network easier to train and more suitable in the environment of IoT-based remote
systems. Moreover, during training of the proposed framework, the training history in the form of loss
and accuracy is also recorded. The plots of training loss and accuracy are shown in Fig. 8. The x-axis
represents the total number of epochs for which the model runs, and the y-axis represents the loss and
accuracy values.
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Figure 8: (a) Loss and (b) accuracy graph of MIT_BIH and PTB dataset during training

4.4 Results on PTB Database

In the second phase of our evaluation, we evaluated the performance of the proposed framework
on the PTB-Heart database. This dataset also suffers from high misbalancing in the data. The same
technique of SMOTE oversampling is applied to this dataset to avoid misbalancing in the train set.
The total number of training and testing instances for each class is shown in Table 8.

Table 8: Total number of samples in training and testing set in PTB-heart database

No. Normal Abnormal Total
Training 5000 8432 13432
Test 837 2074 2911

Total 5837 11136 28207

Moreover, all the other hyperparameters of the model remain the same in this experiment as in the
first experiment. As this is a binary classification problem, so we replace the loss function at the last
layer with the “binary_cross entropy” loss function, and on the classification layer, sigmoid activation
is applied which is suitable for binary classification problems. As done previously, the ECG beats
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present in this dataset are also passed as input to the proposed model. The model performs a fusion of
both linear and time series characteristics extracted by two different architectures simultaneously with
feature reduction using generalized gated pooling. After training, the model can classify the signals
present in the test set into two classes which are normal and abnormal. The results in the form of
evaluation scores are shown in Table 7 while the class-wise performance of this dataset in terms of
accuracy, precision, and recall is shown in Table 9. In this dataset, the proposed framework achieves
a 100% value of accuracy along with a precision of 100%. The recall and F-1 score achieved by the
model are also 100%. This dataset contains only the two classes of ECG signals which are easier to
train with good prediction performances. It is observed that performance drops when the number of
ECG signal classes is increased as presented in the previous experiment. After training, the model can
classify the signals present in the test set into two classes which are normal and abnormal. The results
in the form of evaluation scores are shown in Table 7 while the class-wise performance of this dataset
in terms of accuracy, precision, and recall is shown in Table 9. In this dataset, the proposed framework
achieves a 100% value of accuracy along with a precision of 100%. The recall and F-1 score achieved
by the model are also 100%. This dataset contains only the two classes of ECG signals which are easier
to train with good prediction performances. It is observed that performance drops when the number
of ECG signal classes is increased as presented in the previous experiment Moreover, the accuracy and
loss graphs for the proposed model during training for this experiment are also plotted and shown in
Fig. 8.

Table 9: Class-wise performance on the PTB dataset

Classes Accuracy Precision Recall Curve
Normal 100% 100% 100%  100%
Abnormal  100% 100% 100%  100%

The results from these experiments also reveal that the proposed framework performs excellently
in diagnosing heart disease from ECG signals. The summary of predictions for this experiment in the
form of confusion matrices for both with and without oversampling are shown in Fig. 9, respectively.
Furthermore, we have also plotted the Receiver operating curves (ROC) for both of our experiments
which are shown in Fig. 10. At the various thresholds, it is a probability curve that plots the True
positive rate (TPR) against the false positive rate (FPR). Usually, the ROC curves are generally used
for binary class problems, but they can also be extended to multi-class problems. To plot ROC curves
for the MIT-BIH database which consists of multiple classes we have used the one-vs.-Rest technique.
This technique turns the multi-class problem into a binary class. As in the MIT-BIH dataset, there are
five classes, so we have plotted the ROC curves for every class label as “N”, “S”,” V”,” F”, and “Q”
vs. rest.

Moreover, for both datasets, we have also performed a different set of experiments with different
hyper-parameters which includes the weight optimizers, oversampling and learning rates, etc. The
effect of the validation set on both datasets is also taken into account and experiments are performed
against them. These hyper-parameters play a very important role in the performance results of
deep learning models. Table 10 shows the results in terms of precision, recall, and accuracy for
both databases. The symbols ‘Opt” represents the optimizer used, ‘LR’ represent the learning rate,
MIT-BIH (V) represents the experiment on the MIT-BIH database with the validation set, PTB(V)
represents the experiment on the PTB database with the validation set, ‘SM’ represents the oversam-
pling, and accuracy, recall, precision, and F-1 score are denoted by A, P, R, and F, respectively.
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Figure 10: ROC curves for (a) PTB and (b) MIT_BIH dataset
Table 10: Effect of different hyper-parameters on model performance
Dataset# Opt LR SM A P R F
MIT-BIH SGD 0.001 No 97% 91% 82% 86%
MIT-BIH Adam 0.001 No 98% 93% 88% 90%
PTB SGD 0.001 No 100% 100% 100% 100%
PTB Adam 0.001 No 100% 100% 100% 100%
MIT-BIH SGD 0.001 Yes 97% 87% 87% 86%
PTB SGD 0.001 Yes 100% 100% 100% 100%
MIT-BIH Adam 0.001 Yes 98.3% 92% 91% 91%

(Continued)
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Table 10 (continued)

