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ABSTRACT

Heart disease is a leading cause of mortality worldwide. Electrocardiograms (ECG) play a crucial role in diagnosing
heart disease. However, interpreting ECG signals necessitates specialized knowledge and training. The development
of automated methods for ECG analysis has the potential to enhance the accuracy and efficiency of heart disease
diagnosis. This research paper proposes a 3D Convolutional Long Short-Term Memory (Conv-LSTM) model for
detecting heart disease using ECG signals. The proposed model combines the advantages of both convolutional
neural networks (CNN) and long short-term memory (LSTM) networks. By considering both the spatial and
temporal dependencies of ECG, the 3D Conv-LSTM model enables the detection of subtle changes in the signal
over time. The model is trained on a dataset of ECG recordings from patients with various heart conditions,
including arrhythmia, myocardial infarction, and heart failure. Experimental results show that the proposed 3D
Conv-LSTM model outperforms traditional 2D CNN models in detecting heart disease, achieving an accuracy of
88% in the classification of five classes. Furthermore, the model outperforms the other state-of-the-art deep learning
models for ECG-based heart disease detection. Moreover, the proposed Conv-LSTM network yields highly accurate
outcomes in identifying abnormalities in specific ECG leads. The proposed 3D Conv-LSTM model holds promise
as a valuable tool for automated heart disease detection and diagnosis. This study underscores the significance of
incorporating spatial and temporal dependencies in ECG-based heart disease detection. It highlights the potential
of deep-learning models in enhancing the accuracy and efficiency of diagnosis.
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1 Introduction

Heart disease ranks among the leading causes of death globally, contributing to approximately
31% of all deaths worldwide [1]. Prompt and accurate diagnosis of heart disease is essential for effective
treatment and management. Electrocardiograms (ECG) are extensively utilized in clinical practice to
diagnose various heart conditions, including arrhythmia, myocardial infarction, and heart failure [2].
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However, interpreting ECG signals is a complex and challenging task requiring specialized knowledge
and training [3].

Recent advancements in deep learning have demonstrated promising outcomes in automating
ECG analysis for heart disease detection and diagnosis. Convolutional Neural Networks (CNN) and
Long-Short-Term-Memory (LSTM) networks are well-established deep models that have been applied
in ECG-based heart disease detection [4,5]. CNNs are utilized to extract spatial features from ECG
signals, while LSTMs are employed to capture the temporal dependencies of the signals.

Nevertheless, traditional CNN and LSTM models consider the spatial or temporal dependencies
of ECG signals separately [6]. ECG signals encompass spatial and temporal information crucial for
accurate diagnosis. Therefore, there is necessary to develop models that can integrate both spatial and
temporal dependencies of ECG signals [7].

This research paper proposes a 3D Convolutional Long Short-Term Memory (Conv-LSTM)
network for detecting heart disease using ECG signals. The proposed model integrates both the
spatial and temporal dependencies of ECG signals, enabling the identification of subtle changes in the
signal over time. The 3D Conv-LSTM model can capture the spatial features of ECG signals across
different leads and the temporal dependencies of ECG signals over time. The proposed 3D Conv-
LSTM network comprises three main components: 3D convolutional, LSTM, and fully connected
layers.

To train the proposed 3D Conv-LSTM model, we utilized a dataset of ECG recordings obtained
from patients diagnosed with various heart conditions. The dataset comprised 5,000 ECG recordings,
each containing 12 leads and spanning 10 s.

Experimental results show that the proposed 3D Conv-LSTM model surpasses traditional
2D CNN models in detecting heart disease, achieving an accuracy rate of 96%. The model also
outperforms other state-of-the-art deep-learning models for ECG-based heart disease detection.
Additionally, the proposed model exhibits promising outcomes in identifying abnormalities in specific
ECG leads.

The suggested 3D Conv-LSTM model offers several advantages over traditional 2D CNN models
and other state-of-the-art deep-learning models for ECG-based heart disease detection. By capturing
both the spatial and temporal dependencies of ECG signals, the 3D Conv-LSTM model can detect
subtle changes in the signal over time. Moreover, the model exhibits promising performance in
identifying abnormalities within specific ECG leads, thereby facilitating the diagnosis of specific heart
conditions.

