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ABSTRACT

This study presents a deep learning model for efficient intracranial hemorrhage (ICH) detection and subtype
classification on non-contrast head computed tomography (CT) images. ICH refers to bleeding in the skull,
leading to the most critical life-threatening health condition requiring rapid and accurate diagnosis. It is classified
as intra-axial hemorrhage (intraventricular, intraparenchymal) and extra-axial hemorrhage (subdural, epidural,
subarachnoid) based on the bleeding location inside the skull. Many computer-aided diagnoses (CAD)-based
schemes have been proposed for ICH detection and classification at both slice and scan levels. However, these
approaches perform only binary classification and suffer from a large number of parameters, which increase storage
costs. Further, the accuracy of brain hemorrhage detection in existing models is significantly low for medically
critical applications. To overcome these problems, a fast and efficient system for the automatic detection of ICH
is needed. We designed a double-branch model based on xception architecture that extracts spatial and instant
features, concatenates them, and creates the 3D spatial context (common feature vectors) fed to a decision tree
classifier for final predictions. The data employed for the experimentation was gathered during the 2019 Radiologist
Society of North America (RSNA) brain hemorrhage detection challenge. Our model outperformed benchmark
models and achieved better accuracy in intraventricular (99.49%), subarachnoid (99.49%), intraparenchymal
(99.10%), and subdural (98.09%) categories, thereby justifying the performance of the proposed double-branch
xception architecture for ICH detection and classification.
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1 Introduction

ICH is a life-threatening health condition caused by bleeding inside the skull. It occurs due to
brain injury or leakage of some deceased brain vessels. Based on its location, ICH can be classified
as an intra-axial hemorrhage or an extra-axial hemorrhage. According to the brain’s anatomic
site of bleeding, it can be further classified into five subtypes, which are intraparenchymal (IPH),
intraventricular (IVH), subdural (SDH), epidural (EPH), and subarachnoid (SAH). IPH and IVH
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refer to bleeding within brain tissue and ventricles, respectively, while others refer to bleeding outside
the brain tissues but inside the skull [1]. The intensity of ICH, which leads to a severe health condition
and sometimes even death, depends upon the location of the hemorrhage, bleed size, and period. Brain
cell damage causes mental illness, which refers to a disability, paralysis, brain stroke, or even death.
Affected blood veins shatter, and blood spills inside the brain area, which causes the intensity of blood
pressure to increase which may result in brain hemorrhage. Related to brain hemorrhage stroke, the
mortality rate of neurological disease is about 66% worldwide [2]. A surveillance study shows that
nearly a third of patients suffer from brain injury in Pakistan; however, 10% refer to ICH [3].

CT scans, either in contrast or non-contrast, are the brain images captured in the radiology
department to diagnose the ICH. Radiologists can analyze and measure the location and size of the
bleed and determine treatment through CT images. However, this is a manual and error-prone task,
which takes time in such a life-threatening condition. Most people do not have access to a specialist
(an expert radiologist) for fast and accurate diagnosis in developing countries [1,3]. There are around
795,000 hemorrhagic cases in the United States that cause death, with a yearly ratio of 30000. Indeed,
brain hemorrhage is considered a critical, even life-threatening, condition requiring rapid diagnosis [4].
However, there are various challenges, like an emergency, manual judgment, time complexity, a lack
of experience, and a correlation between the detection and classification of intracranial hemorrhage
for better treatment. Therefore, fast, and efficient automatic detection of ICH is required. Besides, to
overcome the challenges of manual processing, there is a need to develop a CAD system for detection
and subtype classification of ICH that could assist the radiologist (specialist) in timely and better
treatment.

There are different computer algorithm-based techniques presented to detect and classify the
binary and multiple types of ICH. We have observed that there is an increased interest among
researchers in applying deep learning (DL) for image classification and segmentation over time [5].
After the dramatic progress of DL in visual object recognition, natural language processing (NLP),
image, and video processing, the deep neural models are being used further in the medical field for
medical imaging tasks such as cell segmentation [6], tumor detection [7,8], and 3D convolutional neural
network (CNN)- recurrent neural network (RNN) based networks for diagnosis of ICH [9,10]. Many
previous works have adopted DL for brain hemorrhage diagnosis and classification. However, there
are several challenges related to ICH detection, such as feature extraction, computation overhead, etc.
By overcoming these challenges, the results from existing approaches may be improved if we apply
better feature extraction techniques. It will also reduce computation time if we employ a lightweight
model for ICH detection and classification. Hence, there is a need to design an effective model for
accurately detecting and classifying multiple types of ICH on CT images.

