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ABSTRACT

Aiming at the problems of short duration, low intensity, and difficult detection of micro-expressions (MEs), the
global and local features of ME video frames are extracted by combining spatial feature extraction and temporal
feature extraction. Based on traditional convolution neural network (CNN) and long short-term memory (LSTM),
a recognition method combining global identification attention network (GIA), block identification attention
network (BIA) and bi-directional long short-term memory (Bi-LSTM) is proposed. In the BIA, the ME video
frame will be cropped, and the training will be carried out by cropping into 24 identification blocks (IBs), 10 IBs
and uncropped IBs. To alleviate the overfitting problem in training, we first extract the basic features of the pre-
processed sequence through the transfer learning layer, and then extract the global and local spatial features of the
output data through the GIA layer and the BIA layer, respectively. In the BIA layer, the input data will be cropped
into local feature vectors with attention weights to extract the local features of the ME frames; in the GIA layer, the
global features of the ME frames will be extracted. Finally, after fusing the global and local feature vectors, the ME
time-series information is extracted by Bi-LSTM. The experimental results show that using IBs can significantly
improve the model’s ability to extract subtle facial features, and the model works best when 10 IBs are used.

KEYWORDS
Micro-expression recognition; attention mechanism; long and short-term memory network; transfer learning;
identification block

1 Introduction

Compared with traditional expressions, MEs are expressions of short duration and small move-
ments. As a spontaneous expression, ME is produced when people try to cover up their genuine internal
emotions. It is an expression that can neither be forged nor suppressed [1]. In 1966, Haggard et al. [2]
discovered a facial expression that is fast and not easily detected by the human eye and first proposed
the concept of MEs. At first, this small and transient facial change did not attract the attention of
other peer researchers. Until 1969, when Ekman et al. [3] studied a video of depression, he found that
patients with smiling expressions would have extremely brief painful expressions. The patient tried
to hide his anxiety with a more positive expression, such as a smile. Unlike macro-expressions, MEs
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only last for 1/25∼1/5 second. Therefore, recognition only by human eyes does not meet the need for
accurate identification [4,5], and it is essential to use modern artificial intelligence means.

Research on micro-expression recognition (MER) has undergone a shift from using traditional
image feature extraction methods to deep learning feature extraction methods. Pfister et al. [6,7]
extended the feature extraction method from XY direction to three orthogonal planes composed
of XY, XT and YT by using the local binary patterns from three orthogonal planes (LBP-TOP)
algorithm. The LBP-TOP algorithm has been extended from the previous static feature extraction
to the dynamic feature extraction that changes with time information. But this recognition method is
not ideal for MEs with small intensity changes. Xia et al. [8] found the problem that facial details
with minor changes in MER can quickly disappear in deep models. He demonstrated that lower
resolution input data and shallower model structure could help alleviate the phenomenon of detail
disappearance. Then, he further proposed a recurrent convolutional network (RCN) to reduce the
model and data. However, compared to the CNN with attention mechanisms, this design does not
perform well in deep models. Xie et al. [9] proposed an MER method based on action units (AUs).
Based on the correlation between facial muscles and AUs, this method improves the recognition
rate of MEs to a certain extent. Li et al. [10] proposed a model structure based on 3DCNN, an
MER method combining attention mechanism and feature fusion. This model extracts optical flow
features and facial features through a deep CNN and adds transfer learning to alleviate the problem
of model overfitting. Gan et al. [11] proposed the OFF-ApexNet framework by using the optical flow
characteristics between images, which can input the extracted optical flow characteristics between
onset frame, apex frame and offset frame into CNN for recognition. However, the ME change is a
continuous process, and only relying on the onset frame, apex frame and offset frame may ignore
the details between video sequences. Huang et al. [12] proposed a method of MER by using the
optical flow characteristics of apex frames and integrating the SHCFNet framework. The SHCFNet
framework combines the extraction of spatial and temporal features, but it ignores the processing of
local detail features of MEs. Zhan et al. [13] proposed an MER method based on an evolutionary
algorithm and named it the GP (genetic programming) algorithm. The GP algorithm can select
representative sequence frames from ME video frames and guide individuals to evolve toward higher
recognition ability. This method can efficiently extract time-varying sequence features in MER. But it
only performs feature extraction globally and does not consider that the importance of different parts
of the face varies in MER. Tang et al. [14] proposed a model based on the optical flow method and
Pseudo 3D Residual Network (P3D ResNet). This method uses the optical flow method to extract
the characteristic information of the ME optical flow sequence, then extracts the spatial information
and temporal information of the ME sequence through the P3D ResNet model, and finally classifies
and outputs it. However, P3D ResNet is more based on the entire area of the face and does not
take into account the minor detail changes in the local MEs. Niu et al. [15] proposed a CBAM-
DPN algorithm based on a convolutional attention module and a dual-channel network. The method
fuses channel attention and spatial attention, thus enabling feature extraction of local details of MEs.
Simultaneously, the DPN structure can inhibit useless features and enhance the expression ability of
model features. But this method only relies on apex frames, ignoring the sequence correlation between
ME video frames.