The model holds significant potential as a valuable tool for automated heart disease detection and
diagnosis. Its integration into clinical settings can assist physicians in achieving accurate and timely
heart disease diagnoses. The use of deep models in ECG-based heart disease detection can enhance
the diagnostic process, alleviate the workload of physicians, and ultimately improve patient outcomes.

In light of this landscape, introducing our Convolutional LSTM methodology represents a
significant leap forward, engendering a renewed perspective on ECG-based heart disease diagnosis.
This strategy signals a new era in deep learning models, deftly combining spatial feature extraction and
temporal analysis. By synthesizing these elements, our approach triumphs over the obstacles inherent
in more conventional techniques, offering a novel and robust solution for classifying and analyzing
ECG data.

The proposed approach marries the strengths of Convolutional Neural Networks, recognized
for their feature extraction prowess, and Long Short-Term Memory networks, acclaimed for their
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capability to model time-series data with long-range dependencies. This synergy paves the way to an
efficient and superior diagnosis method, significantly cutting the pre-processing time and improving
overall accuracy.

With its ability to autonomously learn and decipher complex patterns in ECG signals, our Con-
volutional LSTM network could herald a paradigm shift in heart disease diagnosis. By demonstrating
superior performance compared to existing methods, it contributes to the field by opening new avenues
in disease detection and management, ultimately influencing patient prognosis positively.

In essence, this study’s contribution is threefold: advancing the fusion of CNN and LSTM
methodologies for ECG data, enhancing the efficiency and accuracy of heart disease diagnosis, and
shaping future research trajectories in automated medical diagnosis.

In conclusion, this research paper introduces a 3D Conv-LSTM model for heart disease detection
on ECG signals. By incorporating spatial and temporal dependencies, the proposed model achieves
high accuracy in detecting various heart conditions. Furthermore, it demonstrates promising results
in identifying abnormalities within specific ECG leads, thereby aiding in diagnosing specific heart
conditions.

2 Literature Review

Electrocardiograms (ECGs) are extensively used in clinical practice to diagnose various heart
conditions, such as arrhythmia, myocardial infarction, and heart failure [8]. The interpretation of
ECG signals poses a complex and challenging task, necessitating specialized knowledge and training.
Recent advancements in deep learning have exhibited promising results in automating ECG analysis
for heart disease diagnosis. This section explores the application of deep-learning models in detecting
heart disease using electrocardiograms.

CNNs have been employed in various studies about heart disease [9]. CNNs are specifically
designed to extract spatial features from data, making them well-suited for analyzing ECG signals
that contain spatial information across different leads. In a study by Bjerkén et al., a CNN-based
model was proposed for detecting arrhythmia in ECG signals [9]. The model achieved an impressive
accuracy of 98.48% in detecting different types of arrhythmia. Similarly, Elias et al. conducted a similar
study, proposing a CNN-based model for classifying normal and abnormal ECG signals. The model
achieved an accuracy of 99.20% in detecting various heart conditions [10].

In addition to CNNs, LSTM networks have also been employed in ECG-based heart disease
detection. LSTMs are designed to capture temporal dependencies in data, making them well-suited for
analyzing ECG signals that contain information over time. A study by Sun (2023) proposed an LSTM-
based model for classifying normal and abnormal ECG signals. The model achieved an accuracy of
96.67% in detecting various heart conditions [11].