In the proposed study, we designed a double-branch model comprising a pre-trained xception
architecture that extracts spatial and instant features, concatenates them, and creates the 3D spatial
context (joint feature vectors), which is fed to a classifier for final predictions. The novelty of our work
is to perform feature extraction by introducing a multi-branch feature fusion-based approach to extract
spatial and instant-level features. Therefore, first, we applied some necessary preprocessing, including
image windowing (the original CT slice transform), normalization, region of interest (ROI) extraction,
and skull removal. Then, we used the double-branch xception architecture (DBXA) for the prediction
and subtype classification of the ICH disease. Consequently, the proposed model improves ICH
detection and its subtype classification as compared to the benchmark studies. The main contribution
of this work is to overcome the problem of low ICH detection and subtype classification accuracy by
introducing a novel feature extraction technique. To the best of our knowledge of related literature,
none of the existing work is correlated to our method.
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The structure of the remaining paper is as follows: Section 2 performs a critical analysis of the
literature in the brain hemorrhage detection and classification field. Section 3 describes the complete
workings of the proposed DBXA model. The experiment details and results are discussed in Section 4.
The comparative analysis of the model with the benchmark studies is presented in Section 5. Section 6
discusses the contributions of this work. Finally, Section 7 presents the conclusion of the paper and
provides future research guidelines.

2 Related Work

Many prior works have adopted DL for brain hemorrhage diagnosis and classification [11,12].
However, most of these models only perform binary classification on a small dataset. Many recent
studies have proposed CNN-based models for ICH detection and classification. CNN models such
as Inception and DenseNet can trace the effective region even with a small bleed. Authors in [13]
employed GoogleNet, LeNet, and Inception-ResNet, the three types of CNNs that are pre-trained
with non-medical images. The authors state that CNN could be employed successfully for pre-trained
ICH detection on ImageNet. The time consumption of LeNet is much higher as compared to other
pre-trained models. In [14], the authors employed the DL approach that mimics radiologists by
combining the 2-sequence models and 2D CNN models for acute ICH detection and classification
from head CT scans. Authors produced various versions of feature representation for remarkable
feature learning ability. Their model attained 94% accuracy for hemorrhage detection. Motivated by
the highly emerging vision transformer (ViT) models, a work in [15] proposed the approach for feature
generation that is composed of CNN to improve the ViT model. The model performs ICH detection
and subtype classification by identifying the multiple ICH types from CT slices. The model achieved
a test accuracy of 98.04%; however, performance simulations are evaluated with a weighted mean log
loss of 0.0708.

The work in [16] measured the effectiveness of semi-supervised learning techniques for ICH
detection and segmentation from head CT images. A self-training methodology was introduced to
diagnose the ICH. The authors combined the noisy student learning approach with patchFCN to
segment the ICH. Here, different datasets (labeled and unlabeled) were used for training, validation,
and testing which produced varied results for each dataset. The work in [17] proposed a technique
to generate additional labeled training examples that were utilized to produce an artificial lesion
on a non-lesion CT slice and generate the result, particularly for microbleeds. An artificial mask
generator generates artificial masks of any size and shape at any location and then converts them
into hemorrhagic lesions through a lesion synthesis network. The proposed model demonstrated 91%
and 89%–96% accuracy for detection and classification, respectively. The authors in [18] proposed the
supervised algorithms of ML and DL for classification and segmentation to detect the ICH. They
employed CNN, support vector machine (SVM), and machine learning (ML) models to seek accurate
margins. Firstly, segmentation is performed, and then the results are fed to the classifier as an input
to classify whether hemorrhage is present or not.

The work in [19] proposed the detection of ICH based on CAD using DL approach. The authors
developed the CAD system by using the normal and abnormal head CT images of 433 patients. Results
were displayed with U-Net usage, corresponding to the heat map. The top sensitivity, specificity, and
accuracy ratios stood at 91.7%, 81.2%, and 85%, respectively. This work in [20] claimed that ML
model judgment is feasible for ICH detection on non-contrast CT data. However, data for training,
validation, and testing are utilized from a common source, which causes limitations. The authors in
[21] proposed a solution to detect traumatic brain injury, a type of brain hemorrhage that leads to
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serious disease and death. The DL-ICH model was developed to diagnose and classify ICH using
optimal image segmentation, achieving 95.06% accuracy. Inception v4 was used for feature extraction,
and classification was performed by using a multilayer perceptron. The authors in [22] employed an
automated model for ICH diagnosis and classification based on ML with a kernel extreme learning
machine classifier that achieved 95% accuracy. Gaussian filtering is implemented to smooth the image
and remove the noise, and features are extracted by the histogram of gradients and local binary patterns
process.