To solve the problems of low intensity, short duration and difficult detection of ME, we propose a
method for MER using key facial regions. This method can extract spatial and temporal information
from ME frames. The design of the local IBs in the experiments overcomes the shortcoming of only
utilizing global feature extraction in the SHCFNet [12] framework. Compared with the OFF-ApexNet
[11] framework, our method utilizes all video frames from onset to apex, which can further extract
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more detailed facial change information. After the spatial feature extraction, we added the Bi-LSTM
framework, which can further extract the sequence features of the video frames compared with the
CBAM-DPN [15,16] algorithm, thereby improving the recognition accuracy. In addition, to further
extract the facial details of MEs, in the experiment, we crop the ME video frames into IBs and perform
ablation experiments on the uncropped IBs, 24 and 10 IBs. Finally, according to the experimental
results, the selected schemes of different IBs are compared.

2 Related Work
2.1 Facial Expression Coding System (FACS)

There are 42 muscles in the human face. The rich expression changes are the result of the joint
action of a variety of muscles. Some facial muscles that can be consciously controlled are called
“voluntary muscles”. There are also some facial muscles that can not be under conscious control
are called “involuntary muscles”. In 1976, Ekman et al. [3] proposed a facial expression coding
system (FACS) based on facial anatomy. FACS divides the human face into 44 AUs. Different AUs
represent different local facial actions. For example, AU1 represents the inner browser raiser, while
AU5 represents the upper lip raiser [17–19]. ME generation is usually the result of the joint action of
one or more AUs. For example, the ME representing happiness results from the joint action of AU6
and AU12, where AU16 represents the downward pull of the lower lip and AU12 represents the upward
corner of the mouth. FACS is an essential basis for MER, and it also is an action record of facial key
point features such as eyebrows, cheeks and corners of the mouth [20–22]. In our experiment, the face
will be divided into several ME IBs according to the AU.

2.2 Neural Network with Attention Mechanism

To address the shortcomings of short duration and low action intensity in MER, we add an
attention mechanism in a CNN [23]. This design makes the CNN model not only extract the features of
the whole face but also focus on the changes in local details. It enables the model to extract more subtle
facial detail features in MER. CNN can extract the abstract features of ME [24]. The CNN with a local
attention network is used to extract the motion information of critical local units in ME change. In
contrast, the CNN with a global attention network can extract the global change information. In the
experiment, we combine the CNN with the local attention mechanism and the CNN with the global
attention mechanism. We expect the improved CNN model to have the ability to pay attention to both
the global and the details.

2.3 Bi-Directional Long Short-Term Memory Network (Bi-LSTM)

Traditional CNNs and fully connected (FC) layers have a common feature in that they cannot
“memorize” relevant information between time series when dealing with continuous sequences [25].
Compared with traditional neural networks, recurrent neural network (RNN) adds a hidden layer that
can save state information. This hidden layer includes historical information about the sequence and
updates itself with the input sequence. However, the most significant disadvantage of traditional RNN
is that with the increase of training scale and layers, it is easy to produce long-term dependencies prob-
lems [26,27]. That is, it is easy to produce gradient disappearance and gradient explosion when learning
a long sequence. To solve the above problems of RNNs, in the early 1990s, Hochreiter et al. proposed
LSTM. Each unit block of LSTM includes an input gate, forget gate and output gate [28]. The input
gate is used to determine how much input data at the current time can be saved to the current state unit;
The forgetting gate is used to indicate how many state units at the last time can be saved to this state
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unit; The output gate controls how many current state units can be used for output. Bi-LSTM adds
a backpropagation layer to the LSTM which make the Bi-LSTM model can use not only historical
sequence information but also future information [29]. Simultaneously, Bi-LSTM can better extract
the feature and sequence information in ME than LSTM.

3 Proposed Method
3.1 Method Overview

We propose a neural network structure based on the combination of CNN with attention
mechanism and Bi-LSTM. To accurately capture small-scale facial movements, we add global and
local attention mechanisms [30] to the traditional CNN framework. The improved framework can
extract different feature information from multiple facial regions. Simultaneously, we also increase
the processing of global information. The improved model architecture is shown in Fig. 1. Firstly,
the network uses the transfer learning method to pass the pre-processed feature vector through the
VGG16 model with pre-training weight and extract the basic facial features [31]. Then, the facial
features extracted from each frame are passed through GIA and BIA to extract global and local
information. Afterward, we fuse the extracted global and local information and extract the sequence-
related information through Bi-LSTM. Finally, the classification output is carried out through a three-
layer FC layer.

Figure 1: The model combining GIA, BIA and Bi-LSTM. It includes a transfer learning layer, GIA
and BIA layer, Bi-LSTM layer and FC layer

To extract the global and local features of the face, we introduce the BIA and GIA frameworks.
As shown in Fig. 1, BIA is the upper part of the dashed box in the figure, and GIA is the lower part
of the dashed box in the figure.
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3.2 BIA Mechanism

The range of facial variation of ME is small, which is challenging to be recognized effectively. This
experiment adopts the recognition method of increasing the blocks with attention in the critical regions
of the face. The representative area and the corresponding attention weight are added to the facial
features to be recognized. In the experiments, we will perform ablation experiments on uncropped,
cropped into 24 and 10 ME blocks, respectively.

3.2.1 The Neural Network with Attention Mechanism

BIA is shown in the upper part of the dashed box in Fig. 1. After cropping in the BIA, the local
IBs are obtained, and then each IB vector goes through an FC layer and an attention network whose
output is a weighted scalar. Finally, each IB gets a weighted feature vector and outputs it.