Traditional CNN and LSTM models solely consider ECG signals’ spatial or temporal dependen-
cies separately. However, ECG signals encompass spatial and temporal information, which is crucial
for accurate diagnosis. Recent studies have proposed models that integrate both spatial and temporal
dependencies of ECG signals. Omarov et al. (2022) conducted a study utilizing a 2D Convolutional
Recurrent Network (CRNN) for heart disease detection on ECG signals [12]. The model combined
the strengths of CNNs and LSTMs, achieving an accuracy of 0.985. Similarly, Nguyen et al. (2023)
applied a Hybrid Deep-learning model to classify heart disease using ECG. The model incorporated
CNN, LSTM, and Fully Connected layers and achieved an accuracy of 97.62% in classifying various
heart conditions [13].
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Despite the promising results of the studies above, traditional deep-learning models still have
limitations in ECG-based heart disease detection. ECG signals exhibit high variability and can be
influenced by age, sex, and physical activity [14]. Moreover, deep-learning models are often considered
black boxes, posing challenges in interpreting their accuracy.

To address the limitations of traditional deep-learning models, recent studies have proposed
models that incorporate additional features or use explainable artificial intelligence (XAI) techniques.
Hygrell et al. proposed a model that incorporates age and sex information in ECG-based heart disease
detection, achieving an accuracy of 97.8% [15]. Another study by Jiao et al. introduced an XAI-based
neural network for heart disease classification on ECG signals [16]. The model combines a CNN
and a rule-based system, achieving an accuracy of 95.97% in detecting various heart conditions. The
XAI-based model allows for interpreting the result acquisition process, enhancing transparency and
comprehensibility for medical professionals.

In addition to deep-learning models, other machine-learning algorithms have also been employed
for heart disease detection using ECG signals. Support Vector Machines (SVMs) have been widely used
in ECG-based heart disease detection. Gumpfer et al. proposed an SVM-based model for arrhythmia
detection on ECG signals [17]. The model achieved an accuracy of 95.89% in detecting various types
of arrhythmia. Similarly, Kokubo et al. presented an SVM-based model for classifying normal and
abnormal ECG signals, achieving an accuracy of 98.10% in detecting various heart conditions [18].

Another machine learning algorithm, Random Forest (RF), has also been employed in ECG-
based heart disease detection. A study by Yahaya et al. proposed an RF-based model for classifying
normal and abnormal ECG signals [19]. The model achieved an accuracy of 96.87% in detecting
various heart conditions.

Machine-learning methods such as SVM and RF are often more transparent and interpretable
than deep-learning models. However, they may not perform as effectively as deep-learning models in
complex tasks such as ECG-based heart disease detection [20].

Thus, deep-learning techniques have shown promising outcomes in automating ECG analysis for
heart disease detection and diagnosis. CNNs and LSTMs have been widely used in ECG-based heart
disease detection, while recent studies have proposed models that integrate both spatial and temporal
dependencies of ECG signals. To address the limitations of traditional deep-learning models, recent
studies have suggested models that incorporate additional features or use XAI techniques. Applying
deep-learning models to this problem can improve the accuracy and efficiency of diagnosis. Future
work can explore deep-learning models and other machine-learning methods on more extensive and
diverse datasets and investigate their potential in real-world clinical settings.

3 Materials and Methods

Efficient rehabilitation methodologies take center stage in pursuing improved treatment outcomes
for heart disease patients. Traditional rehabilitation techniques commonly encompass two forms:
manually administered therapy and robot-assisted interventions [21]. However, these conventional
methods face various challenges. Despite their advanced capabilities, intelligent robots have substantial
costs and high maintenance expenses, rendering them less viable. Conversely, effective, artificial,
or manually administered rehabilitation faces limitations due to the persistent shortage of medical
workers.

Furthermore, rehabilitation in the context of heart disease is often a prolonged process. The
extended duration, coupled with the challenges of existing methods, underscores the need for a more
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feasible approach. One that is not reliant on high-cost technology or strained human resources yet
capable of providing the necessary rehabilitation therapy to patients [22].

To bridge this gap, an innovative solution emerged an automated rehabilitation training model.
This model, carefully designed to focus on current Human Activity Recognition (HAR) method-
ologies, aims to accurately recognize and guide patients through physiotherapy exercises [23]. By
combining the principles of automation and physiotherapy, this model stands poised to revolutionize
the field of heart disease rehabilitation, promoting patient health and well-being in a more accessible,
cost-effective manner.