Dataset# Opt LR SM A P R F
PTB Adam 0.001 Yes 100% 100% 100% 100%
MIT-BIH SGD 0.01 Yes 98% 91% 90% 91%
PTB SGD 0.01 Yes 100% 100% 100% 100%
MTB-BIH(V) SGD 0.01 Yes 98% 91% 90% 90%
MTB-BIH(V)  Adam 0.01 Yes 98% 91% 90% 91%
PTB(V) SGD 0.01 Yes 100% 100% 100% 100%
PTB(V) Adam 0.01 Yes 100% 100% 100% 100%

4.5 Comparison with Existing Studies

In the previous section, we have described our detailed results for both of our datasets. Here we
compare our results with existing methods. The existing approaches follow several techniques and
methods to perform the classification of heart disease. Table 11 shows the comparison with existing
methods in terms of accuracy. In Table 11, Kallas et al. used traditional machine learning methods to
classify the ECG signal [96]. For feature extraction, they use the Kernel Principal Component Analysis
(KPCA) followed by an SVM algorithm to classify the abnormalities present in the ECG signals. They
achieved an accuracy of 97.34%. The authors, however, do not disclose the other metric, which includes
sensitivity, specificity, and F-1 score. Dutta et al. used the cross-correlation approach along with SVM
to classify the ECG signals [97]. In this approach, the information about cross-spectral density in the
frequency domain is more useful for feature extraction. Their method achieves an accuracy of 95.82%
along with average sensitivity of 89.81%. Melgani et al. also used the traditional approach for the
classification of ECG beats [98]. In their work, the SVM generalization is achieved with the help of
the optimization algorithm namely Particle swarm optimization (PSO).

Table 11: Comparative analysis with existing studies

Sr. No.  Authors Methods Input Accuracy
1 Kallas et al. [96] KCPA + SVM ECG signal 97.34

2 Dutta et al. [97] SVM ECG signal 95.82%

3 Melgani et al. [9€] SVM + PSO ECG signal 91.67%

4 Rajkumar et al. [99] Deep Learning ECG signal 93.6

5 Salem et al. [76] Transfer Learning Spectrogram 97.23%

6 Diker et al. [100] DWT + ELM + GA ECG signal 95%

7 Ours (dataset MIT-BIH) CNN 4+ LSTM + GGP ECG signal 98.38%

9 Ours (PTB) CNN LSTM + GGP ECG signal 100%

The PSO searches for the best set of parameters for the SVM. They also classify the signals into
five different classes and achieve an accuracy of 91.67%. Rajkumar et al. used deep learning techniques
to classify the ECG signals [99].
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They performed the experiments with various activation functions in their model and achieved
93.6% accuracy. Salem et al. used the 2D dimensional CNN to classify the ECG signals [76]. They
turned the ECG signals into spectrogram representations and later by using transfer learning with
DenseNet all the spectrograms representation of ECG signals are classified. Diker et al. used the
Pan-Tompkins algorithm along with discrete wavelet transform to extract the features of ECG beats
[100]. For the classification, an Extreme learning machine along with a Genetic algorithm for hyper-
parameter optimization is used. In their work, a performance accuracy of 95% is attained. All the
previous researchers achieved the best scores in classifying ECG signals using different algorithms and
techniques, here we also classify the ECG signal and achieved improvement over existing methods
in terms of scores. Moreover, it is crucial to discuss the limitations to assist in paving the way for
future research. Hence, one possible limitation of this work is that it deals with few abnormalities
of heart disease including Myocardial infarction, Dysrhythmia, Myocardial hypertrophy, Valvular
heart disease, Bundle branch block, Cardiomyopathy/Heart failure, Myocarditis, and Miscellaneous.
However, what if the underlying patient is suffering from another condition? To further extend this
work, one possible future direction is to consider more classes or abnormalities. Secondly, the proposed
work deals with only ECG features; nevertheless, other clinical features such as patient blood pressure,
cholesterol level, etc. can be included to diagnose the disease more accurately. As a future work,
segmentation of coronary arteries in the computer vision domain using deep learning models can
also be integrated with ECG-based diagnosis modules to further improve and increase the system’s
confidence in diagnosing the disease at remote locations.

5 Conclusion

For all types of chronic diseases, loT-based systems work efficiently in the healthcare industry. The
instant intervention of these healthcare monitoring systems can save many lives, especially for those
people who live in remote areas and are unable to avail of medical facilities. It is very challenging to
predict the survivability of heart disease. Several researchers proposed different techniques to diagnose
heart disease. In this paper, we present the automated IoT-based healthcare system for the diagnosis of
heart disease. The proposed framework is given with the input of ECG signals to diagnose the disease.
The framework fuses both linear and time series characteristics concurrently. During linear learning
of ECG signals, the dimension reduction is performed with a more advanced form of pooling called
generalized gated pooling. This pooling selects more responsive features from beats feature vectors that
are being pooled with the help of a mixing operation. Moreover, to elevate the performance GeLu is
deployed to achieve non-linearity. Besides this, the oversampling of training samples is also performed
with the help of SMOTE technique to avoid class misbalancing. We have evaluated the proposed
framework on two different ECG databases and attained a good performance with an average accuracy
of 99.14% along with a 95% recall value, respectively. In the future, we will examine the performance
of the proposed framework on a wider range of ECG datasets.
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