In the attention network (the upper half of the dashed box in Fig. 1), it is assumed that ci represents
the input feature vector of the i-th IB. As in Eq. (1), ϕ (·) is the operation in the attention network,
and pi is the attention weighted scalar of the i-th IB. As in Eq. (2), τ (·) represents the feature learning
of the input feature vector, and c̃i represents the unweighted feature after the i-th IB is extracted. As
in Eq. (3), αi is the feature of the i-th IB with attention weight. Finally, the weighted feature vectors of
all IBs are obtained after calculation.

pi = ϕ (ci) (1)

c̃i = τ (ci) (2)

αi = pi · c̃i (3)

3.2.2 Generation Method of 24 IBs

To accurately recognize the local details of the face, we generate 24 detailed IBs based on facial
key points. There are Dlib [32] method and face_recognition [33] method to determine face key points.
The Dlib method can obtain 68 facial key points (see Fig. 2a), and the face_recognition method can
obtain 72 facial key points (see Fig. 2b). In experiments, we found that the face_recognition method
can obtain more accurate facial key point information than the Dlib method. Therefore, we use the
face_recognition method to achieve precise positioning when determining the ME IB. The 24 IBs are
generated as follows:

Figure 2: Comparison of ME key points and IPs. (a) 68 facial key points (b) 72 facial key points (c)
24 IPs (d) 10 IPs. We select 24 and 10 IPs for experiments on 72 facial key points, respectively
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(1) Determine the identification points (IPs): We first extracted 72 facial key points using the
face_recognition method (see Fig. 2b). Then, based on 72 facial key points, We converted them to 24
IPs. The location of IPs covers the cheeks, mouth, nose, eyes and eyebrows. The conversion process
is as follows. Firstly, 16 IPs covering mouth, nose, eyes and eyebrows are selected from 72 facial key
points. The extraction sequence numbers of 72 facial key points (see Fig. 2b) are: 19, 22, 23, 26, 39,
37, 44, 46, 28, 30, 49, 51, 53, 55, 59 and 57. The serial numbers of the IPs generated (see Fig. 2C) are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. Secondly, for the eyes, eyebrows and cheeks, we
generate them through the midpoint coordinates of the key points. For the left eye, left eyebrow and left
cheek, we select the midpoint coordinates of (20, 38), (41, 42), (18, 59) point pairs from 72 facial key
points (see Fig. 2b) as the IPs; For the right eye, right eyebrow and right cheek, we select the midpoint
coordinates of (25, 45), (47, 48) and (27, 57) point pairs from 72 facial key points as the IPs; The serial
numbers of the generated IPs (see Fig. 2c) are: 17, 19, 18, 20, 21 and 22. Finally, for the left and right
corners of the mouth, we select 49 and 55 keys from 72 facial keys (see Fig. 2b). Then, according to the
coordinates of the two points, the relative offset points of the two corners of the mouth are selected
as the generation basis of the coordinates of the IPs. The generated IPs at the left and right corners
of the mouth (see Fig. 2C) are numbered 23 and 24. Eqs. (4) and (5) are the calculation methods of
the IPs at the left and right corners of the mouth. Wherein x72

49 and y72
49 are the abscissa and ordinate of

the 49th point under 72 facial key points; x72
55 and y72

55 are the abscissa and ordinate of the 55th point
under 72 facial key points;

(
x24

23, y24
23

)
is the coordinate of the 23rd point under the 24 IPs;

(
x24

24, y24
24

)
is

the coordinate of the 24th point under the 24 IPs.(
x24

23, y24
23

) = (
x72

49 − 16, y72
49 − 16

)
(4)

(
x24

24, y24
24

) = (
x72

55 + 16, y72
55 + 16

)
(5)

(2) Generate IBs: Finally, we got 24 IPs (see Fig. 2c). The re-selected 24 IPs will generate 24 48 ×
48 IBs centered on the IPs. To improve the robustness of the model, we perform feature extraction on
IBs after passing through the transfer learning layer.

3.2.3 Generation Method of 10 IBs

The 24 IBs can cover the face area relatively wholly, but in the experiment we found that covering
the face area too finely may make BIA learn some redundant features. In subsequent experiments,
we obtained 10 IBs based on FACS. The 10 IBs relatively completely covered the eyebrows, eyes, nose,
mouth and chin of the human face. The detailed experimental steps for obtaining 10 IBs are as follows:

(1) Determine the IPs: we obtained 72 facial key points through face_recognition and then
converted them into 10 IPs. The conversion process is as follows: we first determine the side length
of the IB area. We selected half of the abscissa distance between points 49 and 55 (see Fig. 2b) as the
side length of the IB area. For the eyebrow part, we select the midpoint coordinates of the 20th and
25th points (see Fig. 2b) among the 72 facial key points as the coordinates of the 8th IP (see Fig. 2d).
The 9th and 10th IPs are generated based on the existing 8th IP. The generation method of the 9th and
10th IPs is shown in Eqs. (6) and (7). Where