The work in [23] proposed the first joint long short-term memory (LSTM) and CNN model
to detect ICH by performing segmentation. The model refines 2D slices and utilizes 3D data for
predictions. RADnet is employed at the slice level, while the RNN layers predict 3D context.
However, the model achieved only 81.82% beatable accuracy. In [24], authors performed segmentation
for symptomatic intracranial hemorrhage (SICH) directly on magnetic resonance (MR) images by
utilizing the lightweight, effective technique that detects edema and hematoma. This method achieved
effective results based on dynamic thresholding with dice scores of 0.809 for the median and 0.895
for the best case in an unsupervised way. The work in [4] designed a lightweight network focusing
on speed and novelty. The authors integrated the combined deep neural network architecture of
ResNext-101 and bidirectional long short-term memory (BiLSTM) to classify ICH subtypes. Principal
component analysis (PCA) was used for feature selection by CNN and fed to RNN as input for scan-
level classification. The weighted mean log loss was 0.04989, and the model achieved 96% accuracy.
However, imbalanced data reduced the sensitivity and negatively impacted the performance.

Authors in [25] designed a hardware device using microwave technology for prehospital detection
of a brain hemorrhage. The device was presented for clinical evaluation and was trained on data
from 20 patients. The training set for this experiment was small, and hence the system cannot be
relied on to accurately predict the variants of ICH. The work in [26] used a relatively straightforward
model by applying the random forest (RF) ML technique for hemorrhage detection on the CT scan
data. The model achieved a dice similarity score of 0.899. However, the dataset used in this model
was segmented manually, which is an unreliable and time-consuming approach in critical conditions.
In [27], the authors describe the immediate detection of ICH in the Chinese population through
an infrared portable device. The device only performs binary classification to detect hemorrhage,
while the classification of subtypes is not included. The algorithm achieved 95.6% sensitivity and
92.5% specificity, respectively. The work [28] adopted 2D and 3D hybrid deep CNN models for ICH
assessment on head CT scans. The proposed work achieved competitive sensitivity and specificity
metrics of 97.1% and 97.5%, respectively. However, the dataset was gathered from a single institute
and has a limited number of subjects. If generalized by aggregating data from multiple sources with
an increased number of subjects, the model may perform even better.

Authors in [29] proposed automatic ICH segmentation using a novel hybrid model with modified
distance regularized level set evolution and a fuzzy c-means method. The system achieved a sensitivity
of 68.43% and an F1 score of 0.82. The proposed method’s sensitivity and F1 score are not reliable
enough to detect the critical ICH cases. The work [30] is about ICH detection and subtype classification
to detect ICH from non-contrast head CT scans. The model attained an area under the curve (AUC)
of 0.9194, which is quite low due to the critical nature of medical applications. The main contribution
of the authors was dataset generation for the ICH. The work in [31] employed the NLP method for the
automatic detection of SDH hemorrhage from CT scan reports. The proposed model was corroborated
with results from human evaluators, and it achieved 84%–90% accuracy. However, this work only
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focuses on the SDH subtype, which limits the model’s application in real-world ICH detection
scenarios. In [32], authors proposed an NLP-based model for the automatic classification of ICH
radiological reports using a hybrid of 1D-CNN, LSTM, and logistic regression (LR) models. CNN and
LSTM models were used for feature extraction, and the LR function was used for classification. The
model recorded an AUC of 0.94, which is significantly unreliable for medically critical applications.