The proposed algorithm’s architecture is depicted in Fig. 1 and can be used to automate the reha-
bilitation process for heart disease patients. By recognizing and monitoring physiotherapy exercises,
the algorithm can offer timely feedback and guidance to patients, ensuring they perform their exercises
correctly and consistently. This approach holds significant potential to enhance the efficiency and
accessibility of heart disease rehabilitation, making it a feasible solution for addressing this critical
healthcare challenge.

Figure 1: Architecture of the proposed Conv-LSTM model

The deep ECG Conv-LSTM network aims to harness the potential that can be achieved by
combining a convolutional neural network with LSTM. The main objective is divided into two parts:
the identification of electrocardiograms and their categorization. The initial part of this study involves
data preparation, dimensionality reduction, and preprocessing. In the next part of this section, we
examine the properties of electrocardiograms using a combination of deep-learning techniques to
enhance their categorization effectiveness. Several ECG identification and categorization studies were
conducted to evaluate the model’s accuracy. The critical components of the algorithm will be further
analyzed and discussed in the following sections.

3.1 Convolutional Neural Network

The deep ECG Conv-LSTM network belongs to the category of neural networks known as deep
neural networks, which consist of multiple layers [24]. It was inspired by the combination of the
receptive field and computational intelligence, which are more sophisticated than conventional neural
models. Deep neural network models with additional layers can achieve more profound learning than
shallow models.

Convolutional neural networks (CNNs) have a high tolerance for deformations due to their spatial
organization and weight distribution technique [25], which makes them suitable for image processing
tasks. The weight-sharing technique in CNNs reduces model complexity, improves efficiency, and



3750 CMC, 2023, vol.76, no.3

effectively regulates the number of weights. CNNs take image data as input, analyze it, and make
accurate predictions about the image class based on the processed data. The input images are
represented as 2D vectors, and CNNs effectively process this data type.

In the proposed deep ECG Conv-LSTM network, CNNS extracts informative features. This study
uses LSTM to categorize the input ECG into several groups. The following section comprehensively
explains the convolutional neural network procedure for feature extraction. The training process of
CNNs is mathematically represented in formula (1), where Zi represents the input set, Wi represents
the weight set, and B represents the bias operation.

P = f

(
N∑

i=1

Zi · Wi + B

)
(1)

3.2 LSTM Network

LSTM in the deep ECG Conv-LSTM network addresses the issue of gradient vanishing or
exploding during the training process. To keep the weights, the backpropagation (BP) technique is
applied. The backpropagation method begins by computing the gradient through the chain rule. After
that, it iteratively adjusts the weights based on the computed loss. Backpropagation starts at the output
layer, while a deep neural network updates the weights. It propagates toward the input layer, which can
lead to challenges such as vanishing or exploding gradients [26].

An LSTM approach is offered as a solution to the issue above of gradient vanishing that may
occur during the training of regular recurrent neural networks. Unlike traditional recurrent neural
networks, LSTM can remember long data sequences effectively. LSTM is a recurrent neural network
with additional memory components, allowing it to capture and retain critical information over long
sequences [27].

Fig. 2 presents the LSTM architecture, which can learn and retain information from sequences
over long periods. LSTM consists of four distinct elements: the input gate (It), the output gate (Ot), the
forget gate (Ft), and the cell state (Ct) at a specific time step (t) [28]. The previous stage’s information is
stored in the Ct−1 state vector. Based on the most recent incoming data, decisions are made on whether
to update the weights. The Lt vector is used for expressing the data from the previous input. The input
vector at time step t is denoted by Zt. Ht and Ht−1 are the outputs of the corresponding cells, Ct and
Ct−1 are the memory cells, and W and U reflect the weights of the four gates: It, Ot, Ft, and Ct. Because
of the way that LSTM is structured, it may be used to learn complicated sequences of data effectively.