(
x10

9 , y10
9

)
,
(
x10

10, y10
10

)
represent the coordinates of the 9th and

10th points under the 10 IPs. x10
8 and y10

8 represent the abscissa and ordinate of the 8th point under the
10 IPs. Width is the side length of the square IB area under 10 IPs.(

x10
9 , y10

9

) = (
x10

8 − width, y10
8

)
(6)
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(
x10

10, y10
10

) = (
x10

8 + width, y10
8

)
(7)

For the eyes, we select the coordinates of the 37th and 46th points (see Fig. 2b) among the 72 facial
key points as the coordinate generation basis of the 6th and 7th IPs (see Fig. 2d). The generation
method of IPs 6 and 7 is shown in Eqs. (8) and (9). Among them,

(
x10

6 , y10
6

)
,
(
x10

7 , y10
7

)
represent the

coordinates of the 6th and 7th points under the 10 IPs, respectively; x72
37, y72

37 represent the abscissa and
ordinate of the 37th point under 72 facial key points; x72

46 and y72
46 represent the abscissa and ordinate of

the 46th point under 72 facial key points; width is the side length of the square IB area under 10 IPs.
(
x10
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2
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37

)
(8)

(
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2
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(9)

For the nose parts, we select the coordinates of the 32nd and 36th points (see Fig. 2b) among
the 72 facial key points as the coordinate generation basis of the 4th and 5th IPs (see Fig. 2d). The
generation method of IPs 4 and 5 is shown in Eqs. (10) and (11). Where

(
x10

4 , y10
4

)
,
(
x10

5 , y10
5

)
respectively

represent the coordinates of the 4th and 5th IPs under 10 IBs; x72
32 and y72

32 represent the abscissa and
ordinate of the 32nd point under 72 facial key points; x72
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36 represent the abscissa and ordinate of

the 36th point under 72 facial key points; width is the side length of the square IB area under 10 IBs.
(
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(10)
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2
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)
(11)

For the lip part, we directly select the 49th and 55th points (see Fig. 2b) among the 72 facial key
points as the coordinates of the 1st and 2nd IPs (see Fig. 2d). Finally, in the chin part, we select the
9th point (see Fig. 2b) among the 72 facial key points as the coordinate generation basis of the 3rd IP
(see Fig. 2d). The generation method of the 3rd IP is shown in Eq. (12), where

(
x10

3 , y10
3

)
represents the

coordinates of the 3rd point under 10 IPs; x72
9 and y72

9 represent the abscissa and ordinate of the 9th
point among the 72 facial key points; width is the side length of the square IB area under 10 IBs.
(
x10

3 , y10
3

) =
(

x72
9 − 1

2
× width, y72

9

)
(12)

(2) Generate IBs: Finally, we get 10 IPs (see Fig. 2d). Simultaneously, we select half of the abscissa
distance of point 49 and point 55 (see Fig. 2b) as the side length of the IB. The final re-selected 10 IPs
will generate 10 IBs centered on the IPs in the experiment. To improve the robustness of the model,
we perform feature extraction on IBs after passing through the transfer learning layer.

3.3 GIA Mechanism

BIA can learn subtle changes in facial features. We not only need to extract local facial features
but also global features. Therefore, integrating global features into feature recognition is expected to
improve the recognition effect of MEs.
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The detailed structure of GIA is shown in the lower half of the dashed box in Fig. 1. The input
feature vector size of GIA is 512 × 28 × 28. In GIA, we first pass the input feature vector through
the conv4_2 to conv5_2 layers of the VGG16 network to obtain a feature vector with an output size
of 512 × 14 × 14; Then, the feature vector of size 512 × 14 × 14 is passed through an FC layer and
an attention network whose output is a weighted scalar, and finally, a weighted global feature vector
is output.

3.4 Bi-LSTM Mechanism

GIA and BIA can extract the local and global information of a frame of MEs. However, ME
video frames change dynamically in continuous time, so we also need to extract the temporal sequence
information of ME. LSTM is a new structure designed to overcome the long-term dependency problem
of traditional RNNs. The Bi-LSTM adds a reverse layer based on LSTM, which makes the new
network structure cannot only utilize the historical information but also can capture future available
information [34,35].

Bi-LSTM is shown in Fig. 3. Bi-LSTM replaces each node of the bidirectional RNN with an
LSTM unit. We define the input feature sequence of the Bi-LSTM network model as X = (x1, . . . , xT);

Define the variable sequence of the hidden layer in the forward propagation as
−→
h =

(−→
h 1, . . . ,

−→
h T

)
and the variable sequence of the hidden layer in the backpropagation as

←−
h =

(←−
h 1, . . . ,

←−
h T

)
; Define

the Bi-LSTM model output sequence as y = (
y1, . . . , yT

)
. We get the following formula:

�ht = S
(

Wx�hxt + W �h�h�ht−1 + b�h
)

(13)

←−
h t = S

(
Wx

←−
h xt + W←−

h
←−
h

←−
h t−1 + b←−

h

)
(14)

yt = W �hy
�ht + W←−

h y

←−
h t + bo (15)

In the above formula, S (x) is the activation function; W represents the weight of Bi-LSTM; b is
the bias; Each unit is calculated using LSTM cells, shown in Fig. 4.