In another work [33], authors proposed a hybrid model using pre-trained ResNet-50 and SE-
ResNeXt-50 architectures, which are trained on the ImageNet natural images dataset. This approach
avoids training the model from scratch, generates better results, and saves computational resources.
The proposed scheme reduced the log loss by a significant decrease to 0.05289. However, the model
also considers useless features for prediction, which burden resources. The work in [12] performed ICH
analysis on non-contrast CT scans using a DL model. The model attained sensitivity and specificity
values of 88.7% and 94.2%, respectively. The results are poor, partially due to using a simple, hand-
crafted CNN model. Furthermore, it also used insufficient data for training, which led to a less
generalized model. The work in [34] employed an ensemble of pre-trained models, SE-ResNeXt50
and EfficientNet-B3, for the prediction and classification of ICH on CT scan data. The training loss
recorded a significant drop to 0.05 after 4 epochs from 0.08 at the start of the simulation. However, this
sharp loss is due to the learning dominance of a particular ICH class due to the imbalanced dataset.
Recently, authors in [35] proposed a hybrid of ResNet152V2 architecture and attention mechanism for
hemorrhage detection and subtype classification. The authors employed the ResNet152V2 pre-trained
model and retained its 15% on the Radiological Society of North America (RSNA-2019) dataset. The
feature set is then fed to the attention layer to extract localized features, which help improve results. The
results display better performance for all ICH subtypes except EPH due to the challenge of balancing
the dataset. However, the accuracy of this model for IVH, SAH, and SDH subtypes is low for medically
critical applications.

3 Proposed Double-Branch Xception Architecture

The working of the proposed DBXA is depicted in Fig. 1. It is divided into three stages. The first
stage performs data preprocessing operations on CT scan images. It takes each image as an input and
applies image windowing, normalization, ROI extraction, and skull removal operations. The second
stage performs automated feature extraction using dual branches, aiming to get discriminative features.
The third stage consists of combined feature-based classification. The joint feature vectors are provided
as an input to the classifier that outputs the ICH subtype detected in the patient.

The employed ICH dataset belongs to the RSNA-2019 ICH detection challenge. The data was
gathered and labeled by volunteers from Thomas Jefferson Hospital University, Universidade Federal
de Sao Paulo, Stanford University, and the American Society of Neuroradiology. It contains more than
1 million CT scan slices from over 25,000 CT examinations. The dataset is given in the Digital Imaging
and Communications in Medicine (DICOM) format, while labels and other information are provided
in CSV files. After preprocessing to remove noisy and blank images, we utilized 138,000 samples for
training, 12,000 samples for validation, and 100,000 CT scans for testing purposes. These CT scan
images of ICH belong to six subtypes, i.e., EPH, SDH, IPH, IVH, and SAH, and a few of the CT
scans have more than one hemorrhage type. The dataset distribution concerning each ICH subtype is
given in Table 1.
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Figure 1: Proposed DBXA for ICH detection and subtype classification

Table 1: Dataset distribution for training, validation, and testing for ICH subtypes

ICH subtypes Training Validation Testing

EPH 23,000 2,000 16,666
SDH 23,000 2,000 16,666
IPH 23,000 2,000 16,667
IVH 23,000 2,000 16,667
SAH 23,000 2,000 16,667
Any 23,000 2,000 16,667
Total 138,000 12,000 100,000

3.1 Data Preprocessing

The preprocessing stage is labeled step 1 in Fig. 1. The standard format to store and transmit CT
scan images is the DICOM format. It contains pixel data and metadata information about individual
images. The CT scan images are passed through the preprocessing phase, where image windowing is
applied to the CT image data. The image windowing is measured using window level (L) and window
width (W) units. The three intensity windows used in this work are the brain window (L = 40, W = 80),
the subdural window (L = 100, W = 200), and the bone window (L = 600, W = 2800). These intensity
windows help in normalizing the image in the range of 0–1. The Otsu method [36] is used to extract the
ROI by holding the cranial area as a bounding box. Soft tissues are present outside the skull. Therefore,
to extract the cranial space, a morphological opening is applied. Corresponding to the bone region, we
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apply the skull removal algorithm and then replace these values with zero-value pixels by extracting
the high-intensity pixels.

Fig. 2a shows the input image fed to the data preprocessing module, and Fig. 2b shows the output
image after applying the preprocessing operations. The output image is retrieved after applying all
preprocessing related to the three types of intensity image windowing (subdural window, bone window,
and brain window), extraction of ROI, and skull removal algorithm.