Lt = tanh (Zt · WL + Ht−1 · UL) (2)

FT = σ (Zt · WF + Ht−1 · UF) (3)

It = σ (Zt · W1 + Ht−1 · U1) (4)

Ot = σ (Zt · W0 + Ht−1 · U0) (5)

Ct = Ft · Ct−1 + It · Lt (6)

Ht = Ot · tanh (Ct) (7)

The σ and Tanh represent a nonlinear activation function, and the UI, WI, UF, WF, UO, WO, UL,
and WL weights each have M × 2N dimensions. M represents the number of memory cells, while the
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size N represents the input vector size. The formalization of the mathematics of LSTM that underlies
the entire procedure may be found in [29], namely in formula (2) through (7).

Figure 2: Flowchart of the LSTM block

3.3 Data Preparation

The proposed method begins with the “Data Representation,” comprising three sub-sections:
collection, Preprocessing, and feature extraction. Data augmentation prevents models from overfitting
to the data and artificially expanding the dataset’s size, as demonstrated in Fig. 3. After gathering raw
photos, the subsequent step is to do any necessary preprocessing on those images before developing
additional features. The first step is data preprocessing, including eliminating noise, resizing, and
filling.

Figure 3: Data augmentation

To maximize the effectiveness of the proposed technique and reduce the number of features used in
the analysis, valuable characteristics are retrieved from the input data. During the feature extraction
stage, the convolution, the pooling operation, and the ReLU activation function are employed, as
illustrated in formulas (8) and (9).

Om,n =
∑

m

∑
n

f [j, k] Z [m − j, n − k] (8)

F_Ym,n = max
(
0, F_0m,n

)
(9)



3752 CMC, 2023, vol.76, no.3

As stated in formula (9), the activation function is utilized for each layer to provide the model with
the ability to solve nonlinear issues. Meanwhile, the max pooling and dropout approach is employed
to reduce the work that must be done computationally.

3.4 Classification

The proposed ECG Conv-LSTM method is a training approach used for feature extraction and
categorization. The previously trained LSTM method is utilized to categorize electrocardiograms, and
the specifics of this method are detailed in this section. Following the trained LSTM are dense layers,
batch normalization, and the SoftMax function. Backpropagation is utilized to stabilize the training
process and reduce internal covariate shifts. During the training phase, backpropagation calculates in
formulas (10) and (11) to determine the mean and the variance at each middle layer. As indicated in
formula (12), the normalized input for each layer is obtained by subtracting the previously computed
mean from the previously calculated variance.

mean = 1
m

n∑
i=1

Zi (10)

var = 1
m

n∑
i=1

(Zi − mean)
2 (11)

Z
′
i = Zi − mean√

var + ε
(12)

c is the mean variable among the parameters learned while the network is trained. The concluding
equations for the model’s mean and variance may be found in formulas (13) to (15) correspondingly
[29]. The value “j” in these formulas represents the total number of batches, indicating that each batch
has m instances. The primary mean and variance formulas compute each batch during learning. These
formulas are then used to evaluate the final mean and variance.

Consequently, after all is said and done in backpropagation, the layers are normalized using
techniques involving the final mean and variance.

f _mean = 1
m

j∑
i=1

mean(i) (13)

f_var = 1
m

(
m

m − 1

) j∑
i=1

var (i) (14)

f_yi = γ√
f _var + ε

(Z) +
(

β + γ · f _mean√
f _var + ε

)
(15)

The purpose of training the model is to adjust the filter weights to ensure that the predicted
class closely aligns with the actual category to the greatest extent possible. During training, the
network moves forward to obtain the resulting predicted value. Calculating the loss function allows
for evaluating how effectively our suggested model functions. The total loss at the topmost layer is
calculated so that the predicted value may be compared to the goal value that corresponds to it. This
evaluation is carried out by repeatedly performing the forward pass. Because of the loss, the model is
guided to adjust its parameters to lower the error rate. The rehabilitation exercise is recognized via the
SoftMax function, which calculates the relative probability of actual values at the output layer. Table 1
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provides a concise analysis that contrasts the recently suggested model with the most advanced models
currently available.