Figure 3: Bidirectional RNN model diagram

The input of the Bi-LSTM layer is the feature vector after BIA and GIA. The Bi-LSTM layer
adopts a single-layer bidirectional LSTM structure, which contains a hidden layer with 128 nodes. To
increase the robustness of model network nodes and reduce the complex co-adaptation relationship
between neurons, we add a dropout layer between the Bi-LSTM layer and the FC layer to mask neurons
with a certain probability randomly.
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Figure 4: LSTM cell

4 Experiments and Results

We selected four datasets for experiments. We pre-process the dataset and then select accuracy,
unweighted f1-score, and unweighted average recall as evaluation criteria. Finally, we conducted
experiments on without IBs, 24 and 10 IBs, respectively, and compared them with different algorithms.

4.1 Selection of Datasets

Four datasets, CASME II, SAMM, SMIC and MEGC, were selected for the experiment. In the
experiment, we divided expressions into three categories: negative, positive and surprise.

4.1.1 CASME II Dataset

The CASME II [36] dataset was established by the team of Fu Xiaolan, Institute of Psychology,
Chinese Academy of Sciences. The CASME II dataset employs a 200 fps high-speed camera with a
frame size of 640 × 480 pixels. There are 255 samples in the dataset, the average age of the participants is
22 years old, and the total number of subjects is 24. The dataset includes emotion labels corresponding
to each subject sample and video sequence annotations with the onset frame, apex frame and offset
frame [37–39]. Labels include depression, disgust, happiness, surprise, fear, sadness, and others. In the
experiment, we divided the CASME II dataset into a new division, and the division results are shown
in Table 1.

Table 1: Dataset division on CASME II

Category Quantity Label

Negative 251
Repression
Disgust

Positive 109 Happiness
Surprise 86 Surprise

4.1.2 SAMM Dataset

The SAMM [40] dataset has 149 video clips captured by 32 participants from 13 countries. The
participants were 17 white British, accounting for 53.1% of the participants; also included 3 Chinese,
2 Arabs, and 2 Malays, in addition to Spanish, Pakistani, Arab, African Caribbean 1 person each,
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a British African, an African, a Nepalese, and an Indian. The average age of the participants was
33.24 years, with a gender-balanced number of male and female participants. There were significant
differences in the race and age of the participants, and the imbalance of the label classes was also
evident. The SAMM dataset has a 200 fps high frame rate camera with a resolution of 960 × 650 per
frame [41–43]. The dataset is accompanied by the positions of the onset frame, offset frame and apex
frame of MEs, as well as emotion labels and action unit information. Labels include disgust, contempt,
anger, sadness, fear, happiness, surprise,and others. In the experiment, we divided the SAMM dataset
into a new division, and the division results are shown in Table 2.

Table 2: Dataset division on SAMM

Category Quantity Label

Negative 83

Disgust
Contempt
Anger
Sadness
Fear

Positive 26 Happiness
Surprise 14 Surprise

4.1.3 SMIC Dataset

The SMIC dataset consists of 16 participants and 164 ME clips. Among the volunteers were 8
Asians and 8 Caucasians. The SMIC dataset has a 100 fps camera and a resolution of 640 × 480 per
frame [44,45]. The SMIC dataset includes three categories: negative, positive, and surprised, and we
do not re-segment in the experiments. The SMIC dataset classification is shown in Table 3.

Table 3: Dataset division on SMIC

Category Quantity

Negative 65
Positive 51
Surprise 40

4.1.4 MEGC Composite Dataset

The MEGC composite dataset has 68 volunteers, including 24 from the CASME II dataset, 28
from the SAMM dataset, and 16 from the SMIC dataset. The classification of the composite dataset
is shown in Table 4.
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Table 4: Dataset division on MEGC composite dataset

Datasets Number of samples

Negative Positive Surprise Total

CASME II 89 32 28 149
SAMM 92 26 15 133
SMIC 65 51 40 156
Fused 246 109 83 438

4.2 Data Pre-Processing

Apex frames are annotated in the CASME II and SAMM datasets. Still, in the experiment we
found that some datasets are not accurate in the annotation of apex frames and are even mislabeled.
In addition, there is no Apex frame information in the SMIC dataset. Therefore it is necessary to
re-label apex frames [46]. In the experiments, we obtain the apex frame position by calculating the
absolute pixel difference of the gray value between the current frame and the onset and offset frames.
To reduce the interference of image noise, we simultaneously calculate the absolute value of the pixel
difference between the adjacent frame and the current frame. Then, We divide the two values. Finally,
the difference value between each frame and the onset frame and the offset frame is obtained, and the
frame with the most considerable difference value is selected as the apex frame.

f
(
xi, xj

) = |xi − xj| + 1
|xi − xi−1| + 1

(16)

difi = f (xi, xon) + f
(
xi, xoff

)
(17)

As in Eqs. (16) and (17), xi, xj represent the i-th frame and the j-th frame in a ME video sequence;
f
(
xi, xj

)
represents the difference between the i-th frame and the j-th frame in the ME sequence.

Adding 1 to the numerator and denominator is to ensure that the formula makes sense when particular
values occur. In Eq. (17), xi represents the current i-th frame; xon represents the onset frame; xoff

represents the offset frame; difi represents the difference value between the i-th frame and the onset
frame and the offset frame. As shown in Fig. 5, the place with the most enormous difference value,
that is, the position of the red vertical line represents the position of the apex frame.