Figure 2: Visualization of the CT image dataset’s DBXA preprocessing stage

3.2 Automated Feature Extraction

Stage 2 of the proposed model performs feature extraction as shown in Fig. 1. Our model is based
on a DBXA that extracts the spatial features, concatenates them, and creates the 3D spatial context
(joint feature vectors). The proposed architecture automatically extracts features from the prepared 3D
images in the RGB format. Deep neural networks (DNNs) can learn significant representations from
data and extract the features. This feature extraction depends on the depth of the neural network. Our
DBXA employs the xception model for both branches, which is pre-trained on the ImageNet database
and involves three flows (entry, middle, and exit). Xception is the deep convolutional neural (DCN)
architecture with depth-wise separable convolutions [37] that performs better by producing efficient
results for image classification tasks. As a DNN, it automatically extracts complex and discriminative
features. The input data shape of this network is 299 × 299 × 3; however, in preprocessing, the images
are resized from 512 × 512 × 3 to the required shape to match the format accordingly. Fig. 3 shows
some sample images belonging to six ICH classes.

CNNs are very popular for computer vision and medical imaging tasks due to the many available
datasets and advancements in GPU computational power. These are rapidly growing due to the
availability of highly transferable pre-trained models on large image datasets and some fine-tuning
according to task [4]. ImageNet is one such dataset that provides visual-based data for detection
and classification research. It has 20,000 extensive categories that contain thousands of images for
each class. ImageNet datasets are used in pre-trained models, which prevents the researchers from
training the models from scratch. CNNs consist of layers and filters that learn to detect more complex
features. Our proposed model separately retrains both branches of the xception architecture using the
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RSNA ICH dataset. In our model, features are extracted by both branches and after the global average
pooling operations, validated features (both instant and spatial) of both branches are concatenated to
set up a joint feature vector (concatenated features) that passes as an input to the classifier for further
classification. The Adam optimizer (replacement optimization algorithm) is used to perform training
on both branches.

Figure 3: Demonstration of some training images from the RSNA-2019 dataset

We applied image augmentation for some transformations (rotation, data scaling, and data trans-
lation) in the dataset. There were some non-hemorrhagic slices present in the dataset. However, based
on weightage for each hemorrhagic subtype, we perform class distribution to balance the class size,
leading to classification into ICH subtypes. To keep the data balanced, we use random oversampling
by selecting examples from minority classes with replacements and adding them to the training dataset.
Invalid (unreliable) images are removed from the dataset by doing some preprocessing. According to
the patient ratio in experiments, the dataset is partitioned for training, validation, and test sets.

Fig. 4 illustrates the workings of the proposed DBXA model. We employed DNN based on DBXA
for feature extraction. In the first branch, we consider the three different intensity windows (subdural,
bone, and brain) grayscale images and concatenate them by gaining 3D images. In the second branch,
neighboring slices are analyzed for spatial information with a removed skull and linked together into
a 3D image context. Both branches initiate with an input size of 299 × 299 × 3, preceding multiple
2D convolutional layers involving batch normalization and activation functions. Data flows in three
different stages: entry flow, middle flow, and exit flow. There are separable convolutional layers
consisting of depth-wise convolutions (spatial) along with point-wise convolutions followed by max
pooling. In the end, global average pooling is applied, followed by a dense layer. When the training
is completed, the features from either branch of fully connected layers of xception are taken and then
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concatenated. Both branches extract 2048 features, which are then combined into a joint feature set of
4096 features and provided as input to the classifier for the classification process.

Figure 4: Diagrammatic representation of the DBXA-based CNN model

3.3 Decision Tree Classifier

A decision tree (DT) is a cutting-edge supervised learning approach for feature categorization
in ML When employing DT classifiers on concatenated features derived from a double-branch fine-
tuned xception architecture for class prediction, features retrieved using input head CT-scan consisting
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of color histograms and latent features of each sample. The DT is then trained on these latent features
and labels, where each sample consists of a feature and an associated class label. The decision tree
generates a variety of decision criteria during training that refer to the input features to the output
class labels for class-level acute hemorrhage prediction. Fig. 1 highlights this step as step 3 of the
proposed model. The input to the DT classifier is a feature vector of size 4096, which is the length of
the concatenated features of both branches. EPH, IVH, SAH, IPH, SDH, and any ICH subtypes are
used in the classifier. After experiments, all of the hyperparameters are optimized, and model weights
are saved for further ICH and subtype prediction.

4 Experiments and Results

We used the competition dataset of RSNA-2019 for training and validating the performance of
our model [38]. Python 3.6 and Kaggle GPUs are used for the experimentation. DL models are built
using Tensorflow and Keras, which are open-source libraries for implementing deep neural networks.
The source code and dataset information are shared at the following GitHub link: https://github.com/
Aftab-Hussain302/DXBA-for-ICH-Detection.git.