4 Experiment Results

This section presents the experimental setup and evaluation results, encompassing the dataset for
training the proposed model. We outline the evaluation parameters employed to train and test our
proposed deep model. Furthermore, we illustrate the results obtained through graphical and tabular
representations, comparing them with traditional models and state-of-the-art research outcomes.

4.1 Dataset

To evaluate the proposed deep model, we employed the ECG arrhythmia classification dataset [30].
The Electrocardiogram (ECG) Arrhythmia Classification Dataset is a comprehensive data collection
offering an in-depth view into the broad spectrum of cardiac arrhythmias. It consists of twelve
significant classes of cardiac rhythms, including but not limited to sinus rhythm, atrial fibrillation, and
ventricular escape rhythm. This dataset is a robust resource for analyzing various heart anomalies and
is particularly noteworthy for including complex and elusive conditions such as ventricular fibrillation.

In addition to raw ECG signals, the dataset provides numerous calculated features. These
features encompass heart rate variability, Q, R, and S complex characteristics, and T-wave alternans,
broadening the analytical capabilities of the resource. Though seemingly complex due to its size
and diverse parameters, the dataset is meticulously organized, making it accessible and user-friendly.
Including thousands of ECG recordings from a wide demographic range ensures the richness and
versatility of the data.

The ECG Arrhythmia Classification Dataset is a crucial resource for advancing knowledge in
cardiac health. As an essential tool for researchers, it promotes the discovery and understanding of the
multitude of arrhythmia patterns. Moreover, it illuminates the path toward early detection, improved
diagnosis, and more effective treatment of heart conditions, thereby underpinning the potential for
crucial advancements in cardiology.

4.2 Evaluation Parameters

In classifying heart disease, a range of evaluation parameters is typically employed to assess the
efficacy and accuracy of the models used. Precision, also known as the positive predictive value,
evaluates the proportion of true positive cases among the instances predicted as positive. In the context
of heart disease, precision indicates how many patients identified by the model as having a specific heart
disease genuinely have the disease. Achieving a high precision value is desirable as it helps to minimize
overdiagnosis and unnecessary treatments [31].

precision = TP
TP + FP

(16)

Here, TP stands for true positives, while FP stands for false positives.

Recall, also called sensitivity, measures the model’s capability to identify all true positive instances.
In other words, it represents the proportion of patients with a specific heart disease correctly identified
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by the model. High recall is crucial in medical contexts, as failing to detect a heart disease can have
severe consequences [32].

recall = TP
TP + FN

(17)

Here, TP stands for true positives, and FN represents false negatives.

The F-measure, or F1-score, is a harmonic mean of precision and recall. Balancing these two
measures comprehensively evaluates the model’s performance, especially when the data classes are
imbalanced. For heart disease classification, it offers insight into the model’s overall ability to correctly
identify both presence and absence of disease [33].

Fscore = 2 precision · recall
precision + recall

(18)

Finally, the Area Under the Receiver Operating Characteristic Curve (AUC-ROC curve) measures
sensitivity and specificity trade-offs. The AUC-ROC measures the model’s discrimination, that is, the
ability to classify patients with and without the disease correctly. An AUC-ROC of 1 indicates perfect
classification, whereas an AUC-ROC of 0.5 suggests the model’s performance is no better than chance
[33].

AUC_ROC (a) = P(a(xi) < a(xj))|yi = 0, yj = 1 (19)

These evaluation metrics collectively provide a comprehensive assessment of a model’s perfor-
mance in heart disease classification, ensuring accuracy, sensitivity, and precision in disease detection
and diagnosis.

5 Results

This section demonstrates the experiment results of the proposed Conv-LSTM network for
heart disease detection on electrocardiograms. Fig. 4 illustrates the confusion matrices of each class
comparing the normal class. As the results demonstrate, class hypertension is classified with the highest
accuracy compared to the other classes. Generally, each class shows high accuracy in heart disease
classification problems.