After determining the vertex frame, we then use the temporal interpolation model (TIM) [47] to
process the video frames from the onset frame to the apex frame into a fixed input sequence of 10
frames. We use Local Weighted Mean Transformation (LWMT) [48] on the 10-frame sequence. The
faces are aligned and cropped at the positions of the eyes in the first frame in the same video, and the
video frames are normalized to 224 × 224 pixels by bilinear interpolation [49]. In determining 24 facial
IBs, we first use face_recognition to get 72 facial keys. After analyzing the face key points, we select
24 facial motion IPs and generate 24 IBs from 24 IPs. In the experiment of determining 10 facial IBs,
we first use face_recognition to get 72 facial keys. After analyzing the key points on the face, we select
10 representative IPs and generate 10 IBs from 10 IPs. Finally, we put the pre-processed video frames
and the corresponding IBs of each frame into the model for training.
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Figure 5: The change process of the difference value of different frames in the ME video. The place
with the most immense difference value, that is, the position of the red vertical line, represents the
position of the apex frame

4.3 Experimental Evaluation Criteria

Due to the small sample size of ME datasets, to ensure the accuracy of the experiment, we choose
Leave One Subject Out (LOSO) [50]. That is, the dataset is divided according to the subjects, and all
videos of one subject are selected each time for testing and the remaining fold training. Until all folds
are involved in the test. Finally, all test results are combined and used as the final experimental result.

We adopt the evaluation metrics of UF1 (Unweighted F1-score), UAR (Unweighted average recall)
and Acc (Accuracy) [46–51]. The calculation of UF1 is shown in Eq. (18), where TPi, FPi, and FNi are
the number of true cases, false positive cases, and false negative cases in the i-th category, respectively,
and C is the number of categories. The calculation of UAR is shown in Eq. (19), where TPi is the
number of correct predictions in the i-th category, and Ni is the number of samples in the i-th sample.
Acc is shown in Eq. (20), where TP is the number of true examples in all categories, and FP is the
number of false positives in all categories.

UF1 = 1
C

∑C

i

2TPi

2TPi + FPi + FNi

(18)

UAR = 1
C

∑C

i

TPi

Ni

(19)

Acc = TP
TP + FP

(20)

4.4 Experimental Results

The training uses the Adam optimizer; the learning rate is 0.0001; the number of iterations epoch is
set to 100; the training batch_size is set to 16. Because the ME dataset sample size is small, it is prone to
overfitting. To improve the robustness and generalization ability of the model, we take the regularized
L2 norm for the model parameters and add λ times the L2 parameter norm to the loss function. After
many experiments, it is shown that the model works best when λ is set to 0.00001. In addition, we
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add random rotation and random cropping with degrees from −8 to 8 for data augmentation in our
experiments.

4.4.1 Experimental Results on CASME II Dataset

The experimental results are shown in Table 5. In the CASME II dataset, the average accuracy of
LOSO without IBs is 0.7364, UF1 is 0.6899, and UAR is 0.7122; When 24 IBs are used, the average
accuracy of LOSO is 0.8175, UF1 is 0.7779 and UAR is 0.7842; When using 10 IBs, the average
accuracy of LOSO is 0.8513, UF1 is 0.8256 and UAR is 0.8570. From Table 5, we can see that in the
CASME II dataset, the model accuracy of 24 IBs increased by 0.0811, UF1 score increased by 0.0880
and UAR score increased by 0.0720 compared with that of the model without IBs. Simultaneously,
the accuracy, UF1 and UAR scores of 10 IBs are also improved relative to 24 IBs. Among them, the
accuracy rate increases by 0.0338, the UF1 score increases by 0.0477, and the UAR score increases by
0.0728.

Table 5: The training results of different IBs

Our methods CASME II SAMM SMIC MEGC
Acc UF1 UAR Acc UF1 UAR Acc UF1 UAR Acc UF1 UAR

Without IBs 0.7364 0.6899 0.7122 0.7235 0.5624 0.5907 0.6025 0.5931 0.5995 0.6674 0.6126 0.6070
24 IBs 0.8175 0.7779 0.7842 0.7580 0.6066 0.6258 0.6602 0.6430 0.6423 0.7197 0.6627 0.6421
10 IBs 0.8513 0.8256 0.8570 0.7642 0.6850 0.7207 0.6858 0.6749 0.6735 0.7658 0.7364 0.7337

The confusion matrix of not using IBs, using 24 IBs and using 10 IBs is shown in Figs. 6a–6c.
The confusion matrices of the three methods show commonality in the CASME II dataset. From the
confusion matrix, we found that the prediction results of the three methods are more distributed near
“negative” and “surprise”, and the accuracy is relatively high. It is mainly caused by the unbalanced
distribution of the datasets. Because it is difficult to trigger the “positive” ME in the collection of the
CASME II dataset, the number of dataset labels as “negative” and “surprised” is much larger than that
of “positive”. It leads to the imbalance of dataset distribution, which affects the training accuracy.