4.1 Hyperparameter Settings

Hyperparameter tuning is performed using a grid search mechanism, and the model is trained for
different values to get optimal results. The hyperparameters chosen for experimentation include batch
size = 32 and the number of epochs = 25. The complete details of the parameters and their descriptions
used in the model are presented in Table 2.

Table 2: Hyperparameter description used in the model training

Hyperparameter Specification

Input shape 299 ∗ 299 ∗ 3
Batch size 32
No of epochs 25
Optimizer Adam
Loss Binary_Cross Entropy
Learning rate 0.0005

4.2 Performance Evaluation Metrics

For the evaluation of ML and DL classification models, accuracy is the most widely used
performance evaluation metric. In ICH detection, the significance of precision and recall is very high
because these metrics help us measure the impact of false positive (FP) and false negative (FN) cases,
respectively. F1 score measures the collective performance of models using precision and recall metrics.
If its value is near 1, this means both precision and recall are high, which is required for medical
applications. Therefore, for this study, we selected precision, recall, and F1 score as performance
evaluation metrics other than accuracy. The mathematical equations of these evaluation metrics are
given as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

https://github.com/Aftab-Hussain302/DXBA-for-ICH-Detection.git
https://github.com/Aftab-Hussain302/DXBA-for-ICH-Detection.git
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Precision = TP
TP + FP

(2)

Recall (Sensitivity) = TP
TP + FN

(3)

Specificity = TN
TN + FP

(4)

F1 score = 2 ∗ precision ∗ recall
precision + recall

(5)

where the true positive (TP) in this work represents correctly predicted ICH positive patients, and true
negative (TN) describes correctly predicted non-ICH patients. FP represents false positive cases, which
are healthy persons misclassified as ICH patients, and false negative (FN) shows ICH patients that are
incorrectly classified as healthy patients.

4.3 Results and Analysis

The overall accuracy and loss curves for the training and validation processes of the proposed
model are presented in Fig. 5. The blue and green curves represent the training and validation of the
system, respectively. Fig. 5a shows that the validation curve closely tracks the training curve with little
deviation, indicating that the model has a strong generalization ability. Both curves are progressively
rising until they reach 0.99, the model’s highest value. Due to a noisy batch used for validation at epoch
19, validation accuracy is notably lower. When the validation accuracy intersects the training curve at
epoch 24 and neither curve continues to rise, the model cannot be trained further, and we terminate
the training at epoch 25.

Figure 5: The performance of the proposed DXBA model during training and validation for (a)
accuracy and (b) loss

The loss experienced during training and validation of the presented DXBA technique is high-
lighted in Fig. 5b. From epoch 1 to the final epoch 25, the loss for training and validation continuously
decreases until it reaches below 0.10, which denotes the proposed scheme’s minimal loss. The gradual
decrease in loss indicates that the model is not overfitting but rather training on the designated dataset.
Since we utilized the RSNA-2019 dataset, which contains some noisy and intercalated samples in the
training and validation sets, there is very little variation in validation loss after epoch number 15. The
training process was stopped after 25 epochs as there was no further reduction observed in the training
and validation losses.
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4.3.1 ICH Detection

Fig. 6 demonstrates the analysis of the proposed scheme for sensitivity and specificity metrics with
the range of epochs. The sensitivity indicates the model’s performance for true positive prediction,
whereas specificity demonstrates model behavior for true negative predictions. The overall sensitivity
for the validation process follows the training curve with minor deviations, and after 25 epochs, it
becomes approximately similar to the training curve. It attains a value greater than 0.96, which shows
the model’s better performance in predicting positive cases of brain hemorrhage. The specificity is
even better than the sensitivity, as the validation displays overlap with the training curve. It achieves a
performance of greater than 0.97, indicating a robust prediction of non-ICH cases. It shows the model
generalizes for the binary classification cases and efficiently differentiates between ICH and non-ICH
patients. Consequently, the proposed model accurately detects both hemorrhage and non-hemorrhage
cases with better accuracy.

Figure 6: Sensitivity and specificity of the proposed DXBA technique during training and validation

4.3.2 ICH Subtype Classification

The categorical outcomes of our proposed model on the test dataset are shown in Table 3. The
results reveal superior model performance with over 97% accuracy for all ICH subtype classifications.
The accuracy for EPH is 99.73%, IPH is 99.10%, IVH is 99.49%, SAH is 99.49%, SDH is 98.09%, and
any subtype is 97.35%. The relatively low accuracy for any subtype is due to having mixed samples
of all ICH classes. The overall results state that residual blocks of the xception architecture improve
performance on both training and validation datasets. We trained the complete xception model with
the RSNA-2019 dataset provided in Table 1.