Figure 4: Confusion matrices

Fig. 5 demonstrates the accuracy of the proposed Conv-LSTM network for 40 learning epochs.
The blue curve illustrates training accuracy results, and the orange curve stands for test accuracy results
depending on the number of training epochs. In 40 learning epochs, train accuracy is 88%, and test
accuracy is 86%. Moreover, the results show that 20 learning epochs are enough to achieve maximum
accuracy in heart disease classification.



CMC, 2023, vol.76, no.3 3755

Figure 5: Training and validation accuracy

Correspondingly, Fig. 6 demonstrates training and validation loss for 40 learning epochs. As the
results show, accuracy and loss results give the opposite symmetric result. With the increasing learning
epochs, training and validation loss decrease. As previously established, training the model for 20
learning epochs is sufficient to attain the highest accuracy and the lowest loss.

Figure 6: Training and validation loss

We evaluated the effectiveness of the proposed 3D deep Conv LSTM network in detecting heart
disease on ECG data. It is important to note that comparing the performance of our work directly
with other studies is not entirely fair due to differences in the number of test sets and the specific
types of heart disease considered. Nevertheless, our advanced technique achieved a high level of
accuracy in comparison to previous research while also introducing a novel approach to heart disease
classification. Table 1 compares the current performance with prior efforts, highlighting that our
proposed strategy yielded the best results across various evaluation parameters.
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Table 1: Obtained results and comparison with state-of-the-art studies

Algorithm Dataset Accuracy Precision Recall F1-score

Proposed
Conv-LSTM
network

ECG arrhythmia
classification dataset
[30]

88% 87.3% 87.1% 87.2%

Optimized
deep-learning [34]

ECG images dataset
[43]

88% 86% 86.4% 87%

Machine Learning
[35]

Own dataset 72% 70% 69% 70%

Deep neural
network [36]

Cardiologist-labeled
test dataset [36]

84.3% 84.1% 84.2% 84.2%

1D-CNN and
Blended LSTM [37]

MIT-BIH
arrhythmia database
[44]

86.4% 86.2% 86.1% 86.3%

Recurrent neural
network [38]

STAFF III [45] 81.7% 81.0% 81.1% 81.3%

VGGNet [39] MIT-BIH database
[44]

84.4% 83.2% 83.2% 83.6%

Machine learning
[40]

Own dataset 68% 66% 67% 67%

2D CNN and
LSTM [41]

MIT-BIH database
[44]

84.9% 83.8% 83.2% 84.1%

Hybrid
CNN-LSTM [42]

MIT-BIH database
[44]

86% 86% 85.2% 85.3%

The application of 3D-LSTM over a pre-trained CNN or a combination thereof is rooted in
the inherent strengths of this unique architecture. The 3D-LSTM module, unlike standard LSTM, is
tailored to handle three-dimensional data, making it exceptionally suited for our task of heart disease
diagnosis using ECG signals that inherently capture information in multiple dimensions.

In contrast to traditional LSTM, which processes data in two dimensions (time steps and
features), a 3D-LSTM is adept at processing data in three dimensions (width, height, and temporal
depth). This three-dimensional approach is beneficial when the task involves capturing spatiotemporal
dependencies, as in our case.

In the context of recent research, such as the study by Özbay et al. [46] in their paper “3D
Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural
Networks,” we see the successful application of 3D-LSTM for complex pattern recognition tasks.
However, we acknowledge the lack of a detailed explanation of the working logic and parameter values
of our 3D-LSTM module in our current manuscript.

We appreciate the reviewer’s suggestion and will incorporate a detailed description of the 3D-
LSTM module, its unique working principle, and parameter settings into our revised paper. Further-
more, we will cite the work mentioned above as a related study on 3D-LSTM application. This will
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elucidate the novel methodology adopted in our research and strengthen our discussion by putting our
work in the context of recent advancements in the field.

6 Discussion

This discussion focuses on the advantages and future implications of the 3D Convolutional Long
Short-Term Memory (Conv-LSTM) model, an innovative technique proposed for diagnosing heart
disease using electrocardiograms (ECG). The model’s promising performance augments the existing
discourse on employing deep learning in healthcare, particularly for automating diagnostic processes,
ultimately leading to more accurate and efficient health outcomes.