4.4.2 Experimental Results on SAMM Dataset

The experimental results are shown in Table 5. In the SAMM dataset, the average accuracy of
LOSO without IBs is 0.7235, UF1 is 0.5624, and UAR is 0.5907; When 24 IBs are used, the average
accuracy of LOSO is 0.7580, UF1 is 0.6066 and UAR is 0.6258; When using 10 IBs, the average
accuracy of LOSO is 0.7642, UF1 is 0.6850 and UAR is 0.7207. From Table 5, we can see that in
the SAMM dataset, the accuracy of 24 IBs is increased by 0.0345, the UF1 score is increased by 0.0442
and the UAR score is increased by 0.0351 compared with the model without IBs. Simultaneously, the
accuracy, UF1, and UAR scores of 10 IBs are also relatively improved compared with 24 IBs. The
accuracy increased by 0.0062, the UF1 score increased by 0.0784 and the UAR score increased by
0.0949.

The confusion matrix of not using IBs, using 24 IBs and using 10 IBs is shown in Figs. 6d–6f. In the
confusion matrix, we can see that the sample number of “surprise” expressions in the SAMM dataset
is tiny, which is one of the reasons why the UF1 and UAR scores in Table 5 are far lower than the
accuracy. By comparing the confusion matrix of the experimental results without IBs, adding 24 IBs
and adding 10 IBs, we can find that adding IBs can improve the recognition performance of the model
and reduce the number of misclassification.
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(a) Confusion matrix of CASME
II dataset when not using IBs.

(b) Confusion matrix of CASME
II dataset when using 24 IBs.

(c) Confusion matrix of CASME
II dataset when using 10 IBs.

(d) Confusion matrix of SAMM
dataset when not using IBs.

(e) Confusion matrix of SAMM
dataset when using 24 IBs.

(f) Confusion matrix of SAMM
dataset when using 10 IBs.

(g) Confusion matrix of SMIC
dataset when not using IBs.

(h) Confusion matrix of SMIC
dataset when using 24 IBs.

(i) Confusion matrix of SMIC
dataset when using 10 IBs.

Figure 6: (Continued)
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(j) Confusion matrix of MEGC
dataset when not using IBs.

(k) Confusion matrix of MEGC
dataset when using 24 IBs.

(l) Confusion matrix of MEGC
dataset when using 10 IBs.

Figure 6: Confusion matrix results on CASME II, SAMM, SMIC and MEGC datasets. We have
experimented with 24, 10 IBs, and without IBs on datasets. The experimental results show that using
IBs can effectively increase the robustness and recognition effect of the model. Simultaneously, 10 IBs
work best

4.4.3 Experimental Results on SMIC Dataset

The experimental results are shown in Table 5. In the SMIC dataset, the average accuracy of LOSO
without IBs is 0.6025, UF1 is 0.5931, and UAR is 0.5995; When 24 IBs are used, the average accuracy of
LOSO is 0.6602, UF1 is 0.6430 and UAR is 0.6423; When using 10 IBs, the average accuracy of LOSO
is 0.6858, UF1 is 0.6749 and UAR is 0.6735. From Table 5, we can see that in the SMIC dataset, the
accuracy of 24 IBs is increased by 0.0577, the UF1 score is increased by 0.0499 and the UAR score is
increased by 0.0428 compared with the model without IBs. Simultaneously, the accuracy, the UF1 and
the UAR scores of 10 IBs are also relatively improved compared with 24 IBs, in which the accuracy is
improved by 0.0256, the UF1 score is improved by 0.0319 and the UAR score is improved by 0.0312.

The confusion matrix of not using IBs, using 24 IBs and using 10 IBs is shown in Figs. 6g–6i. The
accuracy of the SMIC dataset is lower than that of the CASME II and SAMM datasets, mainly due
to the lower frame rate and pixels captured by SMIC. In addition, the shooting environment of the
SMIC dataset is relatively dark, and the interference of the noise environment is also more than that
of the CASME II and SAMM datasets. In the SMIC dataset, by comparing the confusion matrix of
the experimental results of adding without IBs, adding 24 IBs and adding 10 IBs, we can find that
adding IBs can increase the accuracy of model recognition, especially for the recognition performance
of “positive”. It is because the addition of IBs with an attention mechanism increases the ability to
extract facial detail features of ME.

4.4.4 Experimental Results on MEGC Composite Dataset

The experimental results are shown in Table 5. In the MEGC composite dataset, the average
accuracy of LOSO without IBs is 0.6674, UF1 is 0.6126, and UAR is 0.6070; The average accuracy
of LOSO when using 24 IBs is 0.7197, UF1 is 0.6627, and UAR is 0.6421; The average accuracy of
LOSO when using 10 IBs is 0.7658, UF1 is 0.7364, and UAR is 0.7337. From Table 5, we can see
that in the MEGC composite dataset, the accuracy of the 24 IBs increases by 0.0523, the UF1 score
increases by 0.0501, and the UAR score increases by 0.0351 compared with the model without the IBs.
Simultaneously, the accuracy and score of 10 IBs are also improved relative to 24 IBs, among which
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the accuracy rate is increased by 0.0461, the UF1 score is increased by 0.0737, and the UAR score is
increased by 0.0916.

Confusion matrices without IBs, 24 and 10 IBs are used, as shown in Figs. 6j–6l. The MEGC
composite dataset has high requirements on the robustness of the model due to the fusion of three
datasets with considerable differences. Compared with without IBs, the confusion matrix with IBs
shows higher prediction accuracy in negative expressions. Simultaneously, in the confusion matrix,
we also found that the prediction accuracy of negative expressions was the highest when using 24
blocks. It is because negative expressions are mainly eyebrow and eye movements. The 24 IBs have
more points at the eyebrows and eyes, so more details are extracted from the face. However, paying
too much attention to local details makes the overall robustness of the model worse, which is also why
the overall accuracy of 10 IBs is higher than that of 24 IBs.