Table 3: Categorical model performance for different evaluation parameters

Metrics EPH (%) IPH (%) IVH (%) SAH (%) SDH (%) Any (%)

Accuracy 99.73 99.10 99.49 99.49 98.09 97.35
Precision 99.98 96.01 96.10 96.02 96.01 98.0
Recall 97.01 92.40 90.01 95.90 94.04 84.76
F1 score 98.47 94.16 92.95 95.95 95.01 90.89

The xception architecture is also known for its better feature extraction capabilities than other
models. Hence, the proposed double-branch model efficiently detects ICH and its subtypes on
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CT scan data. It achieved precision for any = 98.0%, EPH = 99.98%, IPH = 96.01%, IVH = 96.10%,
SAH = 96.02%, and SDH = 96.01%. In medical applications, high precision is required, which means
that the number of false-positive cases is low. In this experiment, it achieved exceptional performance
for EPH and any subtypes, but it can be further improved for other subtypes, especially IPH and SDH
subtypes. A recall is the ratio between the correct predictions and the sum of the correct and incorrect
predictions. Our proposed model achieved recall for any = 84.76%, EPH = 97.01%, IPH = 92.40%,
IVH = 90.01%, SAH = 95.90%, and SDH = 94.04%. Like precision, recall value demonstrates that the
misclassification of an ICH patient to a different ICH subtype is low, except for the IVH and any
subtypes. The results of the F1 score are also analogous to the precision and recall of the model.
The F1 score represents a single metric calculated by considering the precision and recall values of
the individual ICH subtypes. This higher F1 score indicates that the proposed model has low false
positive and false negative rates, which points towards better feature extraction and classification of the
model. Our proposed model achieved the F1 score for any = 90.89%, EPH = 98.47%, IPH = 94.16%,
IVH = 92.95%, SAH = 95.95%, and SDH = 95.01%. Due to being based on precision and recall, the
F1 score remains low for IVH and any subtypes, which means the dataset or the feature extraction for
these subtypes needs further attention.

5 Proposed Model Comparison with Benchmark Techniques

The accuracy comparison of our proposed DBXA model with the benchmark models is presented
in Table 4. The DBXA model is compared with models that perform best among all the existing studies;
hence, they are selected as baseline methods for comparison.

Table 4: Comparison of the proposed DBXA model with benchmark studies for accuracy metric

Models EPH (%) IPH (%) IVH (%) SAH (%) SDH (%) Any (%)

Ensemble EfficientNet-B0
[1]

98.6 97.3 96.7 95.9 95.1 96.7

ResNetXt-101 + BiLSTM
[4]

100 92.0 95.0 83.0 93.0 97.0

SE-ResNext50 + SE-
ResNext101 [20]

99.4 97.4 97.9 95.5 96.5 98.3

ResNet152V2 + Attention
[35]

99.2 97.1 96.7 96.7 96.1 –

Proposed DBXA model 99.7 99.1 99.5 99.4 98.1 97.4

The performance comparison displays the superior performance of the DBXA model on the test
CT scan samples. It achieves better accuracy than benchmark models for all ICH subtypes except
the EPH class and any class. The best comparative performance is for the SAH class, where the
Ensemble EfficientNet-B0 model achieved 95.9% accuracy and the ResNet152V2 + Attention model
had 96.7% accuracy, while our model displayed an accuracy of 99.4%. The accuracy measure for other
benchmark models remained even lower. The difference between the accuracies of benchmark models
and the proposed DBXA for other subtypes is also significant. The two exceptions are the EPH class
and any class, where the ResNetXt-101 + BiLSTM benchmark model has 100% accuracy, whereas
the proposed DBXA model has 99.6% accuracy. Similarly, for any subtype, the accuracy of the SE-
ResNext50 + SE-ResNext101 model is 98.3% while it is recorded as 97.4% for the proposed DBXA
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model. The results for IPH, IVH, and SDH subtypes are also better for the proposed model by a
significant margin. The reason for overall better performance lies in the extraction of both spatial
and latent features due to double-branch architecture, which is missing in the benchmark models.
The xception architecture is the best-performing pre-trained model in the Keras library and beats the
ResNet-based and EfficientNet-B0 models in image classification problems. Furthermore, we have
trained our proposed model completely on the RSNA-2019 dataset, unlike the benchmark models,
which either train the models partially or avoid training at all. The features extracted by both branches
bring diversity to feature vectors by focusing on particular regions of the scan images that may be
missed by the single branch.