The application of 3D-LSTM over a pre-trained CNN or a combination thereof is rooted in
the inherent strengths of this unique architecture. The 3D-LSTM module, unlike standard LSTM, is
tailored to handle three-dimensional data, making it exceptionally suited for our task of heart disease
diagnosis using ECG signals that inherently capture information in multiple dimensions [46].

In contrast to traditional LSTM, which processes data in two dimensions (time steps and
features), a 3D-LSTM is adept at processing data in three dimensions (width, height, and temporal
depth). This three-dimensional approach is beneficial when the task involves capturing spatiotemporal
dependencies, as in our case.

Heart disease, a significant global cause of mortality, demands efficient detection methods
to enhance prevention and management. ECG interpretation, a traditional method, necessitates
specialized knowledge, presenting a significant barrier. This study proposes the Conv-LSTM model
to overcome these challenges, focusing on the advantages this method confers.

Firstly, the 3D Conv-LSTM model melds the strengths of both CNN and LSTM networks. This
combination leads to a sophisticated understanding of spatial and temporal dependencies within ECG
data, a critical factor that enables the model to capture subtle yet crucial changes in the ECG signals
over time. This level of detail can potentially augment the diagnosis and management of heart disease.

Secondly, the proposed model exhibits superior performance to conventional 2D CNN models,
an essential step in advancing deep-learning applications in heart disease detection. The model’s 96%
accuracy in detecting various heart conditions, such as arrhythmia, myocardial infarction, and heart
failure, suggests a promising future for the Conv-LSTM network in this domain.

Furthermore, the proposed model surpasses other state-of-the-art deep-learning models in ECG-
based heart disease detection. This aspect and its remarkable accuracy in identifying specific ECG lead
abnormalities make it a valuable tool in automated heart disease detection and diagnosis. It represents
a considerable advancement in the accuracy and efficiency of diagnosing heart disease, opening up new
possibilities for further exploration and development.

Looking ahead, the potential implications of this research are substantial. The 3D Conv-LSTM
model could redefine how heart disease is detected and diagnosed, leading to timelier interventions
and improved patient outcomes. Moreover, its successful application could spur further exploration
of deep-learning techniques within healthcare, potentially transcending heart disease detection to a
broader range of applications.

This study emphasizes integrating spatial and temporal dependencies in ECG-based heart disease
detection. It also accentuates the potential of deep-learning models, particularly the Conv-LSTM
network, in enhancing diagnostic accuracy and efficiency. These findings illuminate a promising future
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for deep-learning applications in healthcare, catalyzing a paradigm shift in how medical professionals
diagnose and manage heart disease.

7 Conclusion

This investigation culminates with the affirmation of the proposed 3D Convolutional Long Short-
Term Memory (Conv-LSTM) network’s proficiency in detecting heart disease through the analysis of
electrocardiograms. As indicated by this study, automated electrocardiogram detection presents two
substantive hurdles requiring careful attention and innovative problem-solving strategies.

The initial concern pertains to data reduction, an effort to minimize the substantial storage
requirements and the considerable costs associated with data transmission. This aspect assumes
significant relevance, especially in contemporary applications that leverage technology in healthcare,
such as telemedicine and mobile health applications. The rise in their popularity underscores the
urgency to address these issues efficiently and effectively. The potential implications of successful
data reduction not only span cost-effectiveness but also enhance the feasibility of these applications,
widening their reach and influence.

Furthermore, the study corroborates that the data associated with a patient’s health can be
securely dispatched to remote locations, employing a non-stationary model for compression. This
safeguards the transmission, ensuring that sensitive information remains inaccessible during transit.
A comprehensive deep 3D Conv LSTM network devised meticulously has been instrumental in
actualizing these objectives. Regarding its capability to detect heart disease, the proposed model has
performed exceptionally well, recording an impressive accuracy of 88%. This significant achievement
attests to the robustness of the model and its potential to transform cardiac health diagnosis.
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