4.5 Data Analysis

The comparison of recognition effects of different algorithms is shown in Table 6. The improved
algorithm model has the best performance when the number of IBs is 10. The data in Table 6 shows
that the accuracy of the model of 10 IBs has been relatively improved compared with the previous
recognition algorithms, in which the UF1 and the UAR have been increased by 0.0067 and 0.0463,
respectively, compared with the P3D ResNet model on the CASME II dataset; On the SAMM dataset,
the UF1 improves by 0.0447, and the UAR improves by 0.0939; on the SMIC dataset, the UF1 improves
by 0.0219, and the UAR improves by 0.0236; On the MEGC composite dataset, the UF1 improves
by 0.0011 and the UAR improves by 0.0094. Compared with the GP model, the UAR increases by
0.0174 on the CASME II dataset; on the SAMM dataset, the UF1 increases by 0.0847, and the UAR
increases by 0.1253; on the SMIC dataset, the UF1 increases by 0.0012, and the UAR increases by
0.0075; accuracy improves by 0.0022 on MEGC composite dataset, UF1 by 0.0160, and UAR by
0.0274. Compared with the CBAM-DPN model, the CASME II dataset improves UF1 by 0.0772 and
UAR by 0.1054; on the SMIC dataset, UF1 improves by 0.0433 and UAR improves by 0.0174; On the
MEGC composite dataset, UF1 improves by 0.0161 and UAR improves by 0.0044.

Table 6: Comparison of recognition effects of different algorithms

Methods CASME II SAMM SMIC MEGC

Acc UF1 UAR Acc UF1 UAR Acc UF1 UAR Acc UF1 UAR

LBP-TOP [47] 0.4588 0.3602 0.3839 0.4717 0.3258 0.3452 0.4390 0.4274 0.4284 –– 0.5882 0.5785
AU-assisted [9] 0.7120 0.3550 –– 0.7020 0.4330 –– –– –– –– –– –– ––
OFF-ApexNet [11] 0.7137 0.6101 0.5781 0.7233 0.6536 0.6457 0.5732 0.5505 0.5613 –– –– ––
SHCFNet [12] 0.8235 0.6540 0.6536 0.7484 0.6089 0.5926 0.6280 0.6100 0.6311 0.7406 0.6242 0.6222
CBAM-DPN [15] –– 0.7484 0.7516 –– –– –– –– 0.6316 0.6561 –– 0.7203 0.7293
RCN [8] –– 0.8087 0.8563 –– 0.6771 0.6976 –– 0.5980 0.5991 –– 0.7052 0.7164
P3D ResNet [14] –– 0.8189 0.8107 –– 0.6403 0.6268 –– 0.6530 0.6499 –– 0.7353 0.7243
GP [13] –– 0.8459 0.8396 –– 0.6003 0.5954 –– 0.6737 0.6660 0.7636 0.7204 0.7063
Our (10 IBs) 0.8513 0.8256 0.8570 0.7642 0.6850 0.7207 0.6858 0.6749 0.6735 0.7658 0.7364 0.7337

It is because the GP model is an improved algorithm based on an evolutionary algorithm, which
has a good effect on extracting the features of ME sequences that change over time. However, this
model only extracts global features and does not consider that different parts of the face have different
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weights in MER. The CBAM-DPN model adds channel and spatial attention to the feature extraction
of local details of MEs. But it only relies on the onset and apex frames for identification and ignores
the valuable ME information in other consecutive frames. The P3D ResNet can use the optical
flow to extract sequence information. This model considers the spatial and temporal information in
consecutive frames. However, it does not take into account the variability of different facial parts.

5 Conclusion

Aiming at the characteristics of short duration and small movement range of ME, we propose a
recognition method combining the GIA and BIA framework. In the BIA framework, the ME frames
will be cropped into blocks. we perform ablation experiments on uncropped, cropped into 24 and 10
blocks. Considering that the ME dataset is a small sample and prone to over-fitting, we first extract
the essential features from the pre-processed ME video frames through VGG16; The global and local
features are extracted by GIA and BIA; Then, the sequence information of each frame is extracted
by Bi-LSTM; Finally, it is classified by three FC layers. Experiments show that the combination
of attention networks with IBs and Bi-LSTM can effectively extract useful spatial information and
sequence information from video frames with small action amplitude. It show high accuracy in the
experiment. Among them, the model effect is the best when there are 10 IBs. However, the small sample
size of ME datasets, generally short duration and low intensity, are still the main reasons for the low
experimental recognition rate, which is particularly obvious in the confusion matrix. Although the
method in this paper uses TIM to process a fixed input sequence, the low efficiency of the model still
needs to be solved due to the use of multiple video frames for feature extraction.

In future research, for the problem of a small sample size of datasets, the quality and quantity of
ME datasets need to be further improved. For problems with low intensity of MEs, the next step is
to maximize the use of the dataset sequence by doing TIM simultaneously between the video onset
frame to apex frame and apex frame to offset frame. In addition, The range of IB can be adjusted
according to future experiments. The selection of IBs should be as representative as possible and with
high anti-interference.
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