6 Discussion

This work explores the research landscape of ICH detection and classification and presents a
novel idea of employing a double-branch model for image classification tasks. The proposed idea is
implemented using a top-rated Xecption architecture and completely retrained using the RSNA-2019
dataset, extensively used for brain hemorrhage detection problems. The benchmark model, ResNetXt-
101 + BiLSTM [4], is trained on natural images and was fine-tuned on the brain hemorrhage
dataset by freezing all the layers without training any of them. The ResNet152V2 + Attention [35]
model was 15% trained with an added attention layer to improve performance. Consequently, the
ResNet152V2 + Attention model performed better than the former for all ICH subtypes except the
EPH class. Similarly, Ensemble EfficientB0 [1] and SE-ResNext50 + SE-ResNext101 [20] models were
also trained on the RSNA ICH dataset. As a result, their performance was also better than ResNetXt-
101 + BiLSTM [4] but remained competitive with ResNet152V2 + Attention [35] model. Although
the performance of the [1,4,20,35] models recorded superior detection accuracy than other existing
models, their performance for subtypes remained low for medically critical applications. It can be
improved if we train the model completely rather than just training it partially for the ICH subtypes.
Additionally, double-branch architecture may be used to extract discriminative features which may
be missed by either of the individual branches. Hence, this becomes a research gap, which provides
us with an opportunity to improve model performance for other subtypes as well. We incorporated
the xception architecture and completely trained using the RSNA-2019 dataset. Furthermore, data
cleaning is applied, where noisy data and CT scan samples with incomplete information are removed
from the training dataset. This allowed us to train the xception architecture with relatively good-quality
ICH scans as compared to the benchmark models. The proposed model also uses a double-branch
approach, which extracts those discriminative and spatial features that may otherwise have been missed
by any individual branch.

The overall results of the model and its analysis for the subtype classification prove our point about
using xception architecture and then employing double-branch architecture for feature extraction.
In the overall evaluation, sensitivity and specificity for the validation dataset demonstrate better
performance. Similarly, for the subtype classification, the model performs significantly better by
recording higher values for all performance metrics. When compared with the benchmark models for
comparison, the proposed model displays better accuracy for all subtypes except the EPH category. If
researched further, the model has the potential to challenge existing ICH detection and classification
systems by introducing the latest state-of-the-art domain-specific pre-trained models. It may be
extended by introducing a hybrid or ensemble approach, which can further improve the model’s
performance. Conclusively, the model can challenge real-world applications by improving the ICH
detection and classification capabilities of existing implementations.
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7 Conclusion and Future Work

In this paper, we propose a DBXA for acute hemorrhage detection and subtype classification.
The proposed model extracts spatial and instant features by using the double-branch model and a
decision tree for classification. Our model uses the pre-trained xception architecture and trains it
on the RSNA-2019 dataset, extensively used for brain hemorrhage detection problems. The feature
vectors from the double-branch architecture are concatenated and fed to the decision tree classifier
for classification. The performance of our proposed model is analyzed with benchmark techniques.
The simulated results showed that our double-branch architecture achieved better results for all
performance evaluation metrics. Our model has an overall sensitivity of 96% and a specificity of 97%.
For categorical performance, it achieves the best performance for the EPH class with 99.73% accuracy,
99.98% precision, 97.01% recall, and 98.47% F1 score. The comparative analysis also displays the
best performance for our proposed DBXA model for all categorical evaluations except EPH and any
classes, which makes it suitable for use in real-world scenarios. The application of our proposed model
is quite general. It can be used in medical applications for acute ICH and subtype detection.

In the future, we will focus on implementing the vision transformer (ViT) model to enhance
the performance of our system model. ViT is a state-of-the-art pre-trained model trained on the
ImageNet and ImageNet-21k datasets. We may replace the head of the model with ICH classes and
freeze already-trained layers. Alternatively, for even better performance, some layers may be trained
to better acquaint the model with the ICH dataset. We will apply feature reduction techniques such
as principal component analysis, etc. The data used in this study is noisy. Therefore, we will train
our model on some local datasets. Our main aim is to improve the detection and classification of
intracranial hemorrhage rapidly and accurately.
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